
A Portrait of 

Linear Algebra 
Third Edition 

Jude Thaddeus Socrates 
Pasadena City College 

Kendall Hunt 
publishing c o mpany 



To order the print or e-book version of this book, go to: 

https://he.kendallhunt.com/product/portrait-linear-algebra 

www.kendallhunt.com 
Send all inquiries to: 
4050 Westmark Drive 
Dubuque, IA  52004-1840 

Copyright © 2016 by Kendall Hunt Publishing Company 

ISBN 978-1-4652-9053-3 

Printed in the United States of America 

https://he.kendallhunt.com/product/portrait-linear-algebra
http://www.kendallhunt.com


Chapter Zero. The Language of Mathematics:
Sets, Axioms, Theorems & Proofs 1

Chapter 1. The Canvas of Linear Algebra:
Euclidean Spaces and Subspaces 25

1.1 The Main Subject: Euclidean Spaces 26
1.2 The Span of a Set of Vectors 41
1.3 The Dot Product and Orthogonality 54
1.4 Systems of Linear Equations 67
1.5 Linear Systems and Linear Independence 83
1.6 Independent Sets versus Spanning Sets 99
1.7 Subspaces of Euclidean Spaces; Basis and Dimension 115
1.8 The Fundamental Matrix Spaces 125
1.9 Orthogonal Complements 142
A Summary of Chapter 1 155

Chapter 2. Adding Movement and Colors:
Linear Transformations on Euclidean Spaces 157

2.1 Mapping Spaces: Introduction to Linear Transformations 158
2.2 Rotations, Projections and Reflections 170
2.3 Operations on Linear Transformations and Matrices 186
2.4 Properties of Operations on Linear Transformations and Matrices 199
2.5 Kernel, Range, One-to-One and Onto Transformations 213
2.6 Invertible Operators and Matrices 228
2.7 Finding the Inverse of a Matrix 238
2.8 Conditions for Invertibility 248
2.9 Diagonal, Triangular, and Symmetric Matrices 256
A Summary of Chapter 2 267

Chapter 3. From The Real to The Abstract:
General Vector Spaces 269

3.1 Axioms for a Vector Space 270
3.2 Linearity Properties for Finite Sets of Vectors 284
3.3 Linearity Properties for Infinite Sets of Vectors 295
3.4 Subspaces, Basis and Dimension 310
3.5 Linear Transformations on General Vector Spaces 329

Contents



3.6 Coordinate Vectors and Matrices for Linear Transformations 341
3.7 One-to-One and Onto Linear Transformations;

Compositions of Linear Transformations 358
3.8 Isomorphisms and their Applications 376
A Summary of Chapter 3 391

Chapter 4. Peeling The Onion:
The Subspace Structure of Vector Spaces 393

4.1 The Join and Intersection of Two Subspaces 394
4.2 Restricting Linear Transformations and the Role of the Rowspace 403
4.3 The Image and Preimage of Subspaces 412
4.4 Cosets and Quotient Spaces 422
4.5 The Three Isomorphism Theorems 431
A Summary of Chapter 4 445

Chapter 5. From Square to Scalar:
Permutation Theory and Determinants 447

5.1 Permutations and The Determinant Concept 448
5.2 A General Determinant Formula 461
5.3 Computational Tools and Properties of Determinants 477
5.4 The Adjugate Matrix and Cramer’s Rule 488
5.5 The Wronskian 497
A Summary of Chapter 5 501

Chapter 6. Painting the Lines:
Eigentheory, Diagonalization and Similarity 503

6.1 The Eigentheory of Square Matrices 504
6.2 Computational Techniques for Eigentheory 514
6.3 Diagonalization of Square Matrices 526
6.4 The Exponential of a Matrix 540
6.5 Change of Basis and Linear Transformations on Euclidean Spaces 544
6.6 Change of Basis for Abstract Spaces and Determinants for Operators 555
6.7 Similarity and The Eigentheory of Operators 563
A Summary of Chapter 6 575

Chapter 7. Geometry in the Abstract:
Inner Product Spaces 577

7.1 Axioms for an Inner Product Space 578
7.2 Geometric Constructions in Inner Product Spaces 589



7.3 Orthonormal Sets and The Gram-Schmidt Algorithm 599
7.4 Orthogonal Complements and Decompositions 613
7.5 Orthonormal Bases and Projection Operators 625
7.6 Orthogonal Matrices 635
7.7 Orthogonal Diagonalization of Symmetric Matrices 646
7.8 The Method of Least Squares 653
7.9 The QR-Decomposition 662
A Summary of Chapter 7 669

Chapter 8. Imagine That:
Complex Spaces and The Spectral Theorems 671

8.1 The Field of Complex Numbers 672
8.2 Complex Vector Spaces 685
8.3 Complex Inner Products 694
8.4 Complex Linear Transformations and The Adjoint 702
8.5 Normal Matrices 712
8.6 Schur’s Lemma and The Spectral Theorems 725
8.7 Simultaneous Diagonalization 735
A Summary of Chapter 8 751

Chapter 9. The Big Picture: The Fundamental Theorem of
Linear Algebra and Applications 753

9.1 Balancing Chemical Equations 754
9.2 Basic Circuit Analysis 760
9.3 Recurrence Relations 770
9.4 Introduction to Quadratic Forms 778
9.5 Rotations of Conics 788
9.6 Positive Definite Quadratic Forms and Matrices 796
9.7 The Fundamental Theorem of Linear Algebra 807
9.8 The Singular Value Decomposition 817
9.9 Applications of the SVD 827

Appendix A: The Real Number System 837
Appendix B: Logical Symbols and Truth Tables 856
Glossary of Symbols 861
Subject Index 866

The Answer Key to the Exercises is available as a free download at:
https://he.kendallhunt.com/product/portrait-linear-algebra

https://he.kendallhunt.com/product/portrait-linear-algebra


Preface to the 3rd Edition

In the three years since the 2nd Edition of A Portrait of Linear Algebra came out, I have had the
privilege of teaching Linear Algebra every semester, and even during most of the summers. All the
new ideas, improvements, exercises, and other changes that have been incorporated in the 3rd edition
would not have been possible without the lengthy discussions and interactions that I have had with so
many wonderful students in these classes, and the colleagues who adopted this book for their own
Linear Algebra class.
So let me begin by thanking Daniel Gallup, John Sepikas, Lyman Chaffee, Christopher Strinden,
Patricia Michel, Asher Shamam, Richard Abdelkerim, Mark Pavitch, David Matthews, and Guoqiang
Song, my colleagues at Pasadena City College who have taught out of my book, for sharing their ideas
and experiences with me, their encouragement, and suggestions for improving this text.
I am certain that if I begin to name all the students who have given me constructive criticisms about the
book, I will miss more than just a handful. There have been hundreds of students who have gone
through this book, and I learned so much from my conversations with many of them. Often, a casual
remark or a simple question would prompt me to rewrite an explanation or come up with an interesting
new exercise. Many of these students have continued on to finish their undergraduate careers at
four-year institutions, and have begun graduate studies in mathematics or engineering. Some of them
have kept in touch with me over the years, and the sweetest words they have said to me is how easily
they handled upper-division Linear Algebra classes, thanks to the solid education they received from
my book. I give them my deepest gratitude, not just for their thoughts, but also for giving me the best
career in the world.
It is hard to believe that ten years ago, the idea of this book did not even exist. None of this would have
been possible without the help of so many people.
Thank you to Christine Bochniak, Beverly Kraus, and Taylor Knuckey of Kendall Hunt for their
valuable assistance in bringing the 3rd edition to fruition.
Many thanks to my long-suffering husband, my best friend and biggest supporter, Juan Sanchez-Diaz,
for patiently accepting all the nights and weekends that were consumed by this book. And thank you to
Johannes, for your unconditional love and for making me get up from the computer so we can go for a
walk or play with the ball. I would have gone bonkers if it weren’t for you two.
To the members of the Socrates and Sanchez families all over the planet, maraming salamat, y muchas
gracias, for all your love and support.
Thanks to all my colleagues at PCC, my friends on Facebook, and my barkada, for being my
unflagging cheering squad and artistic critics.
Thanks to my tennis and gym buddies for keeping me motivated and physically healthy.
Thank you to my late parents, Dr. Jose Socrates and Dr. Nenita Socrates, for teaching me and all their
children the love for learning.
And finally, my thanks to our Lord, for showering my life with so many blessings.

Jude Thaddeus Socrates
Professor of Mathematics
Pasadena City College, California
June, 2016



What Makes This Book Different?

A Portrait of Linear Algebra takes a unique approach in developing and introducing the core concepts
of this subject. It begins with a thorough introduction of the field properties for real numbers and uses
them to guide the student through simple proof exercises. From here, we introduce the Euclidean
spaces and see that many of the field properties for the real numbers naturally extend to the properties
of vector arithmetic. The core concepts of linear combinations, spans of sets of vectors, linear
independence, subspaces, basis and dimension, are introduced in the first chapter and constantly
referenced and reinforced throughout the book. This early introduction enables the student to retain
these concepts better and to apply them to deeper ideas.
The Four Fundamental Matrix Spaces are encountered at the end of the first Chapter, and transitions
naturally into the second Chapter, where we study linear transformations and their standard matrices.
The kernel and range of these transformations tells us if our transformations are one-to-one or onto.
When they are both, we learn how to find the inverse transformation. We also see that some geometric
operations of vectors in 2 or 3 are examples of linear operators.
Once these core concepts are firmly established, they can be naturally extended to create abstract
vector spaces, the most important examples of which are function spaces, polynomial spaces, and
matrix spaces. Linear transformations on finite dimensional vector spaces can again be coded using
matrices by finding coordinates for our vectors with respect to a basis. Everything we encountered in
the first two chapters can now be naturally generalized.
One of the unique features of this book is the use of projections and reflections in 3, with respect to
either a line or a plane, in order to motivate some concepts or constructions. We use them to explore
the core concepts of the standard matrix of a linear transformation, the matrix of a transformation with
respect to a non-standard basis, and the change of basis matrix. In the case of reflection operators, we
see them as motivation for the inverse of a matrix, and as an example of an orthogonal matrix.
Projection matrices, on the other hand, are good examples of idempotent matrices.
The second half of the book goes into the study of determinants, eigentheory, inner product spaces,
complex vector spaces, the Spectral Theorems, and the material necessary to understand and prove the
Fundamental Theorem of Linear Algebra, and its twin, the Singular Value Decomposition. We also see
several applications of Linear Algebra in science, engineering, and other areas of mathematics.
Throughout the book, we emphasize clear and precise definitions and proofs of Theorems, constantly
encouraging the student to read and understand proofs, and to practice writing their own proofs.

How this Book is Organized

Chapter Zero provides an introduction to sets and set operations, logic, the field axioms for real
numbers, and common proof techniques, emphasizing theorems that can be derived from the field
axioms. This brief introductory chapter will prepare the student to learn how to read, understand and
write basic proofs.
We base our development of the main concepts of Linear Algebra on the following definition:

Linear Algebra is the study of vector spaces, their structure, and the linear
transformations that map one vector space to another.



Chapter 1 rigorously examines the archetype vector spaces: Euclidean spaces, their geometry, and the
core ideas of spanning, linear independence, subspaces, basis, dimension and orthogonal complements.
We will see the Gauss-Jordan Algorithm, the central tool of Linear Algebra, and use it to solve systems
of linear equations and investigate the span of a set of vectors. We will also construct the four
fundamental matrix spaces: rowspace, columnspace and nullspace for a matrix and its transpose, and
find a basis for each space.
Chapter 2 introduces linear transformations on Euclidean spaces as encoded by matrices. We will see
how each linear transformation determines special subspaces, namely the kernel and the range of the
transformation, and use these spaces to investigate the one-to-one and onto properties. We will define
basic matrix operations, including a method to find its inverse when this exists.
Chapter 3 generalizes the concepts from Chapters 1 and 2 in order to construct abstract vector spaces
and linear transformations from one vector space to another. We focus most of our examples on
function spaces (in particular, polynomial spaces), and linear transformations connecting them,
especially those involving derivatives and evaluations. We will see that in the finite-dimensional case, a
linear transformation can be encoded by a matrix as well. By focusing on function spaces preserved by
the derivative operator, the strong relationship between Linear Algebra and Differential Equations is
firmly established.
Chapter 4 investigates the subspace structure of vector spaces, and we will see techniques to fully
describe the join and intersection of two subspaces, the image or preimage of a subspace, and the
restriction of a linear transformation to a subspace. We will create cosets and quotient spaces, and see
one of the fundamental triptychs of modern mathematics: the Isomorphism Theorems of Emy Noether
as applied to vector spaces.

Chapter 5 explores the determinant function, its properties, especially its relationship to invertibility,
and efficient algorithms to compute it. We will see Cramer’s rule, a technique to solve invertible square
systems of equations, albeit not a very practical one.
Chapter 6 introduces the eigentheory of operators both on Euclidean spaces as well as abstract vector
spaces. We will see when it is possible to encode operators into the simplest possible form, that is, to
diagonalize them. We will study the concept of similarity and its consequences.
Chapter 7 generalizes geometry on a vector space by imposing an inner product on it. This allows us
to introduce the concepts of norm and orthogonality in abstract spaces. We will explore orthonormal
bases, the Gram-Schmidt Algorithm, orthogonal matrices, the orthogonal diagonalization of symmetric
matrices, the method of least squares, and the QR-decomposition.
Chapter 8 applies the constructions thus far to vector spaces over arbitrary fields, especially the field of
complex numbers. The main goal of this chapter is to prove the Spectral Theorem of Normal Matrices.
One specific case of this Theorem tells us that symmetric matrices can indeed be diagonalized by
orthogonal matrices. We also see that commuting diagonalizable matrices can be simultaneously
diagonalized by the same invertible matrix, and present an algorithm to do so.
Chapter 9 explores some applications of Linear Algebra in science and engineering. We develop the
theories of quadratic forms and positive semi-definite matrices. These enable us to prove The
Fundamental Theorem of Linear Algebra, an elegant theorem that ties together the four fundamental
matrix spaces and the concepts of eigenspaces and orthogonality. Closely connected to this is the
Singular Value Decomposition, which has applications in data processing.
This book is intended to serve as a text for a standard 15-week semester course in introductory Linear
Algebra. However, enough material is included in this text for two full semesters. This book is my
vision of what today’s student in science and engineering should know about this elegant field.



What is New with the Third Edition?

Over 500 new Exercises have been added since the 2nd edition.
The last two Sections of Chapter 1 in the 2nd Edition were reorganized into three new sections. Section
1.7 introduces the concept of a subspace of n and proves that every non-zero subspace has a basis,
leading us to define the concept of dimension. Section 1.8 introduces the four fundamental matrix
spaces and the Dimension Theorem for Matrices, the properties and relevance of these spaces, and
how to find a basis for each of them. Section 1.9 focuses on finding a basis for the orthogonal
complement of a subspace of n.
There are three completely new sections in the 3rd edition:
Section 5.5. The Wronskian: a matrix that can determine if a finite set of functions is linearly
independent.
Section 6.4. The Exponential of a Matrix: a method to compute eA, where A is a diagonalizable square
matrix. This computation is particularly important in finding the solutions to a System of Linear
Differential Equations.
Section 8.7. Simultaneous Diagonalization: an algorithm to find an invertible matrix C that will
simultaneously diagonalize two commuting diagonalizable matrices. This is perhaps one of the most
elegant ideas presented in this book.

Special Topics and Mini-Projects

Scattered around the Exercises are multi-step problems that guide the student through various topics
that probe deeper into Linear Algebra and its connections with Geometry, Calculus, Differential
Equations, and other areas of mathematics such as Set Theory, Group Theory and Number Theory.

The Medians of a Triangle: a coordinate-free proof that the three medians of any triangle intersect at a
common point which is 2/3 the distance from any vertex to the opposite midpoint (Section 1.1).
The Cross Product: used to create a vector orthogonal to two vectors in 3, and proves its other
properties using the properties of the 3  3 determinant (Sections 1.3, 5.1 and 5.2).
The Uniqueness of the Reduced Row Echelon Form: uses the concepts of the rowspace of a matrix
and the Equality of Spans Theorem to prove that the rref of any matrix is unique (Section 1.8).
Drawing Three-Dimensional Objects: applies the concept of a projection in order to show how to
draw the edges of a 3-dimensional object as perceived from any given direction (Section 2.2).
The Center of the Ring of Square Matrices: uses basic matrix products to show that the only n  n
matrices that commute with all n  n matrices are the multiples of the identity matrix (Section 2.4).
The Kernel and Range of a Composition: proves that the kernel of a composition T2  T1 contains the
kernel of T1, and analogously, the range of T2  T1 is contained in the range of T2 (Section 2.5 for
Euclidean Spaces and Section 3.7 for arbitrary vector spaces).
The Direct Sum of Matrices: explores the properties of matrices in block-diagonal form (Sections 2.8,
2.9, 5.3, 6.1, 7.6, and 8.7).
The Chinese Remainder Theorem: introduced and applied to construct invertible 2  2 integer
matrices whose inverses also have integer entries (Section 2.8).



Cantor’s Diagonal Argument: proves that the set of rational numbers is countable by showing how to
list its elements in a sequence (Section 3.3).
The Countability of Subintervals of the set of Real Numbers: gives a guided proof that all
subintervals of  that contains at least two points have the same cardinality as , by explicitly
constructing bijections among these subintervals (Section 3.3).

Bisymmetric Matrices: explores the properties and dimensions of this unusual and interesting family
of square matrices (Section 3.4).
The Centralizer of a Matrix: proves that the set of matrices that commute with a given square matrix
forms a vector space, and finds a basis for it in the 2  2 case (Section 3.4).
Vector Spaces of Infinite Series: proves that the set of absolutely convergent series form a subspace
of the space of all infinite series, whereas conditionally convergent and divergent series are not closed
under addition (Section 3.4). We also see a natural inner product which is well-defined on absolutely
convergent series but fails for conditionally convergent series (Section 7.1).

Casting Shadows: shows that the shadow on the floor of an image on a window pane is an example of
a linear transformation (Section 3.6).
The Vandermonde Determinant: applies row and column operations and cofactor expansions to find
a closed formula for the Vandermonde Determinant, and applies it to some Wronskian determinants,
proving that certain infinite subsets of function spaces are linearly independent (Sections 5.3 and 5.5).

The Special Linear Group of Integer Matrices: introduces the concept of a group, and proves that
the set of all n  n matrices with integer entries and determinant 1 form a group under matrix
multiplication. This project also proves that SL2 is generated by two special matrices (Section 5.3).

Invertible Triangular Matrices: uses Cramer’s rule to prove that the inverse of an invertible upper
triangular matrix is again upper triangular, and analogously for lower triangular matrices (Section 5.4).

Eigenspaces of Matrices Related to Rotation Matrices: although a rotation matrix itself does not have
real eigenvalues unless the rotation is by 0 or  radians, performing the reflection across the x-axis
followed by a rotation matrix always leads to real eigenvalues, and a basis for the eigenspaces that
involve the half-angle formula (Section 6.1).

Properties Preserved by Similarity: proves that similar matrices share attributes such as determinants,
invertibility, arithmetic and geometric multiplicities, and diagonalizability.
Introduction to Fourier Series: shows that the infinite family of trigonometric functions
 sinnx, cosnx |n   are mutually orthogonal under the inner product defined using the integral
of their product over 0, 2 (Section 7.3).

De Morgan’s Laws for Subspaces: proves that V W  V W and V W  V W,
connecting the ideas of the intersection and join of two subspaces with their orthogonal complements
(Section 7.4).

Matrix Decompositions: shows that any square matrix can be decomposed uniquely as the sum of a
symmetric and a skew-symmetric matrix, and that the spaces of symmetric and skew-symmetric
matrices are orthogonal complements of each other under a naturally defined inner product on all
square matrices (Section 7.5).

Right Handed versus Left Handed Orthonormal Bases: uses the cross-product to define and create
right-handed orthonormal bases for 3, and relates the concepts of right-handed versus left-handed



orthonormal bases to proper versus improper orthogonal matrices (Section 7.6).

Rotations in Space: explicitly constructs the matrix of the counterclockwise rotation by an angle 
about a fixed unit normal vector n in 3 by elegantly connecting this operator with the concepts of a
right-handed coordinate system, orthogonal matrices, and the change of basis formula (Section 7.6).

Finite Fields: introduces finite fields by constructing the addition and multiplication tables for the
finite fields /5 and /7 (Section 8.1).
The Pauli matrices: an introduction to normal matrices that are important in Quantum Mechanics
(Section 8.6).

A Note on Technology

The calculations encountered in modern Linear Algebra would be all but impossible to perform in
practice, especially on large matrices, without the advent of the computer. Obviously, it would be
tedious to perform calculations on these large matrices by hand. However, we do encourage the student
to learn the algorithms and computations first, by practicing on the homework problems by hand (with
the help of a scientific calculator, at best), before using technology to perform these computations.
It is easy to find free and downloadable software or apps by typing “Linear Algebra Packages” in a
search engine. The following computations and algorithms are relevant for this book:
 Matrix Arithmetic: Addition, Multiplication, Inverse, Transpose, Determinant;
 The Gauss-Jordan Algorithm and the Reduced Row Echelon Form or rref;
 Finding a basis for the Rowspace, Columnspace and Nullspace of a Matrix;
 Characteristic Polynomials, Eigenvalues and Bases for Eigenspaces;
 The QR-decomposition;
 The LU-decomposition;
 The Singular Value Decomposition (SVD).

Some graphing calculators also provide many of these routines. We leave it to the instructor to decide
whether or not these will be allowed or required in the classroom, homework, or examinations.

To the Student

You are about to embark on a journey that will introduce you to the inner workings of mathematics. So
far, Calculus has prepared you to be a whiz at computations. Please keep an open mind, though, as you
struggle with a very different skill — learning abstractions, theorems and proofs. Read the text several
times (preferably before the lecture), and familiarize yourself with key definitions and theorems
connecting these definitions and concepts. The Section Summaries and Chapter Summaries should be
very useful in this regard. They are not substitutes, though, for reading the entire text, especially the
examples and the proofs of theorems, which I encourage you to imitate. When you are asked to prove
a theorem in the exercises, identify the key words and the key symbols and write down their precise
definitions or meanings. Identify which conditions are given, and what conditions you are trying to
prove or show, and then attempt to tie them together into a well-written proof. Be patient with yourself,
and don’t give up if you haven’t given it an honest try. I hope you enjoy this experience, and in the end,
I hope that you discover the beauty of mathematics.



Chapter Zero
The Language of Mathematics:

Sets, Axioms, Theorems & Proofs
Mathematics is a language, and Logic is its grammar.

You are taking a course in Linear Algebra because the major that you have chosen will make use of its
techniques, both computational and theoretical, at some points in your career. Whether it is in
engineering, computer science, chemistry, physics, economics, or of course, mathematics, you will
encounter matrices, vector spaces and linear transformations. For most of you, this will be your first
experience in an abstract course that emphasizes theory on an almost equal footing with computation.
The purpose of this introductory Chapter is to familiarize you with the basic components of the
mathematical language, in particular, the study of sets (especially sets of numbers), subsets, operations
on sets, logic, Axioms, Theorems, and basic guidelines on how to write a coherent and logically correct
Proof for a Theorem.

Part I: Set Theory and Basic Logic

The set is the most basic object that we work with in mathematics:

Definition: A set is an unordered collection of objects, called the elements of the set. A set
can be described using the set-builder notation:

X  x |x possesses certain determinable qualities ,
or the roster method:

X  a, b, . . . ,

where we explicitly list the elements of X. The bar symbol “|” in set-builder notation
represents the phrase “such that.”

We will agree that such “objects” are already known to exist. They could consist of people, letters of
the alphabet, real numbers, or functions. There is also a special set, called the empty set or the null-set,
that does not contain any elements. We represent the empty set symbolically as:

 or  .

Early in life, we learn how to count using the set of natural numbers:

  0, 1, 2, 3, 4, . . . .

1



We learn how to add, subtract, multiply and divide these numbers. Eventually, we learn about negative
integers, thus completing the set of all integers:

  . . .3,2,1, 0, 1, 2, 3, . . . .

We use the letter  from Zahlen, the German word for “number.” Later on, we learn that some
integers cannot be exactly divided by others, thus producing the concept of a fraction and the set of
rational numbers:

  a
b | a and b are integers, with b  0 .

Notice that we defined  using set-builder notation. Still later on, we learn of the number  when we
study the circumference and area of a circle. The number  is an irrational number, although it can be
approximated by a fraction like 22/7 or as a decimal like 3.1416. When we learn to take square roots
and cube roots, we encounter other examples of irrational numbers, such as 2 and 3 5 .

By combining the sets of rational and irrational numbers, we get the set of all real numbers . We
visualize them as corresponding to points on a number line. A point is chosen to be “0,” and another
point to its right is chosen to be “1.” The distance between these two points is the unit, and subsequent
integers are marked off using this unit. Real numbers are classified into positive numbers, negative
numbers, and zero (which is neither positive nor negative). They are also ordered from left to right by
our number line. We show the real number line below along with a couple of famous numbers:

 
.

21 3 4 0
..

e .

The Real Number Line 

Logical Statements and Axioms

An intelligent development of Set Theory requires us to develop in parallel a logical system. The basic
component of such a system is this:

Definition: A logical statement is a complete sentence that is either true or false.

Examples: The statement:

The number 2 is an integer.
is a true logical statement. However:

The number 3/4 is an integer.
is a false logical statement. The statement:

Gustav Mahler is the greatest composer of all time.
is a sentence but it is not a logical statement, because the word “greatest” cannot be qualified. Thus,
we cannot logically determine if this statement is true or false.

2 Chapter Zero: The Language of Mathematics



In everyday life, especially in politics, one person can judge a statement to be true while someone else
might decide that it is false. Such judgments depend on one’s personal biases, how credible they deem
the person who is making the argument, and how they appraise the facts that are carefully chosen (or
omitted) to support the case. In mathematics, though, we have a logical system by which to determine
the truth or falsehood of a logical statement, so that any two persons using this system will reach the
same conclusion. For the sake of sanity, we will need some starting points for our logical process:

Definition: An Axiom is a logical statement that we will accept as true, that is, as reasonable
human beings, we can mutually agree that such Axioms are true.

You can think of Axioms as analogous to the core beliefs of a philosophy or religion.

Examples: One of the most important Axioms of mathematics is this:

The empty set  exists.

In geometry, we accept as Axioms that points exist. We symbolize a point with a dot, although it is not
literally a dot. We accept that through two distinct points there must exist a unique line. We accept
that any three non-collinear points (that is, three points through which no single line passes) determine
a unique triangle. We believe in the existence of these objects axiomatically. We note, though, that
these are Axioms in what we call Euclidean Geometry, but there are other geometric systems that
have very different Axioms for points, lines and triangles.

Quantifiers

Most, if not all of the logical statements that we will encounter in Linear Algebra refer not just to
numbers, but also to other objects that we will be constructing, such as vectors and matrices.
We will use what are called quantifiers in order to specify precisely what kind of object we are
referring to:

Definitions — Quantifiers:
There are two kinds of quantifiers: universal quantifiers and existential quantifiers.
Examples of universal quantifiers are the words for any, for all and for every, symbolized by
. They are often used in a logical statement to describe all members of a certain set.
Examples of existential quantifiers are the phrases there is and there exists, or their plural
forms, there are and there exist, symbolized by . Existential quantifiers are often used to
claim the existence (or non-existence) of a special element or elements of a certain set.

Example: In everyday life, we can make the following statement:

Everyone has a mother.

This is certainly a true logical statement. Let us express this statement more precisely using quantifiers:

For every human being x, there exists another human being y who is the mother of x. 
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Some of the best examples of logical statements involving quantifiers are found in the Axioms that
define the Real Number system. Linear Algebra in a sense is a generalization of the real numbers, so
it is worthwhile to formally study what most of us take for granted.

The Axioms for the Real Numbers

We will assume that the set of real numbers has been constructed for us, and that this set enjoys
certain properties. Furthermore, we will mainly be interested in what are called the Field Axioms:

Axioms — The Field Axioms for the Set of Real Numbers:
There exists a set of Real Numbers, denoted , together with two binary operations:

 (addition) and  (multiplication).
Furthermore, the members of  enjoy the following properties:
1. The Closure Property of Addition:

For all x, y  : x  y   as well.

2. The Closure Property of Multiplication:

For all x, y  : x  y   as well.

3. The Commutative Property of Addition:

For all x, y  : x  y  y  x.

4. The Commutative Property of Multiplication:

For all x, y  : x  y  y  x.

5. The Associative Property of Addition:

For all x, y, z  : x  y  z  x  y  z.

6. The Associative Property of Multiplication:

For all x, y, z  : x  y  z  x  y  z.

7. The Distributive Property of Multiplication over Addition:

For all x, y, z  : x  y  z  x  y  x  z.

8. The Existence of the Additive Identity:

There exists 0   such that for all x  : x  0  x  0  x.

9. The Existence of the Multiplicative Identity:

There exists 1  , 1  0, such that for all x  : x  1  x  1  x.

10. The Existence of Additive Inverses:

For all x  , there exists  x  , such that: x  x  0  x  x.

11. The Existence of Multiplicative Inverses:
For all x  , where x  0, there exists 1/x  , such that:

x  1/x  1  1/x  x.
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Notice that each of the first seven Axioms begin with the quantifier For all. These Axioms tell us that
these properties are valid no matter which two or three real numbers we substitute into the expressions
found in that Axiom. On the other hand, Axioms 8 and 9 begin with the quantifier There exists, but in
the second phrase, we see the quantifier for all. Axioms 8 and 9 tell us that there are two special,
distinct real numbers, 0 and 1, for which two sets of equations are valid for all real numbers x:

x  0  x  0  x and x  1  x  1  x.
The numbers 0 and 1 are called identities because every x   preserves its identity under the
corresponding operation. On the other hand, Axioms 10 and 11 begin with the quantifier For all, but in
the second phrase, we see the quantifier there exists — this is the opposite order of that found in
Axioms 8 and 9. This means that once we choose x, we can find its additive inverse x, such that:

x  x  0  x  x.

The additive inverse x depends on x. Similarly, the reciprocal 1/x depends on x, where x  0.

We mentioned earlier that we develop our number system by starting with the natural numbers, then
constructing negative integers and fractions. After this, though, it is surprisingly difficult to create the
full set of real numbers. See Appendix A for a more thorough discussion of how to create numbers,
and the complete set of Axioms that the set of real numbers satisfies. These include the Order Axioms,
which give us the rules for inequalities, and the Completeness Axiom, which distinguishes the real
numbers from the rational numbers. Furthermore, although the 11 Axioms speak only about addition
and multiplication, Axioms 10 and 11 allow us to define the related operations of subtraction and
division, and as usual, we will use the notation that is familiar to us:

Definitions — Axioms for Subtraction and Division:
For all x, y  , define the operation of subtraction by: x  y  x  y.
Similarly, if y  0, define the operation of division by: x/y  x  1/y.

Theorems and Implications

Now that we agree that Axioms will be accepted as true, we will be concerned with logical statements
which can be deduced from these Axioms:

Definitions: A true logical statement which is not just an Axiom is called a Theorem. Many
of the Theorems that we will encounter in Linear Algebra are called implications, and they
are of the form: if p then q, where p and q are logical statements.
This implication can also be written symbolically as: p  q (pronounced as: p implies q.

An implication p  q is true if the statement q is true whenever we know that the statement p is also
true. The statements p and q are called conditions. The condition p is called the hypothesis (or
antecedent or the given conditions), and q is called the conclusion or the consequent. If such an
implication is true, we say that condition p is sufficient for condition q, and condition q is necessary
for condition p.
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Example: In Calculus, we are familiar with the implication:

Theorem: If f x is differentiable at x  a, then f x is also continuous at x  a.

Let us use this Theorem to further understand the meaning of the words “necessary” and “sufficient.”
This Theorem can be interpreted as saying that if we want f x to be continuous at x  a, then it is
sufficient that f x be differentiable at x  a, that is, we have sufficiently paid for the condition of
continuity if we have already paid for the stricter condition of differentiability.
Similarly, if we knew that f x is differentiable at x  a, then it is necessary that f x is also
continuous at x  a: it cannot be discontinuous according to this Theorem.

Although we will primarily be proving Theorems, it is also important to know when a logical statement
is false. An implication p  q can be demonstrated to be false by giving a counterexample, which is a
situation where the given condition p is true, but the conclusion q is false.

Example: Let us consider the statement:

If p is a prime number, then 2p  1 is also a prime number.

Recall that an integer p  1 is prime if the only integers that exactly divide p are 1 and p itself. If we
look at the first few prime numbers p  2, 3, 5, 7, we get:

22  1  4  1  3 is prime,
23  1  8  1  7 is prime,
25  1  32  1  31 is prime, and

27  1  128  1  127 is also prime.
This might fool you to believe that the statement is true. However, for p  11, we get:

211  1  2048  1  2047  23  89.
Thus, we found a counterexample to the statement above, and so this statement is false.

In fact, it turns out that the integers of the form 2p  1 where p is a prime number are rarely prime, and
we call such prime numbers Mersenne Primes. As of May 2016, there are only 49 known Mersenne
Primes, and the largest of these is 274,207,281  1. This is also the largest known prime number. If this
number were expressed in the usual decimal form, it will be 22,338,618 digits long. Large prime
numbers have important applications in cryptography, a field of mathematics which allows us to safely
provide personal information such as credit card numbers on the internet.

Negations

Definition: The negation of the logical statement p is written symbolically as: not p.

The statement not p is true precisely when p is false, and vice versa. When a negated logical statement
is written in plain English, we put the word “not” in a more natural or appropriate place. We can also
use related words such as “never” to indicate a negation.
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Examples: The statement:

“An integer is not a rational number.”
is a false logical statement. On the other hand, the statement:

“The function gx  1/x is not continuous at x  0.”
is a true logical statement.

Converse, Inverse, Contrapositive and Equivalence

By using negations or reversing the roles of the hypothesis and conclusion, we can construct three
implications associated to an implication p  q:

Definition: For the implication p  q, we call:

q  p the converse of p  q,

not p  not q the inverse of p  q, and

not q  not p the contrapositive of p  q.

Unfortunately, even if we knew that an implication is true, its converse or inverse are not always true.

Example: We saw earlier that the following statement is true:

“If f x is differentiable at x  a, then f x is also continuous at x  a. ”

The converse of this statement is:

“If f x is continuous at x  a, then f x is also differentiable at x  a. ”

This statement is false, as shown by the counterexample f x  |x|, which is well known to be
continuous at x  0, but is not differentiable at x  0. Similarly, the inverse of this Theorem is:

“If f x is not differentiable at x  a, then f x is also not continuous at x  a. ”

The inverse is also false: the same function f x  |x| is not differentiable at x  0, but it is
continuous there. Finally, the contrapositive of our Theorem is:

“If f x is not continuous at x  a, then f x is also not differentiable at x  a. ”

The contrapositive is a true statement: a function which is not continuous cannot be differentiable,
because otherwise, it has to be continuous.

If we know that p  q and q  p are both true, then we say that the conditions p and q are logically
equivalent to each other, and we write the equivalence or double-implication:
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p  q (pronounced as: p if and only if q).

We saw above that the contrapositive of our Theorem is also true, and in fact, this is no accident. An
implication is always logically equivalent to its contrapositive (as proven in Appendix B):

p  q  notq  notp.

Later, if we want to prove that the statement p  q is true, we can do so by proving its contrapositive.
Similarly, the converse and the inverse of an implication are logically equivalent, and thus they are
either both true or both false. We saw this demonstrated above with regards to differentiability versus
continuity.
The contrapositive of an equivalence p  q is also an equivalence, so we do not have to bother with
changing the position of p and q. An equivalence is again equivalent to its contrapositive:

p  q  notp  notq.

Logical Operations

We can combine two logical statements using the common words and and or:

Definition: If p and q are logical statements, we can form their conjunction:
p and q,

and their disjunction:
p or q.

The conjunction p and q is true precisely if both conditions p and q are true. Similarly, the disjunction
p or q is true precisely if either condition p or q is true (or possibly both are true).

Example: The statement:

2 is irrational and bigger than 1.

is a true statement. However, the statement:

Every real number is either positive or negative.

is false because the real number 0 is neither positive nor negative.

The negation of a conjunction or a disjunction is sometimes needed in order to understand a Theorem,
or more importantly, to prove it. Fortunately, the following Theorem allows us to simplify these
compound negations:
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Theorem — De Morgan’s Laws: For all logical statements p and q:

not p and q )  not p or not q, and

not p or q  not p and not q.

Note that De Morgan’s Laws look very similar to the Distributive Property (with a slight twist), and in
fact they are precisely that in the study of Boolean Algebras.

De Morgan’s Laws are proven in Appendix B.

Subsets and Set Operations

We can compare two sets and perform operations on two sets to create new sets.

Definitions: We say that a set X is a subset of another set Y if every member of X is also a
member of Y. We write this symbolically as:

X  Y  x  X  x  Y.
If X is a subset of Y, we can also say that X is contained in Y, or Y contains X. We can
visualize sets and subsets using Venn Diagrams as follows:

 Y

X

.

.

We say X equals Y if X is a subset of Y and Y is a subset of X:
X  Y  X  Y and Y  X .

Equivalently, every member of X is also a member of Y, and every member of Y is also a
member of X:

X  Y  x  X  x  Y and y  Y  y  X .
We combine two sets into a single set that contains precisely all the members of the two sets
using the union operation:

X  Y  z |z  X or z  Y .

We determine all members common to both sets using the intersection operation:
X  Y  z |z  X and z  Y .

We can also take the difference or complement of two sets:
X  Y  z |z  X and z  Y .

Notice the use of or and and in the definitions. We can also visualize these set operations using Venn
diagrams. We first show two sets A and B below, highlighted separately for clarity:

Sets, Axioms, Theorems & Proofs 9



 
.

.

A

BB

A

Next, we show their union A  B, and their intersection A  B:

 
.

.

A  B

.

A  B

A 

B

Finally, we show the two complements, A  B and B  A:

 
A  B

B  AB

A

.

.

Example: Suppose we have the sets (expressed in roster notation):

A  b, d, e,
B  a, b, c, d, e, f,
C  c, e, h, k, and
D  d, e, g, k.

Then A  B because every member of A is also a member of B, and there are no other subset
relationships among the four sets. Now, let us compute the following set operations:

C  D  c, e, h, k  d, e, g, k  c, d, e, g, h, k,

C  D  c, e, h, k  d, e, g, k  e, k,

C  D  c, e, h, k  d, e, g, k  c, h, and

D  C  d, e, g, k  c, e, h, k  d, g.

As a special bonus, notice that:

C  D  c, d, e, g, h, k  e, k  c, h  d, g  C  D  C  D  D  C. 
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In the course of developing Linear Algebra, we will not just consider sets of real numbers, but also sets
of vectors, notably the Euclidean Spaces from Chapter 1, sets of polynomials, and more generally, sets
of functions (such as continuous functions and differentiable functions), and sets of matrices. We will
be gradually constructing these objects over time.

Part II: Proofs

Perhaps the most challenging task that you will be asked to do in Linear Algebra is to prove a
Theorem. To accomplish this, you need to know what is expected of you:

Definition: A proof for a Theorem is a sequence of true logical statements which
convincingly and completely explains why a Theorem is true.

In many ways, a proof is very similar to an essay that you write for a course in Literature or History. It
is also similar to a laboratory report, say in Physics or Chemistry, where you have to logically analyze
your data and defend your conclusions.
The main difference, though, is that every logical statement in a proof should be true, and must follow
as a conclusion from a previously established true statement.
The method of reasoning that we will use is a method of deductive reasoning which is formally called
modus ponens. It basically works like this:

Suppose you already know that an implication p  q is true.
Suppose you also established that condition p is satisfied.
Therefore, it is logical to conclude that condition q is also satisfied.

Example: Let us demonstrate modus ponens on the following logical argument:

In Calculus, we proved that:
if f x is a continuous odd function on a, a, then 

a

a f xdx  0.

The function f x  sin5x is continuous on , because it is the composition of two
continuous functions. It is an odd function on /4,/4, since:

sin5x   sinx5   sin5x,
where we used the odd property of both the sine function and the fifth power function.
Therefore, 

/4

/4 sin5xdx  0. 

Notice that this reasoning allows us to compute this definite integral without the inconvenience of
finding an antiderivative and applying the Fundamental Theorem of Calculus!
A proof often begins by understanding the meaning of the given conditions and the conclusion that you
are supposed to reach. It is therefore important that you can recall and state the definitions of a variety
of words and phrases that you will encounter in your study of Linear Algebra. After all, it would be
impossible for you to explain how you obtained your conclusion if you do not even know what the
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conclusion is supposed to mean. We also use special symbols and notation, so you must be familiar
with them. Often, a previously proven Theorem can also be helpful to prove another Theorem. Start by
identifying what is given (the hypotheses), and what it is that we want to show (the conclusion).
Rest assured, you will be shown examples which demonstrate proper techniques and reasoning, which
you are encouraged to emulate as you learn and develop your own style. In the meantime, we present
below some examples of general strategies and techniques which will be useful in the coming
Chapters. These strategies are certainly not exhaustive: we sometimes combine several strategies to
prove a Theorem, and the more difficult Theorems require a creative spark. For our first example,
though, let us see how to prove a Theorem using only the Axioms of the Real Number System:

Example: Let us prove the following:

Theorem — The Multiplicative Property of Zero: For all a  :

0  a  0  a  0.

Proof: Suppose that a is any real number. We want to show that 0  a  0. If we can do this, then we
can also conclude by the commutative property of multiplication that a  0  0 as well.
We will use a clever idea. We know the Identity Property of 0, that is, for all x  :

0  x  x  x  0.
Since this is true for all real x, it is true in particular for x  0, so we get:

0  0  0.
Now, if we multiply both sides of this equation by a, we get the equation:

0  0  a  0  a.
This equation is again a true equation because of the following Axiom:

Axiom — The Substitution Principle:
If x, y   and Fx is an arithmetic expression involving x, and x  y, then Fx  Fy.

Simply put, if two quantities are the same, and we do the same arithmetic operations to both quantities,
then the resulting quantities are still the same. Continuing now, by the Distributive Property, we get:

0  a  0  a  0  a.
Remember that we want to know exactly what 0  a is. All we know is that 0  a is some real number,
by the Closure Property of Multiplication. Thus it possesses an additive inverse, 0  a, by the
Existence of Additive Inverses. Let us add this to both sides of the equation:

 0  a  0  a  0  a  0  a  0  a.

By the defining property of the additive inverse, 0  a  0  a  0, so we get:
 0  a  0  a  0  a  0.

But now, by the Associative Property of Addition, the left side is:

0  a  0  a  0  a  0.
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Thus, by the additive inverse property, as above, we get:

0  0  a  0.
(we enclosed 0  a in parentheses to emphasize that it is the quantity we are trying to study in our
equation). Finally, by the additive property of 0 again, the left side reduces to 0  a, so we get:

0  a  0. 

Case-by-Case Analysis

We can prove the implication p  q if we can break down p into two or more cases, and every
possibility for p is covered by at least one of the cases. If we can prove that q is true in each case, the
implication is true. This is also sometimes called Proof by Exhaustion.

Example: Let us prove the following:

Theorem — The Zero-Factors Theorem: For all a, b  :
a  b  0 if and only if either a  0 or b  0.

Proof: Since this is an if and only if Theorem, we must prove two implications. Let us begin with the
converse, which is easier:
 Suppose we are given that either a  0 or b  0. We must show that a  b  0. Since there are
two possibilities for the given conditions, we have the following cases:
Case 1. If a  0, then a  b  0  b  0 by our previous Theorem.
Case 2. If b  0, then a  b  a  0  0, which is the exact same reasoning as Case 1.
Thus, if either a  0 or b  0, then a  b  0.
 Suppose we are given that a  b  0. We must show that either a  0 or b  0.
Case 1. Suppose that a  0. Then we are done, since the conclusion “a  0 or b  0” is satisfied.
Case 2. Suppose that a  0. Notice that since this is the exact opposite of Case 1, we have covered all
the possibilities. Now, since a is non-zero, by Axiom 11, it has a Multiplicative Inverse 1/a. We are
given that:

a  b  0.
By The Substitution Principle, we can multiply both sides of the equation by 1/a and obtain:

1/a  a  b  1/a  0.
Since 1/a is again another real number, the right side of this equation is 0, as we already saw above.
Now, the left side can be regrouped using Axiom 6, the Associative Property of Multiplication. Thus,
we get:

1/a  a  b  0.
By the Multiplicative Inverse Property, the product of a non-zero number and its reciprocal is 1, so
we obtain: 1  b  0.
Finally, by Axiom 9, 1  b  b, and thus we get: b  1  b  0.
Thus, if a  0, then b  0, completing the proof that either a  0 or b 0.
Notice that the two Cases for the forward implication are different from the two Cases for the converse.
This frequently happens.
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Proof by Contrapositive

We mentioned earlier that an implication p  q is logically equivalent to its contrapositive, which is
not q  not p. Thus it may be worthwhile to write down the contrapositive of the Theorem we want
to prove, and see if we get any ideas on how to prove it. This is the basic idea behind the technique
called Proof by Contrapositive, which is also known in Latin as modus tollens.

The example we will discuss below deals with the set of integers, . In order to fully appreciate this
example, we need to introduce the following Axioms for :

Axioms — Closure Axioms for the Set of Integers:
If a, b  , then a  b  , a  b  , and a  b   as well.

Definitions — Even and Odd Integers:
An integer a   is even if there exists c   such that a  2c.
An integer b   is odd if there exists d   such that a  2d  1.

It is easy to see from these two definitions that every integer is either even or odd, but not both. Now
we are ready:

Example: Let us prove the following using the technique of Proof by Contrapositive:

Theorem: For all a, b  :
If the product a  b is odd, then both a and b are odd.

Proof: Our first step is to write the contrapositive. The conclusion is “both a and b are odd.” Since the
word and is in this phrase, we can use De Morgan’s Laws to simplify its negation:

not (botha and b are odd) 

(a is not odd) or (b is not odd) 

a is even or b is even.

Thus, the contrapositive of the Theorem we want to prove is:

Theorem: For all a, b  :
If a is even or b is even, then a  b is even.

This statement is easier to prove, and all we need is a Case-by-Case analysis:
Case 1. Suppose that a is even. Then a has the form a  2  c for some integer c. Thus:

a  b  2  c  b  2  c  b,
by the Associative Property of Multiplication. Since c  b   by Closure, 2  c  b is even. Thus,
a  b is even. A similar argument works for Case 2, where we assume that b is even.

14 Chapter Zero: The Language of Mathematics



Proof by Contradiction

The method of Proof by Contradiction (or reductio ad absurdum) is often used in order to show that
an object does not exist, or in situations when it is difficult to show that an implication is true directly.
The idea is to assume that the mythical object does exist, or more generally, the opposite of the
conclusion is true. In the course of our reasoning, we should arrive at a condition which contradicts
one of the given conditions, or a condition which has already been concluded to be true (thus producing
an absurdity or contradiction). The only problem with attempting a proof by contradiction is that it is
not guaranteed that you will eventually encounter a contradiction. As in all techniques, give it a try.

Example: One of the best applications of Proof by Contradiction is the classic proof of the following:

Theorem: The real number 2 is irrational.

Proof: Let us assume the opposite of the conclusion, that is, 2 is rational. Thus, we can write:
2  a

b , where a and b are positive integers.

We must make one important requirement to make the proof work: recall from basic Arithmetic that
every fraction can be reduced to lowest form, so we will require that a and b have no common factor
except of course for 1. Now, squaring both sides of this equation, we get: 2  a2/b2, or a2  2b2.
This last equation tells us that a2 must be an even number. But if a2 is even, then a itself has to be
even. To see this convincingly, we can also use Proof by Contradiction: if a2 were even but a were
odd, then a  2d  1 for some integer d, and we get:

a2  2d  12  4d2  4d  1  22d2  2d  1.

Since 2d2  2d is an integer, a2 is odd. Thus, we get a contradiction, and so a must be even. Now, we
can write a  2m, where m is an integer, and substituting this in the equation a2  2b2, we get:

2m2  2b2 or 4m2  2b2 or b2  2m2.
Thus b2 is also even, and by the same reasoning above, b itself must be even. Therefore, the equation

2  a/b led us to the conclusion that both a and b are even. This violates the requirement that a and
b have no common factor aside from 1. We have reached a contradiction, and so our assumption that

2 is rational had to be false, and so its opposite is true: 2 must be irrational.

Proof by Induction

Another technique which is useful in Linear Algebra is the Principle of Mathematical Induction. The
Theorems that “induction” (as it is more briefly called) applies to are often about natural numbers or
positive integers. Since this statement refers to an integer n, we often write the statement as pn. As
this is seen in Precalculus, let us use an example to review how this technique works.

Example: Use the Principle of Mathematical Induction to prove the following formula:

Theorem: For all positive integers n: 12  22   n2 
nn  12n  1

6 .
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Proof: Induction is accomplished in three major steps:

1. The Basis Step. We will first prove that the statement is true when n  1, that is, p1 is true.
The left side of the equation thus stops at 12. The right side is:

1  1  1  2  1  1
6  1  2  3

6  1,

so p1 is indeed true.

2. The Inductive Hypothesis. In this step, we will simply assume that the statement is true when n is
some positive integer k. In other words, we assume that pk is true.

Thus, we rewrite the equation in the statement by replacing n with k:

The Inductive Hypothesis: Assume:

12  22   k2 
kk  12k  1

6 .

Notice that since we have already done Step 1, we have the right to make this assumption, because we
have proven it to be true for at least one instance: k  1.

3. The Inductive Step. This is of course where most of the hard work comes in. We must now show
that the statement is still true when n  k  1, or in other words, that pk  1 is true.

We begin this step by stating pk  1, so that we explicitly see what it is we need to prove. Thus, we
replace n with k  1 (in this case, four times):

The Inductive Step: Prove:

12  22   k2  k  12  k  1k  1  12k  1  1
6 .

Notice that the left side of the equation now has one more term at the end. Now, we can proceed to
prove that this equation is true. The Inductive Hypothesis tells us that the first k terms on the left side of
this equation can be replaced, as follows:

12  22   k2  k  12


kk  12k  1

6  k  12 (by the Inductive Hypothesis)


kk  12k  1  6k  12

6 (combining fractions)

 k  1k2k  1  6k  1
6 (factoring out k  1)


k  12k2  k  6k  6

6 (distributing the parentheses)


k  12k2  7k  6

6 .
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However, the right side of our equation in the Inductive Step is:

k  1k  1  12k  1  1
6

 k  1k  22k  3
6 (simplifying)


k  12k2  4k  3k  6

6 (distributing two factors)


k  12k2  7k  6

6 ,

thus proving that both sides of pk  1 are the same. This completes our Proof by Induction.

Why does this reasoning make sense? We were able to show that the Theorem is true if n  1. If we
put Steps 2 and 3 together, then we know that if the statement is true when n  k, then it is also true
when n  k  1. Since we knew that the statement was true when n  1, by modus ponens, it is also
true when n  2. But now that we know it is also true when n  2, again, by modus ponens, it is also
true when n  3. And so on!

Conjectures and Demonstrations

It might shock you to know that there are many statements in mathematics which have not been
determined to be true or false. They are called conjectures. However, we can try to demonstrate that it
is plausible for the conjecture to be true by giving examples where the conjecture is satisfied. These
demonstrations are not replacements for a complete proof.

Example: Perhaps the most famous, and certainly one of the oldest and most easily stated conjectures
of mathematics is called Goldbach’s Conjecture. It was stated in 1742 by the Prussian mathematician
Christian Goldbach, in a letter to the great Leonhard Euler. The modern statement is as follows:

Goldbach’s Conjecture: Every even integer bigger than 2 can be expressed as the sum of
two prime numbers.

We can demonstrate that this conjecture is plausible with the examples:

18  13  5 and 50  3  47.

Goldbach’s Conjecture has been verified for a large range of positive even numbers, but experts feel
that we are still a long way from proving it in general.

Unfortunately, most modern conjectures cannot be understood unless one has spent years studying the
background material of their associated fields. Their pursuit falls within the realm of mathematical
research. As you learn to understand and prove basic Theorems in Linear Algebra, your skills in
learning to read Theorems and prove Theorems on your own will improve over time. It is possible that
someday, you will prove a deep and complicated Theorem that nobody has ever proven before.
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Chapter Zero Summary:

A set is an unordered collection of objects called elements. Important sets include the empty set , the
sets of natural numbers , integers , rational numbers , and real numbers .
A logical statement is a sentence which can be determined to be either true or false. An Axiom is a
logical statement that we will accept as true. The negation of the logical statement p, written as not p,
is true exactly when p is false.
Universal quantifiers are the words for any, for all and for every. Existential quantifiers are the
phrases there is and there exists or their plural forms there are and there exist.
The Field Axioms for the set of Real Numbers describe eleven important properties that we agree the
set of real numbers possesses.
A true logical statement which is not just an Axiom is called a Theorem. An implication has the form:
if p then q, written symbolically as p  q. An implication can be demonstrated to be false by giving
a counterexample, a situation where p is true, but q is false.
The negation of the logical statement p, written as not p, is true exactly when p is false.
For an implication p  q, we call q  p the converse of p  q, not p  not q the inverse of
p  q, and not q  not p the contrapositive of p  q.
If p  q and q  p are both true, then we say that p and q are equivalent to each other. We write the
equivalence or double-implication p  q, pronounced as p if and only if q.
The implication p  q is equivalent to its contrapositive not q  not p.
The conjunction p and q is true precisely if both conditions p and q are true.
The disjunction p or q is true precisely if either condition p or q is true.
De Morgan’s Laws: For all logical statements p and q: not p and q is logically equivalent to notp
or notq, and similarly, not p or q is logically equivalent to notp and notq.
A set X is a subset of another set Y if every member of X is also a member of Y. We write this
symbolically as X  Y. Two sets X and Y are equal if X is a subset of Y and Y is a subset of X, or
equivalently, every member of X is also a member of Y, and vice versa:

X  Y  X  Y and Y  X  x  X  x  Y and y  Y  y  X .

Given two sets X and Y, we can find:
 their union: X  Y  z | z  X or z  Y ;
 their intersection: X  Y  z | z  X and z  Y ; and
 their difference or complement: X  Y  z | z  X and z  Y .

A proof for a Theorem is a sequence of true logical statements which convincingly and completely
explains why a Theorem is true.

A good way to begin a proof is by identifying the given conditions and the conclusion that we want to
show. It is also a good idea to write down definitions for terms that are found in the Theorem. The
main logical technique in writing proofs is modus ponens. We also use techniques such as:
 Case-by-Case Analysis
 Proof by Contrapositive
 Proof by Contradiction
 Proof by Mathematical Induction.
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Chapter Zero Exercises

For Exercises 1 to 6: Decide if the following statements are logical statements or not, and if a
statement is logical, classify it as True or False.

1. If x is a real number and |x|  3, then 3  x  3.
2. If x and y are real numbers and x  y, then x2  y2.
3. If x and y are real numbers and 0  x  y, then 1/y  1/x.
4. Every real number has a square root which is also a real number.
5. As of March 2016, Roger Federer holds the record for the most number of consecutive weeks as

the world’s number 1 tennis player.
6. The Golden State Warriors are the best team in the NBA. Why is this different from Exercise 5?

For Exercises 7 to 10: Write the converse, inverse and contrapositive of the following:
7. If you do your homework before dinner, you can watch TV tonight.
8. If it rains tomorrow, we will not go to the beach.
9. If 0  x  /2, then cosx  0. (challenge: write the inverse and contrapositive without using

the word “not”)
10. If f x is continuous on the closed interval a, b then f x possesses both a maximum and a

minimum on a, b.
For Exercises 11 and 12: For the sets A and B, find A  B, A  B, A  B and B  A :

11. A  a, c, f, h, i, j, m, B  b, c, g, h, j, p, q.
12. A  a, d, g, h, j, p, r, t, B  b, d, g, h, k, p, q, s, t, v.

For Exercises 13 to 22: Prove the following Theorems concerning Real Numbers using only
the 11 Field Axioms (and possibly Theorems that were proven in Chapter Zero). Specify in your
proof which Axiom or Theorem you are using at each step.

13. Prove The Cancellation Law for Addition: For all x, y, c  :
If x  c  y  c, then x  y.

14. Prove The Cancellation Law for Multiplication: For all x, y, k  , k  0:
If k  x  k  y, then x  y.

15. Use The Multiplicative Property of Zero to prove that 0 cannot have a multiplicative inverse.
Hint: Use Proof by Contradiction: Suppose 0 has a multiplicative inverse x. . .

16. Prove The Uniqueness of Additive Inverses: Suppose x  . If w   is any real number with
the property that x  w  0  w  x, then w  x. In other words, x is the only real number that
satisfies the above equations.

17. Use the previous Exercise to show that 0  0. Hint: which Field Axiom tells us what 0  0 is?
18. Use the Uniqueness of Additive Inverses to prove that for all x  : x  1  x.

Hint: simplify x  1  x.
19. The Double Negation Property: Use some of the previous Exercises to show that: For all x  :

x  x.
20. Prove The Uniqueness of Multiplicative Inverses: Suppose x   and x  0. If y   is any

real number with the property that x  y  1  y  x, then y  1/x. In other 1/x is the only real
number that satisfies the above equations.

Sets, Axioms, Theorems & Proofs 19



21. Prove The Double Reciprocal Property: For all x  , x  0: 1/1/x  x.
22. Solving Algebraic Equations: Prove that for all x, a, b  :

a. if x  a  b, then x  b  a.
b. if a  0 and ax  b, then x  b/a.

23. Prove by Contradiction that there is no largest positive real number.
24. Prove by Contradiction that there is no smallest positive real number.
25. Suppose that n   and n factors as n  a  b, where a, b   and both are positive. Use Proof

by Contradiction to show that either a  n or b  n .
26. Use the previous Exercise to prove: If n is not a prime number (that is, n is composite), then n

has a prime factor which is at most n .
27. Write the contrapositive of the statement in the previous Exercise. Use this to decide if 11303 is

prime or composite.

For Exercises 28 to 31: Use the technique of Proof by Contrapositive to prove the following
statements. You may use De Morgan’s Law to simplify the contrapositive, when applicable:

28. For all a, b  : if a  b is even, then either a is even or b is even.
29. For all a, b  : if a  b is even, then either a and b are both odd or both even.
30. For all a  : a2 is even if and only if a is even.
31. For all x, y  : if x  y is irrational, then either a is irrational or b is irrational.

Negating Statements with Quantifiers: A logical statement that begins with a quantifier is
negated as follows: not x : p is equivalent to: x : not p. This should make sense: if it is
not true that all x possess property p, then at least one x does not possess property p.
Similarly: not x : p is equivalent to: x : not p.
Thus, the negation of “All of my friends are Democrats” is “One of my friends is not a
Democrat.” Notice that “None of my friends are Democrats” is wrong.
Similarly, the negation of “One of my brothers is left-handed” is “All of my brothers are
right-handed.” It is not “One of my brothers is right-handed.”

For Exercises 32 to 35: Write the negation of the following statements, and determine
whether the original statement or its negation is true:

32. Every real number x has a multiplicative inverse 1/x.
33. There exists a real number x such that x2  0.
34. There exists a negative number x such that x2  4.
35. All prime numbers are odd.

36. Demonstrate Goldbach’s Conjecture using: 130  ?  ?
37. Rewrite Goldbach’s Conjecture using the quantifiers “for every” and “there exist.”

38. The Twin Prime Conjecture: Twin primes are pairs of prime numbers that differ only by 2. For
example, 11, 13 are twin primes, as are 41, 43. The Twin Prime Conjecture states that there
are an infinite number of twin primes. What are the next years after 2016 that are twin primes?

39. The Fibonacci Prime Conjecture: The Fibonacci Numbers are those in the infinite sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

where the next number (starting with the third) is the sum of the previous two numbers. Notice
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that 2, 3, 5, 13 and 89 are primes that appear in this sequence, so they are called Fibonacci
Primes. The Fibonacci Prime Conjecture states that there are an infinite number of Fibonacci
primes. Find the next Fibonacci prime after 89.

For Exercises 40 to 49: Prove the following by Mathematical Induction:
For all positive integers n:

40. 12  32   2n  12 
n2n  12n  1

3

41. 13  23   n3 
nn  1

2

2

42. 13  33   2n  13  n22n2  1

43. 1  2  2  3   n  n  1  nn  1n  2
3

44. 1  3  2  4  3  5   nn  2  nn  12n  7
6

45. 1
1  2  1

2  3   1
n  n  1

 n
n  1

46. 1
1  3  1

3  5   1
2n  1  2n  1

 n
2n  1

47. 1  2  2  22  3  23   n  2n  2n  12n  1
48. 1  3  2  32  3  33   n  3n  3

4 2n  13n  1

49. n  2n (this might require a little bit of creativity in Step 3).

50. An n-gon is a polygon with n vertices (thus a triangle is a 3-gon and a quadrilateral is a 4-gon).
We know from basic geometry that the sum of the angles of any triangle is 1800. Use Induction
to prove that the sum of the interior angles of a convex n-gon is n  2  1800 (a polygon is
convex if any line segment connecting two points inside the polygon is entirely within the
polygon). Hint: in the inductive step, cut out a triangle using three consecutive vertices. Draw
some pictures.

51. Suppose that A and B are subsets of X. Prove that A  B is the largest subset of X which is
contained in both A and B. In other words, prove that if C  A and C  B, then C  A  B.

52. Suppose that A and B are any two subsets of a set X. Prove that A  B is the smallest subset of X
which contains both A and B. In other words, prove that if A  D and B  D, then A  B  D.

53. Suppose that A and B are any two sets. Prove that (a) A  B  B  , and (b)
A  B  A  B  B  A  A  B, and each of the three sets in this union have no element in
common with the other two. Hint: draw a diagram.

54. Properties of Set Union and Intersection:
a. If X and Y are two sets, write down the definition of X  Y.
b. Similarly, write down the definition of X  Y.
c. If A and B are two sets, write down what it means for A to be a subset of B, that is A  B.
d. Similarly, what does it mean for A  B?
e. Now, use the previous parts to prove that X  X  Y and Y  X  Y
f. State and prove a similar statement regarding X, Y and X  Y.
g. Prove that X  Y if and only if Y  X  Y.
h. Similarly, prove that X  Y if and only if X  X  Y. Notice that it is now X on the left

side of the equation.
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55. The Method of Descent: The Principle of Mathematical Induction goes forward, that is, we start
with proving the case when n  1, then we assume that the case when n  k is true, and finally
we prove that the case when n  k  1, that is, the next bigger case, is also true. However,
sometimes it is useful to go backwards instead of forward. This is possible because 1 is the
smallest positive integer, and thus if we start with a positive integer n and go lower and lower,
we will eventually hit 1 and then we cannot go any lower. We will illustrate this idea, formally
called The Method of Infinite Descent or more simply as The Method of Descent, to prove:

Every integer N which is bigger than 1 is either prime
or has a prime factor q which is less than N.

Recall that an integer p is prime if p  1 and the only way we can factor p into two positive
integers as p  a  b is if either a  1 and b  p or a  p and b  1. For example,
7  1  7  7  1, and there are no other ways to factor 7 into two positive integers. It is
important to remember that 1 is not a prime number.

a. Warm-up: List down the first ten prime numbers.

b. Now, suppose N is an integer bigger than 1 and N is not prime. Use the definition above to
show that we can factor N as N  N1  N, where 1  N1  N and 1  N2  N.

c. Explain why the proof is finished if either N1 is prime or N2 is prime.

d. Suppose now that neither N1 nor N2 is prime. We will ignore N2 and focus our attention on
N1. Repeat the arguments above and factor N1 as N1  N3  N4. What can we now say
about N3 and N4?

e. We now come to the Method of Descent. Explain why we can keep performing this
argument until we produce a list of positive integers: N  N1  N3 . . . and explain why
this list must end with some prime number Nk  q which divides N.

f. Explain why we ignored N2 in part (d). Could we have ignored N1 instead? How will this
affect the list in e?

56. Use the previous Exercise to show that every positive integer N can be completely factored into
primes: N  p1  p2    pk, for some finite set of primes p1, p2,  , pk.

Note that we take this property for granted when we are first learning Algebra. More precisely,
every positive integer N can be factored uniquely into a product of primes, that is, any two
factorizations into primes must have exactly the same primes appearing with the same frequency
but possibly in a different order. This is known as the Fundamental Theorem of Arithmetic, and
could also be proven by the Method of Descent, but the proof is much more complicated.

57. The Infinitude of Primes: Our goal in this Exercise is to show that the set of prime numbers is
infinite. Thus, if the set of primes is P  2, 3, 5, 7, 11, . . . , then this list will never terminate.

a. Warm-up: prove that if the integers a and b are both divisible by the integer c, then a  b
and a  b are also divisible by c. (We say that an integer x is divisible by a non-zero integer
y if x/y is also an integer).

Now, we will use Proof by Contradiction to prove our main goal. Suppose that P above is a
finite set, so the complete set of primes becomes P  2, 3, 5, 7, 11, . . . , pL where pL is
the largest prime number. Let us construct the number N  2  3  5    pL   1. We
will proceed with a Case-by-Case Analysis:

b. Suppose that N is prime. Show that we have a contradiction and thus our proof is finished.
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c. Now, suppose that N is not prime (thus we have considered both possibilities about N). The
Exercise from The Method of Descent says that N must be divisible by a prime q which is
smaller than N. Show that q is missing from the set P above, and explain why this is a
contradiction and our proof is also finished. Hint: (a) could be useful.

58. Powersets: If X  x1, x2, . . . , xn is a finite set, we define X, the powerset of X, to be the
set of all subsets of X. For example, if X  a, b, then X  , a, b, a, b, and
thus X has 4 elements.

a. If X  a, b, c, list all the members of X. How many subsets does X have?
b. Separate the list that you got in part (a) into two columns. Place on the left column those

subsets that contain c and place on the right column those that do not contain c.
c. Now, cross out c from each subset on the left column. What do you notice?
d. Prove by induction that if X  x1, x2, . . . , xn, then X has 2n elements. Hint: in the

induction step, we want to show that the number of subsets of x1, x2, . . . , xk1 is double
the number of subsets of x1, x2, . . . , xk. Think of how to generalize parts (b) and (c).

e. Show that the set of subsets of a finite set X has strictly more members than X itself. Hint:
Use one of the Exercises above on Induction.

59. The purpose of this Exercise is to prove that for any real number a:

a2  |a |.
Recall that the absolute value of any real number a is defined by:

|a | 
a if a  0, and
a if a  0.

We also know that the function f x  x2 is not one-to-one on , , but it is one-to-one if the
domain is restricted to 0,. In this case, the range of f x is also 0, , and so we will define
the square root of a non-negative real number, b  0, , as:

b  c, where c  0,, and b  c2.

a. Warm-up: use the definition above to explain why for any real number a: |a |  0.
b. Again, using the definition, show that |a |2  a2.
c. Our next goal is to show that b is unique. In other words, prove that if c and d are two

real numbers such that c  0, and d  0, and b  c2  d 2, then c  d. Hint: rewrite this
equation into: c2  d 2  0 and use the Zero Factors Theorem.

d. Rewrite the definition for b to define a2 .
e. Put together all the steps above to write a complete proof that a2  |a |.

Positive Numbers and the Order Axioms: In some of the Exercises above, we assumed that the
reader was familiar with the basic properties of positive numbers and inequalities. We can
formalize these properties with these additional Axioms for Positive Numbers:
There exists a non-empty subset   , consisting of the positive real numbers, such that the
following properties are accepted to be true:
a. Closure under Addition and Multiplication: If x, y  , then x  y  , and x  y  .
b. Zero is not positive: 0  .
c. The Dichotomy Property: If x  0, then either x  , or x  , but not both.

Sets, Axioms, Theorems & Proofs 23



Using only these three Axioms, prove the following statements (as usual, an earlier Exercise can
be used to prove a later Exercise, if applicable).

60. Prove that 1  . Hint: Use Proof by Contradiction. Suppose instead 1  . What do the
Closure properties and the Dichotomy Property tell us?

61. Use the previous Exercise to show that the set of positive integers 1, 2, 3,  , n, n  1,   is a
subset of . Hint: use the Closure property, and Induction.

62. Prove the Reciprocal Property for : For all x  , x  0: x   if and only if 1/x  .
See the hints in the two previous Exercises.
The Dichotomy Property creates another set, , consisting of the negative real numbers:

  x   |  x   .

63. Notice that in the definition for , there is no mention of x being non-zero (unlike in The
Dichotomy Property). Use Proof by Contradiction to prove that zero is not negative either.
This last Exercise tells us that we have three disjoint and exhaustive subsets of :

    0  .

In other words, every real number is either negative, zero, or positive, and these three sets have
no number in common.

64. Prove that  is Closed under Addition.
65. Prove that if x, y  , then x  y  . Thus,  is not closed under Multiplication.
66. Prove that if x   and y  , then x  y  .
67. Combine the Exercises above to prove: For all x, y  :

x  y   if and only if x and y   or x and y  .

68. Prove the Reciprocal Property for : For all x  , x  0: x   if and only if 1/x  .
Next, the set  allow us to establish an ordering of the real numbers:
We will say that x  y (in words: x is greater than y if x  y  . Similarly, x  y (x is less
than y) means y  x, x  y means x  y or x  y, and x  y means x  y or x  y. In the
following statements, assume that x, y, z  :

69. Prove that x  y if and only if x  y  .
70. Prove the Trichotomy Property: Exactly one of the following three possibilities is true: x  y, or

x  y, or y  x.
71. Prove the Transitive Property: If x  y and y  z, then x  z.
72. Prove that if x  y and z  , then x  z  y  z and x  z  y  z.
73. Prove the Order Property for Reciprocals: For all x, y  :

If x  0 and y  x, then 1/x  1/y.
If y  0 and y  x, then 1/x  1/y.

74. Prove the Squeeze Theorem for Inequalities: For all x, y, z  :

If x  y and y  x, then x  y.

75. Let us define the imaginary unit i to be a number (or quantity) with the property that:
i2  i  i  1. Prove that such a number cannot be a real number. Hint: if i  , then either
i   or i   or i  0. Show that all these possibilities lead to a contradiction.
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Chapter 1
The Canvas of Linear Algebra:

Euclidean Spaces and Subspaces
We study Calculus because we are interested in real numbers and functions that operate on them, such
as polynomial, rational, radical, trigonometric, exponential and logarithmic functions. We want to study
their graphs, derivatives, extreme values, concavity, antiderivatives, Taylor series, and so on..

In the same spirit, we define Linear Algebra as follows:

Linear Algebra is the study of sets called vector spaces, which are generalizations of
numbers, their structure, and functions with special properties called linear transformations
that map one vector space to another.

In this Chapter, we will look at the basic kind of vector space, called Euclidean n-space or n.
Vectors in 2 and 3 can be visualized as arrows, and the basic operations of vector addition,
subtraction and scalar multiplication can be interpreted geometrically:

 

v

u  v

u  v

u

v

u

.

.

2u

u

From these two basic operations, we will construct linear combinations of vectors, and form the Span
of a set of vectors. We will see that these Spans are the fundamental examples of subspaces, and that
we can describe these subspaces as the Span of a finite set of vectors called a basis, which have as few
vectors as possible. A basis for a subspace enjoys a special property called linear independence, that
allows us to describe subspaces in the most efficient way.

The main computational tool of Linear Algebra is called the Gauss-Jordan Algorithm. We will
introduce it in this Chapter, and see that it is useful to solve a general system of linear equations. We
will also see the concept of the dot product and the relationship of orthogonality, and we will see that
subspaces of Euclidean n-space come in pairs called orthogonal complements.
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1.1 The Main Subject: Euclidean Spaces

In ordinary algebra, we see ordered pairs of numbers such as 3,5. Our first step will be to
generalize these objects:

Definition: An ordered n-tuple or vector v is an ordered list of n real numbers:

v  v1, v2, . . . , vn .

Example: 2,1, 4 is an ordered 3-tuple (more naturally called an ordered triple), and
5, 7,3, 0, 6, 2 is an ordered 6-tuple.

Definition: The set of all possible n-tuples is called Euclidean n-space, denoted by the
symbol n:

n  v  v1, v2, . . . , vn  | v1, v2, . . . , vn   .

Euclidean n-space is the main subject of linear algebra, and it is the fundamental example of a category
of objects called vector spaces. Almost all concepts that we will encounter are related to vector spaces.
The number n is called the dimension of the space, and we will refer to 2 as 2-dimensional space, 3

as 3-dimensional space, and so on. Euclidean n-spaces are referred to collectively as Euclidean
spaces. A vector v from n is more specifically called an n-dimensional vector, although we will
simply say “vector” when we know which Euclidean space v comes from. We use an arrow on top of a
letter to denote that the symbol is a vector. The entries within each vector are called the components of
the vector, and they are numbered with a subscript from 1 to n. We will also agree that
1  v  v1  | v1     , the set of real numbers.

Example: Let v  7, 0,5, 1  4. We say that v1  7, v2  0, v3  5 and v4  1. 

To distinguish real numbers from vectors, we will also refer to real numbers as scalars.

Definition: Two vectors u  u1, u2, . . . , un  and v  v1, v2, . . . , vn  from n are equal if
all of their components are pairwise equal, that is, u i  v i for i  1n. Two vectors from
different Euclidean spaces are never equal.

Example: In 3, We can say that 2, 32, cos  4 , 9,1 , but 2, 5, 7  5,2, 7. 

Many of the Axioms for Real Numbers that we saw in Chapter Zero have analogs in Euclidean spaces.
Let us start by generalizing the scalar zero and the additive inverse of a real number:

Definitions: Each n has a special element called the zero vector, also called the additive
identity, all of whose components are zero: 0n  0, 0,  , 0.
Every vector v  v1, v2,  , vn   n has its own additive inverse or negative:

 v  v1,v2,  ,vn .
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Example: In 5, the zero vector will be written as 05  0, 0, 0, 0, 0. Notice that we do not put a
subscript on the zeroes. If v  4,2, 0, 7,6, then v  4, 2, 0,7, 6.

Vector Arithmetic

Vectors in n are manipulated in two basic ways:

Definitions: If u  u1, u2, . . . , un  and v  v1, v2, . . . , vn  are vectors in n, we define
the vector sum:

u  v  u1  v1, u2  v2,  , un  vn ,

and if r  , we define the scalar product:

r  v  rv   rv1, rv2,  , rvn .

We will call the operation of finding the vector sum as vector addition, and the operation of
finding a scalar product as scalar multiplication. We can also define vector subtraction by:

u  v  u  v  u1  v1, u2  v2,  , un  vn .

Example: Let u  3,5, 6, 7 and v  4, 2, 3,2. Then:

u  v  3  4,5  2, 6  3, 7  2
 1,3, 9, 5,

 v  4,2,3, 2,

5u  5  3, 55, 5  6, 5  7
 15,25, 30, 35, and

u  v  3  4,5  2, 6  3, 7  2
 7,7, 3, 9. 

Something funny happens when we multiply any vector by zero:

Theorem: The Multiplicative Property of the Scalar Zero:
Let v  v1, v2, . . . , vn   n. Then:

0  v  0n.

Proof: We apply the definition of scalar multiplication:
0  v  0  v1, 0  v2, . . . , 0  vn

 0, 0, . . . , 0  0n,

where we used the Multiplicative Property of Zero in every component, that is, 0  v i  0 for all
i  1n. 
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Visualizing Vectors from 2

The Euclidean space 2 is easy to visualize. We will use the standard xy-plane, also known as the
Cartesian plane. As usual, we will denote by a, b the point on the Cartesian plane with coordinates
x  a and y  b. A vector in 2 will be represented using arrows (also called directed line
segments). The arrow representing u  u1, u2  is in standard position if the tail is at the origin
0, 0 and the head is at the point u1, u2 . If the tail is not at the origin but at some other point P, we
say that the vector has been translated to P. The zero vector 02 is represented by the origin 0, 0, or
any point on the Cartesian plane for that matter. Notice also that since u  u1,u2 , we reverse the
arrow for u in order to draw the arrow for u. A vector whose tail is at P and head is at Q is denoted
PQ. We also say that PQ is the vector from P to Q. We remark that the Cartesian plane is not 2 but
is a framework where we draw the vectors of 2.

Example: In the picture below, u  2,3 is in standard position, and we show v  5, 3 both in
standard position and with its tail translated to 3, 1.
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Plotting Vectors in 2

Notice that the head of the second v is not at 5, 3, but rather is at 3  5, 1  3  2, 4. 

In general, the signs of u1 and u2 tell us the direction that u  u1, u2  is pointing, so if both are
positive, then u is pointing right and up. Thus, we have the following:

Theorem: Let u  u1, u2   2, and Pa1, b1  a point on the Cartesian plane. If u is
translated to P, then the head of u will be located at Qa2, b2 , where:

a2  a1  u1, and b2  b1  u2.

Conversely, if Pa1, b1  and Qa2, b2  are two points on the Cartesian plane, then the vector
u  2 from P to Q is:

u  PQ  a2  a1, b2  b1 .

We leave the proof as an Exercise.
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The Geometry of Vector Arithmetic in 2

Let us think of vector sums and differences from a geometric point of view. To get the vector sum
u  v, we put u in standard position and translate v to the head of u. We obtain u  v as the arrow from
the origin to the head of v. Similarly, to get u  v we put u in standard position, reverse v (thus getting
v) and translate it to the head of u. To obtain u  v, we draw the arrow from the origin to the head of
v, as we did for u  v.
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Vector Addition and Subtraction in 2

These two operations can be seen in a single vector diagram, called The Parallelogram Principle
(where u  v is translated to the head of v).
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The Parallelogram Principle:
Vector Addition and Subtraction

Scalar Multiplication

Similarly, scalar multiplication has the geometric effect of lengthening or shortening a vector, while
preserving or reversing its direction (if the scalar is negative), as shown on the right above.

As we can see, the process of scalar multiplication results in vectors that are pointing in the same or
opposite directions (we translated 2v so that it will not overlap with v). However, we saw that for any
vector v  n: 0  v  0n. It is therefore reasonable to define the following concept:
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Definition: Axiom for Parallel Vectors:
We say that two vectors u, v  n are parallel to each other if there exists either a   or
b   such that:

u  a  v or v  b  u.

Consequently, this means that 0n is parallel to all vectors v  n, since 0n  0  v.

You will show in the Exercises that when u and v are non-zero parallel vectors, then a and b both exist
and are non-zero scalars, and furthermore, a  1/b.

Visualizing Vectors from 3

The picture for 3 requires some imagination. The best way to start is to stand in front of a corner of
your room and look down at the corner joining the floor and two walls. The corner will be the origin.
The edge on your left is the positive x-axis, the edge on your right is the positive y-axis, and the edge
going up is the positive z-axis. To draw this on paper, start by drawing the z-axis as a vertical line.
Next, draw the x and y axes as shown below on the left, where the y-axis is slightly rotated clockwise
(around 200 from the horizontal direction, and the positive x-axis makes an angle of about 1200 from
the positive z-axis. As usual, we mark off a scale on each axis. These three axes determine our
Cartesian space. The “floor” determined by the x and yaxes is called the xy-plane, the “left side wall”
determined by the x and z axes is called the xz-plane, and the “back wall” determined by the y and z
axes is called the yz-plane. These three coordinate planes divide Cartesian space into eight octants. The
only standard convention is naming the 1st octant as that where the x, y and z coordinates are all
positive. As before, we remark that Cartesian space is not 3 but it is a framework where we can
visualize the vectors of 3.
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Cartesian Space Plotting Vectors from 3 in Standard Position

Example: We have plotted in the diagram above on the right three vectors in standard position:
u  2, 5, 3, v  3,2,4 and w  0,3, 2.
To plot u  2, 5, 3, we start at the origin, go forward on the x-axis to 2, go right parallel to the
y-axis by 5 units, then go up parallel to the z-axis by 3 units. To plot v  3,2,4, we go forward by
3 units on the x-axis, go left 2 units parallel to the y-axis, and go down 4 units parallel to the z-axis. To
plot w  0,3, 2, we directly go 3 units left on the y-axis, then go up 2 units up parallel to the
z-axis.
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If a vector is translated in 3, we can make the following statement whose proof is again left as an
Exercise:

Theorem: Let u  u1, u2, u3   3, and Pa1, b1, c1  a point in Cartesian space. If u is
translated to P, then the head of u will be located at Qa2, b2, c2 , where:

a2  a1  u1, b2  b1  u2, and c2  c1  u3.

Conversely, let Pa1, b1, c1  and Qa2, b2, c2  be two points in Cartesian space. Then: the
vector u  3 from P to Q is:

u  PQ  a2  a1, b2  b1, c2  c1 .

Properties of Vector Arithmetic

The two basic operations of vector addition and scalar multiplication have properties that naturally
follow from the arithmetic properties of real numbers:

Theorem — Properties of Vector Arithmetic:
If u, v, and w are vectors in n and r and s are scalars, then the following properties are true:

1. The Closure Property of Vector Addition u  v is also in n.

2. The Closure Property of Scalar Multiplication r  u is also in n.

3. The Commutative Property of Vector Addition u  v  v  u.
4. The Associative Property of Vector Addition u  v   w  u  v  w .

5. The Additive Identity Property 0n  v  v  v  0n.

6. The Additive Inverse Property v  v  0n  v  v.

7. The “Left” Distributive Property r  s  v  r  v  s  v.

8. The “Right” Distributive Property r  u  v   r  u  r  v.

9. The Associative Property of Scalar Multiplication rs  v  r  s  v  s  r  v.

10. The Unitary Property of Scalar Multiplication 1  v  v.

Notice that the additions appearing in the two Distributive Properties are different additions: in the
“Left” Distributive Property, the addition on the left side of the equation is the ordinary addition of real
numbers, and all the other additions are vector additions. Similarly, the product rs in the Associative
Property is a product of real numbers only, but the five other products are all scalar products. Let us
prove one of these properties (the rest will be in the Exercises).

Example: Let us prove that for all v  n and r, s  : r  s  v  r  v  s  v.

Proof: We will express the vectors in component form and follow the Axioms for the Real Numbers.
So let us write v  v1, v2, . . . , vn . Then we have:
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r  s  v
 r  s  v1, v2, . . . , vn 

  r  sv1, r  sv2, . . . , r  svn  by the definition of scalar multiplication,
  rv1  sv1, rv2  sv2, . . . , rvn  svn  by the (ordinary) Distributive Property.

Let us now work on the right side of the equation we are trying to prove:

r  v  s  v
 r  v1, v2, . . . , vn   s  v1, v2, . . . , vn 

  rv1, rv2, . . . , rvn    sv1, sv2, . . . , svn  by the definition of scalar multiplication,

  rv1  sv1, rv2  sv2, . . . , rvn  svn  by the definition of vector addition,

and we get the same expanded expression as that of r  s  v. 

We note that in our proof above, we had to know the definitions for vector addition and scalar
multiplication. We also had to write our vector v in proper component form, that is, know the meaning
of correct notation. These two key ingredients — definitions and notations — are found in almost any
good proof. Keep these in mind when proving similar properties in the Exercises, especially those
dealing with two or more vectors or scalars.

The Length of a Vector:

Since vectors are uniquely determined by directed line segments on the plane or in space, we can speak
of the length of a vector:

Definition: Let v  v1, v2   2 and w  w1, w2, w3   3.
We define the length or norm or magnitude of these vectors as:

v  v1
2  v2

2 and w  w1
2  w2

2  w3
2 .

We say that v is a unit vector if v  1. Similarly, w is a unit vector if w  1.

Example: The length of v  3,2,4, a vector from our previous Example, is:

v  9  4  16  29 . 

Notice that the formulas for length come from the distance formula in 2 and 3 dimensions. From these
definitions, we can directly prove:

Theorem: For any scalar k   and vector v  2 or 3: k  v  |k |v.
Furthermore, v  0, and v  0 if and only if v  02 or 03.
Consequently, if v is a non-zero vector, then:

u1  1
v

 v and u2  1
v

 v

are unit vectors parallel to v.
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Proof: We will prove the first equation, and leave the other parts of this Theorem as Exercises. Again,
all we need to do is use component notation and in this case, the formula for the norm:

k  v  kv1, kv2 

 kv1 2  kv2 2

 k2v1
2  k2v2

2

 k2v1
2  v2

2 

 k2 v1
2  v2

2

 |k |v. 

Note that we used Exercise 59 from Chapter Zero. This Theorem says that scalar multiplication has the
effect of shortening or lengthening a vector by the absolute value of k, the scalar factor. If k is positive,
then ku is the vector in the same direction as u whose length is k times the length of u. If k is negative,
we reverse the arrow and multiply its length by |k|.

Example: The two unit vectors parallel to v  3,2,4 from our previous Example are:
u1  1

29
3,2,4 and u2  1

29
3,2,4. 

Linear Combinations

More generally, we will combine the operations of scalar multiplication and vector addition involving
several vectors and scalars to form a single vector:

Definition: If v1, v2, . . . , vk  n, and x1, x2, . . . , xk  , then the vector expression:
x1  v1  x2  v2   xk  vk

is called a linear combination of v1, v2, . . . , vk with coefficients x1, x2, . . . , xk.

Example: If u  5, 4,7, v  2, 3, 6 and w  0, 8,3, then we can compute the linear
combination:

4u  3v  5w  45, 4,7  32, 3, 6  50, 8,3
 20, 16,28  6,9,18  0, 40,15
 26, 47,61. 

Example: If u  5,2, 4, 6 and v  1,5, 2,3, is it possible to express 8,29, 2,39 as a
linear combination of u and v?
If this is possible, then we can find two coefficients, x and y, such that:

8,29, 2,39  x5,2, 4, 6  y1,5, 2,3.
This would require us to satisfy four equations:
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5x  y  8,
 2x  5y  29,

4x  2y  2, and
6x  3y  39

Solving for x and y using only the first two equations, we easily eliminate y and get 23x  69, or
x  3. Substituting this in the first equation, we get, y  7. But we also have to check that the other
two equations are satisfied, and indeed, they are. Thus:

8,29, 2,39  35,2, 4, 6  71,5, 2,3,
and so 8,29, 2,39 is a linear combination of u and v. 

The Standard Basis Vectors

There is a special set of vectors in each n that we will frequently see:

Definition: The standard basis vectors in n are the vectors e1, e2, . . . , en that have 0 in all
components except the i th component, which contains 1:

ei  0, 0, . . . , 0, 1, 0, . . . , 0.

In a Multivariable Calculus or Physics course, the standard basis vectors of 2 and 3 are known as i,
j and k, respectively, for the unit vectors parallel to the x, y and z axes. When the Euclidean space is
specified, this should not lead to any confusion:

 

i
j

k

.

i
j

.

The Standard Basis Vectors of 2 and 3

The standard basis vectors allow us to represent any vector naturally and uniquely.

Example: The vector 5, 3,2, 7  4 can be written as:

5, 3,2, 7  51, 0, 0, 0  30, 1, 0, 0  20, 0, 1, 0  70, 0, 0, 1
 5e1  3e2  2e3  7e4. 

Obviously, we can generalize this example in the following:

Theorem — Uniqueness of Representation: Every vector x  x1, x2, . . . , xn   n can be
expressed uniquely as a linear combination of the standard basis vectors:

x  x1, x2, . . . , xn   x1e1  x2e2   xnen.
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The Proof Template

One of the most difficult skills to learn and master in Mathematics is how to write a complete and
convincing proof. To help introduce you to this skill, begin by following the template below as you go
through the proof Exercises in this and in future sections.

Write the Theorem you are trying to prove, in its entirety.

Paraphrase the Theorem by identifying the given conditions and the conclusion:

We are given that:

The conclusion we want to reach is: or

We want to show that:

Write down the relevant Definitions:

The given conditions mean that:

The conclusions we want to reach mean that:

The notations in the Theorem mean:

Write down any relevant Theorems that are related to the given conditions or to the
conclusion and try to connect everything in your template together in a complete proof.

You have already seen several proofs in this Section as well as in Chapter Zero. You are encouraged to
imitate these and future proofs as you write your own proofs. You will notice that many words and
phrases appear a lot in proofs, including but not limited to:

let, consider, assume, if, if and only if, suppose, thus, therefore, this implies, we can
conclude that, we know that, according to this Theorem, but, however, we get a
contradiction, let us form the contrapositive, conversely . . .

and so on. A proof is more than just equations and symbols, so learn to incorporate the words and
phrases above into your own proofs. As you develop your own writing style, you will most likely come
up with your own favorite words and phrases as well. It would also be a good idea to exchange proofs
with your study partner and see if you understand each other’s proofs.

Like everything in life, you get better at proofs with practice. The proof Exercises that you will
encounter in the first few Chapters are really not that hard, so you have no excuse not to try. Get into
the habit of attacking proofs with this template and you will be on your way to mastering this skill.
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1.1 Section Summary

Euclidean n-space, denoted n, is the set of all possible n-tuples or vectors:
n  v  v1, v2, . . . , vn  | v1, v2, . . . , vn  .

Vectors can be negated, added, subtracted, and multiplied by a scalar:
 v  v1,v2, . . . ,vn 

u  v  u1  v1, u2  v2, . . . , un  vn 

u  v  u  v  u1  v1, u2  v2, . . . , un  vn 

r  v   rv1, rv2, . . . , rvn .

Each n has a zero vector, 0n, and for all v  n, the negative of a vector v exists and has the
property that: v  v  0n  0, 0, . . . . , 0.
We say that two vectors u, v  n are parallel to each other if there exists either a   or b  
such that u  a  v or v  b  u. Consequently, this means that 0n is parallel to all vectors v  n,
since 0n  0  v.
In 2 and 3, we can represent vectors as directed line segments. The length or norm or magnitude
of such a vector is the length of this line segment: if v  v1, v2   2 and w  w1,w2, w3   3, we
define: v  v1

2  v2
2 and w  w1

2  w2
2  w3

2 . We say that v is a unit vector if v  1. For
any scalar k   and vector v  2 or 3: k  v  |k |v.
Furthermore, v  0, and v  0 if and only if v  02 or 03. Consequently, if v is a non-zero
vector, then: u1  1

v
 v and u2  1

v
 v are unit vectors parallel to v.

If u, v, and w are vectors in n and r and s are scalars, then the following properties are true:

1. The Closure Property of Vector Addition u  v is also in n.

2. The Closure Property of Scalar Multiplication r  u is also in n.

3. The Commutative Property of Vector Addition u  v  v  u.
4. The Associative Property of Vector Addition u  v   w  u  v  w .

5. The Additive Identity Property 0n  v  v  v  0n.

6. The Additive Inverse Property v  v  0n  v  v.

7. The “Left” Distributive Property r  s  v  r  v  s  v.

8. The “Right” Distributive Property r  u  v   r  u  r  v.

9. The Associative Property of Scalar Multiplication rs  v  r  s  v  s  r  v.

10. The Unitary Property of Scalar Multiplication 1  v  v.

If v1, v2, . . . , vk are vectors, and x1, x2, . . . , xk are scalars, then: x1  v1  x2  v2   xk  vk

is called a linear combination of v1, v2, . . . , vk with coefficients x1, x2, . . . , xk.
The standard basis vectors in n are the vectors e1, e2, . . . , en which have 0 in all components except
the ith component, which contains 1: ei  0, 0, . . . , 0, 1, 0, . . . , 0.
Every x  x1, x2, . . . , xn   n can be written uniquely as: x  x1  e1  x2  e2   xn  en.
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1.1 Exercises

1. Write the definitions of the following operations:
a. vector addition.
b. scalar multiplication.
c. the length of a vector w in 3.
d. parallel vectors.
e. a linear combination of v1, v2, . . . , vk.

2. Suppose u  4, 7, v  3, 5 and w  1,2.
a. Draw the three vectors on the Cartesian plane.
b. Find u.
c. Find the two unit vectors parallel to u.
d. Compute the vectors 3v, 5w, 3v  5w and 3v  5w, and draw them on your diagram.

3. Suppose u  5,3, 2, v  4, 0,7 and w  2, 5, 4.
a. Draw the three vectors in Cartesian space.
b. Compute the vectors 2u, 3w, 2u  3w and 2u  3w, and draw them on your diagram.
c. Find w.
d. Find the two unit vectors parallel to w.
e. Compute the linear combinations:

i.  3
5 w; ii. 2u  5v; iii. 3w  4u; iv. 4u  7v  2w.

4. Let u  3,5, 1, 7, v  2, 3, 6,4 and w  4, 2, 3,9. Compute the following:

a. u  v b. u  w c. v  w d. 2u

e. 3
4 v f.  5

3 w g. 5u  3v h.  3
2 u  5

4 v

i. 2u  3v  7w j. 5u  2v  4w k.  3
2 u  3

4 v  5
3 w l. 3

2 u  3
4 v  2w

5. Suppose that u and v are vectors in 3 such that 3u  v  3, 1, 5 and 5u  2v  9,4, 3.
Find u and v. Hint: why can we solve a system of two equations in two unknown vectors, just like
in basic algebra?

6. Is it possible to express 3, 7 as a linear combination of the two vectors u  5,2 and
v  7, 3? If so, how? If not, why not?

7. Is it possible to express 17,9, 29,37 as a linear combination of 3,5, 1, 7 and
4, 2, 3,9? If so, how? If not, why not?

8. Is it possible to express 30, 47, 50,60 as a linear combination of 3,5, 1, 7 and
2, 3, 6,4? If so, how? If not, why not?

9. Suppose that u and v are vectors from 5 and you were told that:
3u  5v  4, 27,19, 33,31 and
2u  7v  13,13, 39,9, 0

Find u and v.
10. Suppose that u  5,7 is translated so that its tail is at 2, 4. Where is its head?
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11. Suppose that u  3, 1,4 is translated so that its head is at 1, 2, 3. Where is its tail?
12. Suppose that P  8,3, 6 and Q  4, 1,2. Find u  PQ.

For Exercises 13 to 20: You will be asked to prove some general statements about vector
operations. Be sure you know the definitions for the operations involved, and use proper
notation for the vectors. You should also state which of the Field Axioms for Real Numbers
from Chapter Zero is applied to some steps:

13. Prove the Closure Property for Vector Addition and for Scalar Multiplication: For all vectors
u, v  n, and all scalars r  : u  v  n and ru  n.

14. Prove the Commutative Property for Vector Addition: For all vectors u, v  n: u  v  v  u.

15. Prove the Associative Property for Vector Addition: For all vectors u, v, w  n:

u  v  w  u  v  w.

16. Prove the “Right” Distributive Property of Vector Arithmetic: For all vectors u, v  n and
scalars r  : r  u  v  r  u  r  v.

17. Prove the Associative Property of Scalar Multiplication: For all vectors u  n and scalars r,
s  : r  s  u  rs  u.

18. Prove that for any scalar k   and any vector w  3: k  w   |k |w .

19. Prove that for any vector v  2 or 3: v  0. Furthermore, v  0 if and only if v  02

or 03. Hint: how would you define a non-zero vector? Use your definition and Proof By
Contrapositive to prove the forward direction.

20. Prove that for any non-zero vector v  2 or 3: u1  1
v

v and u2  1
v

v

are unit vectors parallel to v. Hint: let k   1
v

and apply Exercise 18 and the analogous

statement for 2.

21. The goal of this Exercise is to show algebraically that if u  u1, u2  and v  v1, v2  are
vectors in 2, then, u and v are parallel to each other if and only if u1v2  u2v1  0.

a. Begin by stating the definition of u and v being parallel to each other.

b.  Prove the forward implication: Show that if u  u1, u2  and v  v1, v2  are parallel
to each other, then u1v2  u2v1  0. Hint: just use direct substitution using (a).

c.  Prove the backward implication: Show that if u1v2  u2v1  0, then u  a  v for
some a  . Hint: do a Case-by-Case Analysis with Case 1: u1  0, and Case 2: u1  0.
Recall that 02 is parallel to all vectors in 2, and a non-zero number has a reciprocal. Case
2 will have sub-cases: Case 2a: u2  0, and Case 2b: u2  0.

22. Write down the contrapositive of the Theorem stated in the previous Exercise.

For Exercises 23 to 29: Prove the following Theorems without using component notation, but
instead using only the ten Properties of Vector Arithmetic on page 31.

23. The Uniqueness of The Zero Vector: If z is any other vector in n with the property that
z  v  v for any v  n, then z  0n.

24. The Uniqueness of the Negative of a Vector: Given any v  n, v is the unique vector in n

satisfying v  v  0n, that is, if w  n also satisfies v  w  0n, then w  v.
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25. The Cancellation Law for Vector Addition: If u, v and w  n and u  v  u  w, then v  w.

26. The Multiplicative Property of the Scalar 0: For all v  n: 0  v  0n. Hint: 0  0  ?
Reminder: do not use component notation.

27. The Multiplicative Property of the Zero Vector: For all k  : k  0n  0n. Hint: 0n  0n  ?

28. The Zero-Factors Theorem for Vectors: If k   and v  n, then:

k  v  0n if and only if either k  0 or v  0n.

Again, this means that you need to prove both implications:
a.  This part is easier: Prove that if k  0 or v  0n, then k  v  0n. You may certainly

use some of the Exercises above.
b.  If k  v  0n, prove that either k  0 or v  0n.

Hint: review the proof of the Zero-Factors Theorem for Real Numbers from Chapter Zero.

29. Prove that for any v  n:  v  1  v. Hint: Use some of the previous Exercises.

30. Let u  u1, u2   2, and Pa1, b1  a point on the Cartesian plane. If u is translated to P,
prove that the head of u will be located at Qa2, b2 , where a2  a1  u1, and b2  b1  u2.

31. Prove that the vector u  2 from Pa1, b1  to Qa2, b2  is u  PQ  a2  a1, b2  b1 .

32. Let u  u1, u2, u3   3, and Pa1, b1, c1  a point in Cartesian space. If u is translated to P,
prove that the head of u will be located at Qa2, b2, c2 , where a2  a1  u1, b2  b1  u2,
and c2  c1  u3.

33. Prove that the vector u  3 from Pa1, b1, c1  to Qa2, b2, c2  is:

u  PQ  a2  a1, b2  b1, c2  c1 .

34. Use the previous Exercise (and scalar multiplication) to prove that the midpoint of the line
segment PQ, where P  a1, b1, c1  and Q  a2, b2, c2  is:

a1  a2
2 , b1  b2

2 , c1  c2
2 .

35. Let ABCD be a trapezoid with parallel sides AB and DC. Suppose that the length of AB is 20
centimeters and the length of DC is 35 centimeters. Let P be a point 2/5 up from A to D and
similarly let Q be a point 2/5 up from B to C. Prove using a vector diagram and vector arithmetic
that PQ is also parallel to AB and find its length.

 

B

P

D C

A
.

Q. .
.

36. We will use vectors to prove that the three medians of a triangle intersect at one mutual point.
Recall that a median of a triangle is a line segment connecting a vertex to the midpoint of the
opposite side. Since we are going to use vectors to prove our Theorem, we will treat all line
segments as vectors.
Let us consider ABC below, with sides AB, BC and CA. Their midpoints are D, E and F:
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B

G

F

D

CA

E

.

.

The medians are AE, CD and BF.
Your task is to show that all three intersect at G. Since D is the midpoint of AB, we have
AD  1

2 AB, and similarly for the other three sides. The proof of our Theorem is coordinate free,
that is, independent of the Cartesian coordinate system, and in particular, we will not be using the
midpoint formula. Fill in the details and complete the proof:
a. Explain why AB  BC  CA  02.
b. Explain why AE  AB  1

2 BC.

c. Derive a similar equation for CD, also of the form ??  1
2 ??.

d. CD and AE clearly intersect at one point, so let us call that G. What is the vector equation
(with one side a vector sum) involving AG, CG and CA?

e. Use a to rewrite b as AE  1
2 AB  1

2 CA.

f. Your equation in c should also involve 1
2 AB. Subtract the two sides of your equations in

c and e to get CD  AE  3
2 CA.

g. Solve for CA in f and substitute it in your equation in d. Show that you can rewrite the
equation you obtain as: AG  2

3 AE  CG  2
3 CD

h. AG and AE are clearly parallel to each other, and similarly, so are CG and CD. However,
AG and CG are clearly not parallel to each other. Now comes the part with the hard
thinking: explain why these statements imply that both sides of the equation in g must be
the zero vector. There are no computations involved in this step.

i. Now that we know from g that AG  2
3 AE, and CG  2

3 CD, solve for BG and show
that it is also 2

3 BF. This proves that G is also somewhere between B and F, completing the
proof that G lies on all three medians. As a bonus, we also get the famous result that G lies
2/3 along the median from each vertex.

37. Using the same diagram as the previous Exercise, show using vector arithmetic, that DE is
parallel to AC, and is half of its length. In other words, the line segment connecting the midpoint
of two sides of a triangle is parallel to the third side, and is half its length.
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1.2 The Span of a Set of Vectors

Now we introduce a central object in Linear Algebra:

Definition: The Span of a non-empty set of vectors S  v1, v2, . . . , vk from n is the set
of all possible linear combinations of the vectors in the set. We write:

SpanS  Spanv1, v2, . . . , vk

 x1v1  x2v2   xkvk | x1, x2, . . . , xk  .
We note that the individual vectors v1, v2, . . . , vk are all members of SpanS, where we let
x i  1 and all the other coefficients 0 in order to produce vi. Similarly, the zero vector 0n is
also a member of SpanS, where we make all the coefficients x i zero to produce 0n.

The simplest possible set S consists of only the zero vector of n. Since r  0n  0n for any scalar r,
the Span of 0n consists only of 0n and no other vector. Thus:

Theorem: In any n: Span 0n  0n .

For the same reason, we can choose to exclude the zero vector from a set of vectors S, since it is
automatically a member of any SpanS, that is:

Theorem: For all v1, v2, . . . , vk  n:

Span 0n, v1, v2, . . . , vk  Spanv1, v2, . . . , vk.

At the other extreme, we saw in the previous Section that every vector x  x1, x2, . . . , xn   n can
be written uniquely as a linear combination of the standard basis vectors:

x  x1, x2, . . . , xn   x1e1  x2e2   xnen.

Thus, we can formally say:

Theorem: n  Spane1, e2,  , en.

The Span of One or Two Vectors

Let us look at what the Span of a small set of vectors looks like in 2 and 3, beginning with a single
non-zero vector v in 2.

Example: Suppose that v  3,2  2, and S  v. By the definition:
SpanS   t 3,2  | t  ,

that is, all the scalar multiples of 3,2 . Let us show some of these vectors:
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Span ({ v })

Some Vectors from Span3,2 

We know that every multiple t3,2  is parallel to 3,2 , as we see in the diagram on the left. We
deliberately did not put the vectors in standard position so that we can see each individual vector
distinctly. However, when we put them all in standard position as we see on the right, then the
arrowheads of these multiples lie on what we instinctively call a line, and it passes through the origin
since 02 is in SpanS. Indeed, our knowledge of basic algebra will allow us to find the Cartesian
equation of this line: any vector x, y is a member of Spanv if and only if:

x, y  t 3,2   3t,2t , or in other words:
x  3t and y  2t.

These are examples of what we call parametric equations. The scalar variable t is called the
parameter. By eliminating t, we get the usual Cartesian equation of a line:

t  x
3  y

2 , and thus y   2
3 x.

Thus, we can conclude that:

Span3,2  is the line on the Cartesian plane with equation y   2
3 x.

As we do in basic algebra, we will draw this line with an arrowhead on both ends and denote it by an
appropriate symbol such as L:

 y

x21






1
2

 3 4

.

L = Span ({ v })

.

The Line L  Span3,2  on the Cartesian Plane. 
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Similarly, let us see what the Span of a single non-zero vector in 3 looks like:

Example: Suppose that w  3, 5,2  3, and S  w. As before, SpanS consists of all the
scalar multiples of w, which are all parallel to w. Thus, when they are all drawn in standard position,
the arrowheads will again form what we intuitively call a line which passes through the origin like
before. To draw it, we locate the point 3, 5,2 and connect this to the origin, as seen below:

 

x

2
4

6

z
2

y2 4






.
.. .

.
.. .. . ..

... .....





.

.

. 
The Line L  Span3, 5,2 in Cartesian Space

Any vector x, y, z is a member of L if and only if:

x, y, z  t3, 5,2  3t, 5t,2t,
for some value of the parameter t. If we tried to eliminate t, we get:

t  x
3  y

5  z
2 .

We call these symmetric equations for L. Unfortunately, we cannot combine all three expressions into
a single equation as we can do in 2. 

Since our intuition works well in 2 and 3, let us make the following generalization:

Definition — Axiom for a Line:
If v  n is a non-zero vector, then Spanv is geometrically a line L in n passing
through the origin.

We can now proceed with the Span of two non-zero vectors u andv. Suppose first that u and v were
parallel to each other, that is, u  kv for some (non-zero) scalar k. Then, a linear combination of u and
vwould look like:

r u  s v  r kv  sv  rk  sv  t v,

where t  rk  s is just another scalar (notice that t can still be any real number). Thus we are back to
the Span of a single vector v. Similarly, by solving for v in terms of u, we can express r u  s v as a
multiple of u alone. Notice that the argument above does not require our vectors to be in 2 or 3.
Thus:

Theorem: If u and v are non-zero and parallel vectors from some n, then:
Spanu, v  Spanv  Spanu .
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Now let us see what happens when u and v are vectors in 2 which are not parallel to each other. Note
that this automatically includes the restriction that neither u nor v is the zero vector.

Example: Let us investigate Span5, 2, 3, 4 in 2. Clearly these two vectors are not scalar
multiples of each other. Let us try to describe all their linear combinations:

w  x, y  r5, 2  s3, 4.
In other words, let us try to find any restrictions on x and y, that will allow us to solve the equations:

x  5r  3s, and
y  2r  4s,

for the scalars r and s. This is a linear system of two equations in two variables. As in basic algebra,
we can eliminate one variable, say r, by multiplying each equation by a suitable constant and adding
their corresponding sides together. In this case:

 2x  10r  6s, and
5y  10r  20s, so:

5y  2x  14s, or:

s  5y  2x
14 .

Similarly, by eliminating s, we get:

r  4x  3y
14 .

Thus, there are no restrictions on x and y that will prevent us from finding scalars r and s so that:

w  x, y  r5, 2  s3, 4.
This means that Span 5, 2, 3, 4  is all of 2. 

This is true in general, as we state in the next Theorem. We will guide you through a proof in the
Exercises:

Theorem: If u, v  2 are non-parallel vectors, then:
Spanu, v  2.

In other words, any vector w  2 can be expressed as a linear combination:
w  ru  sv,

for some scalars r and s.

Geometrically, this means that if we drew all the vectors ru  sv in 2, in standard position, their
arrowheads will cover the entire Cartesian plane.
Now, suppose that u and v are vectors in 3 that are not parallel to each other. If we draw them in
standard position in 3, then the origin, together with the tips of u and v are not collinear. Thus, they
form a triangle (recall that this is one of the Axioms of geometry that we mentioned in Chapter Zero).
Intuitively, then, we can pretend that u and v are still vectors in 2, so once again, their Span is a
geometric object that “looks like” all of 2. In other words, their arrowheads will form an object that
we intuitively call a plane. Thus, it is reasonable to accept the following:
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Definition — Axiom for a Plane in Cartesian Space:
If u and v are vectors in 3 that are not parallel to each other, then Spanu, v is
geometrically a plane  in Cartesian space that passes through the origin.
( is the capital form of the lowercase Greek letter . )

The Span of Two Non-Parallel Vectors is a Plane in 3

Example: Let us study Span 3, 4,1, 5,2, 3. Notice that we can see immediately that the
two vectors are not scalar multiples of each other. A vector w  x, y, z is a member of the Span if
and only if we can write:

x, y, z  r3, 4,1  s5,2, 3
 3r  5s, 4r  2s,r  3s,

for some scalars r and s. In other words:
x  3r  5s,
y  4r  2s, and
z  r  3s.

These are again called parametric equations, but this time, we have two parameters r and s. Let us
see if we can make all this data more compact. Eliminating r from x and y using z, we get:

x  3z  3r  5s  3r  3s  14s, and
y  4z  4r  2s  4r  3s  10s.

Finally, eliminating s, we get:
x  3z

14  y  4z
10 

5x  3z  7y  4z 

5x  7y  13z  0.
We summarize:

Span 3, 4,1, 5,2, 3   x, y, z  3 |5x  7y  13z  0 .

As we see in the diagram above, we will sketch our planes using a parallelogram. In order to give the
viewer the illusion that the parallelogram contains the two vectors that determine our plane, we will
draw the sides of our parallelogram to be parallel to these two vectors:
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The Plane Span 3, 4,1, 5,2, 3. 

In general, we can make the following definition, which we will improve later:

Definition: The Cartesian equation of a plane through the origin in Cartesian space, given
in the form   Spanu, v, where u and v are not parallel, has the form:

ax  by  cz  0,
for some constants, a, b and c, where at least one coefficient is non-zero.

General Lines

Although the Span of a set of vectors is an important object in Linear Algebra, it has its limitations. We
certainly want to consider lines and planes that do not pass though the origin. Recall that we can
translate a vector so that its tail is not at the origin. In general, we will want to translate an entire Span:

Q  q  v |v  SpanS ,

for some fixed non-zero vector q  n, whose head is the location of the tail of v. In particular, we
will make the following:

Definition — Axiom for a General Line:
A line L in n is the translate of the Span of a single non-zero vector d  n:

L  xp  t d | t   ,

for some vector xp  n. We may think of d as a direction vector of L, and any non-zero
multiple of d can also be used as a direction vector for L. By setting t to zero, we see that xp
is a particular vector on the line L, whose head is on L.

Example: Consider the line L in Cartesian space passing through the point 3,2, 7 in the direction of
4, 1,3. We can think of L as the translate of Span4, 1,3 by the vector 3,2, 7. We can
thus form the following parametric equations for L:

x, y, z  3,2, 7  t 4, 1,3  3  4t,2  t, 7  3t.
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Notice that we used two different symbols: 3,2, 7 is a point in Cartesian space, but 3,2, 7 and
4, 1,3 are vectors in 3. 

Example: Let us study the line L in Cartesian space passing through the two points P2, 4,1 and
Q1,3, 1. This line has direction vector:

d  PQ  1  2,3  4, 1  1  3,7, 2.
Now, we can find parametric equations for L, as before:

x, y, z  1,3, 1  t 3,7, 2.
Notice that we could also have used the second point as our particular point, and any scalar multiple of
the direction vector that we found, so another correct answer is:

x, y, z  2, 4,1  s 6, 14,4.
Again, if we try to solve for t in our first set of parametric equations, then we would get:

t  x  1
3  y  3

7  z  1
2 ,

which we again call symmetric equations for L. We see its graph below:
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The Line Passing through P2, 4,1 and Q1,3, 1

It almost looks as if the origin is on this line, but if so, then 0, 0, 0 we must satisfy the symmetric
equations for L. This would mean that the value of t at the origin is:

t  1
3  3

7  1
2 ,

which is obviously false. Thus, it is easy to be fooled by a graph in Cartesian space.

In general, we can define a general line in Cartesian space as follows:

Definition: A line L in Cartesian space passing through the point x0, y0, z0 , and with
non-zero direction vector d  a, b, c can be specified using a vector equation, in the form:

x, y, z  xp  t d  x0, y0, z0   t a, b, c, where t  .

If none of the components of d are zero, we can obtain symmetric equations for L, of the
form: x  x0

a  y  y0
b  z  z0

c .
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In the same way that two vectors can be parallel to each other, we will also define the analogous
concept for lines. The second statement will be proven in the Exercises.

Definition/Theorem: We will say that two lines are parallel to each other if they are
different translates of the same line through the origin, that is, they, have no point in
common. Consequently, two lines L1 and L2 are parallel to each other if and only if their
vector equations can be written as:

L1  x1  t d and L2  x2  s d,
for some common non-zero direction vector d, and where x1  x2 is not parallel to d.

General Planes

Let us now turn our attention to general planes in n. As with lines, the idea is to allow a plane
through the origin to be translated to any other point:

Definition — Axiom for a General Plane:
A plane  in n is the translate of a Span of two non-parallel vectors u and v  n:

  x  xp  ru  sv | r, s   ,

for some fixed vector xp  n. However, the choice of xp is not unique.

We see that by setting r and s to zero that xp is a particular vector on . As with lines, we say that
two distinct planes are parallel to each other if they are translates of the same plane through the origin.

There are many creative ways to specify a plane in Cartesian space. We can do this, for example, by:

 requiring the plane to contain three non-collinear points.
 requiring the plane to contain two intersecting lines.
 requiring the plane to contain two parallel lines.

We will see more ways in the Exercises, both in this Section and the following one.

Example: Let us find parametric equations and a Cartesian equation for the plane  passing through
A1,3, 2, B1,2, 1 and C2, 3,1. This time, we will fix any of the three points, say A, and
find the vectors connecting A to the other two points:

u  AB  1,2, 1  1,3, 2  2, 1,1, and

v  AC  2, 3,1  1,3, 2  1, 6,3.

Notice that these two vectors are not parallel to each other. Thus the three points do not fall on the
same line, and they indeed determine a triangle, and hence a unique plane as before. Now, we can find
parametric equations for  in two parameters, using 1,3, 2 as the base point (converting it to the
particular vector xp):

x, y, z  1,3, 2  r2, 1,1  s1, 6,3
 1  2r  s,3  r  6s, 2  r  3s.
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We can find a single equation for  by eliminating r and s, one at a time, just like we did when the
plane passed through the origin. Let us use z to eliminate r in x and y:

x  2z  1  2r  s  22  r  3s  3  7s, and
y  z  3  r  6s  2  r  3s  1  3s.

Now we eliminate s:
x  2z  3

7  s  y  z  1
3 

3x  2z  3  7y  z  1 

3x  7y  13z  2.

This is again called a Cartesian equation for . We see the graph of  below, where the
parallelogram representing  has sides parallel to the vectors u and v that we computed above:

A Plane Determined by Three Non-Collinear Points

It seems reasonable, then, to agree on the following:

Definition: A plane  in Cartesian space can be specified using a Cartesian equation:

ax  by  cz  d,
for some constants, a, b, c and d, where either a or b or c is non-zero. It is unique only up to
a scalar: any other Cartesian equation for  must have the form kax  kby  kcz  kd, for
some non-zero constant k.
The plane passes through the origin if and only if d  0.

The Span of Three Non-Coplanar Vectors

It should not be a surprise that one of the Theorems that we will prove in the future is a natural analog
in 3 about our Theorem concerning two non-parallel vectors in 2. You will prove it in the Exercises
of Section 1.7:

Theorem: If u, v and w are non-parallel and non-coplanar vectors in 3, that is, none of
these vectors is on the plane determined by the other two vectors, then:

Spanu, v, w   3.
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In other words, any vector z  3 can be expressed as a linear combination,
z  ru  sv  tw, for some scalars r, s and t.

If u, v and w are Non-Coplanar Vectors in 3, then Spanu, v, w   3

This Theorem will be demonstrated in the Exercises of this Section.

1.2 Section Summary

The Span of a non-empty set of vectors S  v1, v2, . . . , vk from n is the set of all possible linear
combinations of the vectors in the set:

SpanS  Spanv1, v2, . . . , vk  x1v1  x2v2   xkvk | x1, x2, . . . , xk   .

If v  n is a non-zero vector, then Spanv is a line L in n passing through the origin.
If u, v  2 are non-parallel vectors, then Spanu, v  2.
If u, v  3 are non-parallel vectors, then Spanu, v is geometrically a plane  in Cartesian
space that passes through the origin.

More generally, a line L in n is the translate of the Span of a single non-zero vector d  n:
L  xp  td | t   , for some vector xp  n.

A line L in Cartesian space passing through the point x0, y0, z0 , and with non-zero direction vector
d  a, b, c can be specified using a vector equation, in the form x, y, z  x0, y0, z0   ta, b, c,
where t  . If none of the components of d are zero, we can obtain symmetric equations for L, of
the form:

x  x0
a  y  y0

b  z  z0
c .

A plane  in n is the translate of a Span of two non-parallel vectors u and v  n:
  x  xp  ru  sv | r, s   , for some xp  n.
A plane  in Cartesian space can be specified using a Cartesian equation, in the form:

ax  by  cz  d,

for some constants, a, b, c and d, where either a, or b, or c, is non-zero. The plane passes through the
origin if and only if d  0.
If u, v and w are non-coplanar vectors in 3, then Spanu, v, w   3.
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1.2 Exercises

1. Find the Cartesian equation of the line in 2 determined by Span 7, 4. Sketch the line.
2. Find the Cartesian equation of the line in 2 determined by Span 3,5. Sketch the line.
3. Find parametric and symmetric equations for the line in 3 determined by Span 5,4, 2.

Sketch the line.
4. Find parametric and symmetric equations for the line in 3 determined by Span 1, 3,6.

Sketch the line.
5. Find a Cartesian equation, in the form ax  by  c, for the line in 2 that passes through the

point 2, 4 and has direction vector 5, 7. Sketch the line.
6. Find parametric and symmetric equations for the line in 3 that passes through the point

2,7, 4 and has direction vector 3, 6, 8. Sketch the line.
7. Find parametric equations for the line in 3 that passes through the point 3, 2,5 and has

direction vector 2, 0,5. Sketch the line. Is it possible to write symmetric equations for this
line? Why or why not?

8. Find parametric equations for the line in 3 that passes through the points P4, 3,5 and
Q0, 1,2. Sketch the line.

9. Find a Cartesian equation for the plane in 3 determined by Span 1, 0,2, 3, 1, 5.
Sketch the plane.

10. Find a Cartesian equation for the plane in 3 determined by Span 3, 5,4, 2,1, 7.
Sketch the plane.

11. Find a Cartesian equation for the plane in 3 determined by Span 3, 0,2, 1, 5, 0.
Sketch the plane. Why is this problem different from the last two?

12. Is Span 4,10, 6, 6, 15,9 a line or a plane in 3? Why?
13. Find a Cartesian equation for the plane containing A1,2, 4, B3, 1,1 and C2, 0, 1.
14. Find a Cartesian equation for the plane containing A4, 7, 3, B2, 0,5 and C6,3,2.
15. Do the three points A4, 3, 2, B11,17, 12 and C10, 11,2 determine a plane or only a

line in 3? Why?

16. Show that the line given by the vector equation x, y, z  3  5t, 7  2t, 4  t is exactly the
same as the line given by x, y, z  8  10s, 5  4s, 5  2s.
Hint: show that they have at least one point in common, and they have parallel direction vectors.

17. Show that the line L given by x, y, z  3,4, 7  t4,3, 6 is completely contained in the
plane with Cartesian equation 3x  8y  2z  9.

18. Consider the line L with vector equation x, y, z  3, 4,1  t1,2, 5 and the point
P2, 5, 7. Show that P is not on L, and then find a Cartesian equation for the plane that contains
both P and L.

19. Find a Cartesian equation for the plane that contains the line x, y, z  3, 5,4  t2, 1, 3
and the point 3,7, 2.

20. At what point does the line with parametric equations x, y, z  2, 0, 3  t1,3, 5 intersect
the plane 3x  5y  8z  4?

21. Show that the line with parametric equations x, y, z  2, 1, 7  t 8, 5,4 does not intersect
the plane 2x  4y  z  5.
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22. Prove that two lines L1 and L2 in 3 are parallel to each other if and only if their vector
equations can be written as:

L1  x1  td and L2  x2  sd

for some common non-zero direction vector d, and where x1  x2 is not parallel to d.
23. Parallel Lines: Let L1 be the line with symmetric equations:

L1 : x  7
3  y

5  z  1.

a. Show that the point 5,2, 4 is not on L1.
b. Find symmetric equations for the line L2 passing through 5,2, 4 that is parallel to L1.

24. Find a Cartesian equation for the plane that contains the two parallel lines from Exercise 23.
25. Show that the lines x, y, z  2, 1,5  s 8, 12,4 and x, y, z  4, 3, 0  t 6,9, 3

are parallel, and find a Cartesian equation for the plane that contains both of them.
26. Show algebraically that if u  u1, u2  and v  v1, v2  are vectors in 2 that are not parallel to

each other, then any vector x, y  2 can be written as a linear combination of u and v. Hint:
Use the contrapositive that you wrote in Exercise 19 from Section 1.1. Show that for any x and y,
we can solve the vector equation x, y  ru  sv for r and s. You will have to do a
Case-by-Case Analysis. We suggest the cases: (1) neither u1 nor u2 is zero, and 2 either u1 or
u2 is zero (explain why they cannot both be zero). Next, explain why we can further conclude
that Spanu, v  2.

27. Now, prove the Theorem in the previous Exercise geometrically. Hint: Draw the two lines
determined by u and v. Draw a random vector w in standard position. If the tip of w is on one of
these lines, then it is purely a multiple of either u or v. However, if it is not, draw two lines
through the tip of w, one parallel to u and one parallel to v (essentially, draw a parallelogram),
and explain why this allows us to express w as a linear combination of u and v.

28. Let u  3,1, 0, v  0, 1,2, and w  1, 1, 1.
a. Clearly u is not parallel to v. Find the Cartesian equation of the plane Spanu, v.
b. Show that w is not in Spanu, v.
c. Show that any vector x, y, z  3 can be written as a linear combination:

x, y, z  c13,1, 0  c20, 1,2  c31, 1, 1.
Hint: write the right side as a single vector, then write and solve the 3 equations in 3
unknowns c1, c2 and c3 by comparing the three components.

d. Explain why this shows that Spanu, v, w   3.
29. Suppose that u  a, b is a non-zero vector in 2, where a  0. Show that the line

L  Spanu  has Cartesian equation y  b
a x.

30. Suppose that u  0, b is a non-zero vector in 2. Show that the line L  Spanu  has
Cartesian equation x  0. In other words, L is the y-axis.

31. Show that any line L in 2 with direction vector d   r, s has a general equation of the form
sx  ry  c, for some real number c. If you are further told that L passes through the point
x0, y0 , what is c?

32. Suppose that u, v and w are non-zero vectors in 3, where u and v are not parallel to each other.
Thus, Spanu, v is a plane 1 in 3. Suppose also that w is not on 1.
a. Show that w cannot be parallel to either u or to v.
b. Use (a) to explain why Spanu, w  is likewise a plane. Let us call this new plane 2.
c. Show that v is not on 2.
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d. Explain why Spanv, w  is also a plane, 3, and u is not on 3.
33. Suppose that  is a plane in 3, and we assume in this entire problem that  does not pass

through the origin.
a. Show that  can be specified by the Cartesian equation ax  by  cz  1.

Now, suppose further in parts (b), (c) and (d) that a, b and c are not zero in our equation
above. We define the x-intercept of  as the point x0, 0, 0 which is on , and similarly
we can define the y and z intercepts of .

b. Show that the intercepts of  are: 1/a, 0, 0, 0, 1/b, 0, and 0, 0, 1/c.
c. Now, suppose that the intercepts of  are x0, 0, 0, 0, y0, 0 and 0, 0, z0 . Show that 

can be specified by the Cartesian equation:
x
x0

 y
y0

 z
z0

 1.

This is called the intercepts form of the Cartesian equation for .
d. Use (c) to find a Cartesian equation for the plane with intercepts 10, 0, 0, 0,12, 0 and

0, 0, 15. Simplify your answer so that the equation has the standard form
ax  by  cz  d, where all of the coefficients are integers which are as small as possible,
and a  0.

e. Now, suppose  does not have an x-intercept, but has two other intercepts, 0, y0, 0 and
0, 0, z0 . Show that  can be specified by the Cartesian equation: y

y0
 z

z0
 1.

f. Write two statements analogous to the statement in (e) when (1)  does not have a
y-intercept but has two other intercepts, and similarly (2)  does not have a z-intercept but
has two other intercepts.

g. Use (e) or (f) to find a Cartesian equation for the plane with intercepts 6, 0, 0 and
0, 0,9 but has no y-intercept. Simplify your answer so that the equation has the standard
form ax  by  cz  d, where all of the coefficients are integers which are as small as
possible and the first non-zero coefficient is positive.

h. Prove that a plane  that does not pass through the origin has exactly one intercept if and
only if  has a Cartesian equation of the form x  x0 or y  y0 or z  z0.

i. Find a Cartesian equation for the plane whose only intercept is 0, 0,5.
34. Shortest Distance from a Point to a Line: Suppose that L is the line with vector equation:

x, y, z  x0, y0, z0   t a, b, c, where t  .
Let us further assume that the direction vector d  a, b, c is a unit vector, and Qx1, y1, z1  is
a fixed point.
a. Let D be the square of the distance from Q to an arbitrary point x, y, z on L. Express D

as a function of t.
b. Find dD

dt . Simplify your answer so that t appears exactly once.

c. Find the critical values of D, that is, the values of t where dD
dt  0.

d. Find d 2D
dt2 and show that this second derivative is always positive.

e. Explain why the critical value that you found in (c) must be a local minimum for D, and
then explain further why this critical value must also be the absolute minimum for D.

35. Use Exercise 34 to find the point on the line x, y, z  5,3, 2  t 4, 1,7 which is closest to
the origin, and find this distance. Reminder: in Exercise 34, we assumed that d was a unit vector.

36. Use Exercise 34 to find the point on the line x, y, z  7, 0,4  t 1, 5, 2 which is closest to
the point 3,2, 6, and find this distance.
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1.3 The Dot Product and Orthogonality

We can draw points, lines and planes on the Cartesian plane and in Cartesian space, and thus we can
see the geometry of 2 and 3. However, we often want to study the angles formed by two vectors in
higher dimensional spaces which we cannot visualize. In order to explore this further, we need the
following general concept:

Definition: If u  u1, u2, . . . , un  and v  v1, v2, . . . , vn  are vectors from n, we define
their dot product:

u  v  u1v1  u2v2   unvn.

Example: If u  5,3, 0, 2,7 and v  2, 5, 984,6,4, then:

u  v  52  35  0984  26  74  10  15  0  12  28  11. 

The dot product of a vector with itself has a natural geometric interpretation. The following definition
generalizes the concept of length that we introduced in Section 1.1:

Definitions: We define the length or norm or magnitude of a vector
v  v1, v2, . . . , vn   n as the non-negative number:

v  v1
2  v2

2   vn
2 .

It follows directly from the definition of the dot product that:

v2  v  v, or in other words, v  v  v .

A vector with length 1 is called a unit vector.

Notice that we get exactly the same definition for the length of a vector in 2 and 3 as we did in
Section 1.1. Similarly, we can easily prove that:

Theorem: For any vector v  n and k  : kv  |k|v.
In particular, if v  0n, then u1  1

v
v is the unit vector in the same direction as v, and

u2   1
v

v is the unit vector in the opposite direction as v. Furthermore:

v  0 if and only if v  0n.

Example: The vector v  5,3, 0, 2,7 has length:

v  25  9  0  4  49  87 ,

and thus the two unit vectors parallel to v are:
1
87

5,3, 0, 2,7 and 1
87

5,3, 0, 2,7. 
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Notice that in 2 and 3, the length of the vector u is also the length of the directed line segment or
arrow representing u, as we saw in the Section 1.1. We also see that the standard basis vectors e1,
e2, . . . , en are unit vectors in each n-space, since all their components are 0 except for a single “1”.

The following properties of the dot product are easily proven, just like we proved the properties of
vector arithmetic in the previous section:

Theorem — Properties of the Dot Product:
For any vectors u, v, w  n and scalar k  , we have:

1. The Commutative Property u  v  v  u.
2. The Right Distributive Property u  v  w  u  v  u  w.

3. The Left Distributive Property u  v  w  u  w  v  w.

4. The Homogeneity Property k  u  v  ku  v  u  k  v.

5. The Zero-Vector Property u  0n  0.

6. The Positivity Property If u  0n, then u  u  0.

The last two properties can be combined into one:

7. The Non-Degeneracy Property u  u  0 if and only if u  0n, and 0n  0n  0.

Example: Suppose we are told that u and v are two vectors from some n (which n is not really
important). Suppose we were provided the information that u  5, v  29, and u  v  24. Let
us find 5u  3v.
This problem will help us appreciate the power of the property that for all vectors w  n:

w2  w  w.

To find 5u  3v, we apply the formula above to w  5u  3v, along with the distributive and
homogeneous properties of the dot product. Thus:

5u  3v2  5u  3v  5u  3v

 5u  3v  5u  5u  3v  3v

 5u  5u  3v  5u  5u  3v  3v  3v

 25u  u  15u  v  15v  u  9v  v

 25u2  30u  v  9v2,

where in the last step, we again used the property above, to change u  u to u2 and v  v to v2, as
well as the commutative property of the dot product. Also, notice the similarity between the
computation above and the FOIL expansion in basic algebra.
Now, since we know the values of all of these quantities, we can now compute:
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5u  3v2  25u2  30u  v  9v2

 2552  3024  9292  8914.
Thus, 5u  3v  8914 . 

A Geometric Formulation for the Dot Product

The Law of Cosines from Trigonometry says that if a triangle has sides a, b, c and the angle opposite
side c is called , then:

 



c
b

.

a
.

.

c2  a2  b2  2ab cos

Now, suppose u and v are two non-zero vectors of 2. The vectors v, u  v and u form a triangle in
2:

 

.

y

21

4
3

1
2

3



u  v
v

u

.

.

54 x6

The Triangle Formed by v, u  v and u

We can easily check that this diagram is correctly labeled, because v  u  v  u. Now, if we let  be
the angle between u and v, as shown in the diagram, then by the Law of Cosines:

u  v2  u2  v2  2uvcos.

But recall that:

u  v2  u  v  u  v

 u  v  u  u  v  v (by the Right Distributive Property)

 u  u  v  u  u  v  v  v (by the Left Distributive Property)

 u2  2u  v  v2 (by the Commutative Property.

Thus we get:

u2  2u  v  v2  u2  v2  2uvcos.
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Cancelling common terms and dividing both sides by 2, we get:

Definition/Theorem: If u and v are non-zero vectors in 2, then:

u  v  uvcos,

where  is the angle formed by the vectors u and v in standard position. Thus, we can
compute the angle  between u and v by:

cos  u  v
uv

,

where 0    . We will use the exact same formula for two non-zero vectors in 3.

Example: Let us consider the vectors u  5, 3 and v  2, 6. According to our formula, the
cosine of the angle  between them is:

cos  u  v
uv


52  36

52  32 22  62
 10  18

34 40
 8

4 85
 0. 21693

Thus, by using a scientific calculator, we find that   1. 3521 radians, or about 77. 470. Let us draw
the two vectors together in standard position:

 y

x21

4
3



2

 3 4

v 

u 

6
5

5 6

.

.

Finding the Angle Between Two Vectors

We can check with a protractor that this answer is reasonable.

Notice in particular that if u  v  0, then cos  0, hence   /2. In other words u and v are
perpendicular to each other. Since 02  v  0 for all v  2, from the definition of the dot product, we
will also agree that 02 is orthogonal to all vectors in 2, and similarly for 03 in 3. We summarize all
this with the following:

Definition/Theorem: Two vectors u and v  2 or 3 are perpendicular or orthogonal to
each other if and only if u  v  0.

Example: The vectors u  5,3, 1 and v  4, 9, 7 are orthogonal, since:

u  v  54  39  17  20  27  7  0.

Section 1.3 The Dot Product and Orthogonality 57



Sketching these vectors to verify that they are perpendicular would be a futile task, though, because the
vectors will not appear to be perpendicular, thanks to the distorted perspective of Cartesian space.

Revisiting The Cartesian Equation of a Plane

In the previous Section, we saw that:
Span 3, 4,1, 5,2, 3   x, y, z  3 |5x  7y  13z  0 ,

a plane  passing through the origin. If we collect the coefficients of the variables in the equation into a
vector, we get n  5,7,13, which is called a normal vector to the plane. It is not unique, but
L  Span5,7,13, which we call the normal line to the plane, is unique. Notice that if we
take the two vectors defining our Span and get their dot products with n, we get:

3, 4,1  5,7,13  35  47  13  0, and
5,2, 3  5,7,13  55  27  313  0.

Thus n is orthogonal to both vectors. However, it also follows from the equation of  that any vector
x, y, z which is on the plane is orthogonal to n, since:

0  5x  7y  13z  5,7,13  x, y, z.
This argument generalizes to any plane  passing through the origin:

Definition/Theorem: Suppose that u, v  3 are non-parallel vectors, and
  Spanu, v is the plane passing through the origin with Cartesian equation:

ax  by  cz  0.
Then: n  a, b, c is a normal vector to , which means that any vector x, y, z on  is
orthogonal to n. Although n is not unique, the line L  Spann  is unique, and we call L
the normal line to .

On the left, below, we show the plane  and its normal line L from our Example:
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.
w 

5x  7y  13z  0 and Span5,7,13 An Arbitrary Plane in Cartesian Space

More generally, suppose that  is the translate of Spanu, v by xp  x0, y0, z0 . This is
illustrated above, on the right. In this case,  may no longer pass through the origin. As we saw in the
previous Section,  will have parametric equations:

x, y, z  x0, y0, z0   t u  s v.
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We can rewrite this equation as:

x  x0, y  y0, z  z0   t u  s v.

In other words, x  x0, y  y0, z  z0  is a vector in the plane Spanu, v which does pass through
the origin. Thus, by our observation above, x  x0, y  y0, z  z0  must be orthogonal to any normal
vector n  a, b, c for Spanu, v. Thus:

a, b, c  x  x0, y  y0, z  z0   0, or

ax  x0   by  y0   cz  z0   0, and expanding:

ax  by  cz  ax0  by0  cz0.

But the right side is a constant, since we fixed the point x0, y0, z0  corresponding to xp. Thus we
obtain, as in the previous Section, the Cartesian equation of any plane in 3, and we summarize this
discussion in the following:

Definition/Theorem: Suppose that u, v  3 are non-parallel vectors, and  is the plane
xp  Spanu, v, where xp  x0, y0, z0  and x0, y0, z0  is an arbitrary point in 3. Then
 has a Cartesian equation:

ax  by  cz  d  ax0  by0  cz0,

where n  a, b, c is a normal vector to Spanu, v. Thus, n is also normal to all the
translates of Spanu, v. The plane  passes through the origin if and only if d  0.
We will still refer to L  Spann  as the normal line to . Thus, all the translates of
Spanu, v have the same normal line L.
Consequently, two distinct planes 1 and 2 are parallel to each other if and only if they
have the same normal line L. In other words, any normal vector to 1 is parallel to any
normal vector to 2.

In the Exercises, we will see a more efficient way to find the Cartesian equation of a plane, by using the
cross product of the vectors u and v. This is a technique seen in any Multivariable Calculus course.

The Cauchy-Schwarz Inequality

Recall that we defined the angle  between two non-zero vectors in 2 or 3 using the formula:

cos  u  v
uv

.

But since cos is between 1 and 1, we have:

 1  u  v
uv

 1 

 uv  u  v  uv 

|u  v |  uv.

It turns out that this final inequality is true for all pairs of vectors in any n, and it is named after two
famous mathematicians:
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Theorem — The Cauchy-Schwarz Inequality:
For any two vectors u and v  n: |u  v |  uv.

Proof: We will separate the proof into two cases:

Case 1: Suppose u  0n or v  0n. Then both sides are 0, so the inequality is true.

Case 2: Suppose now that u  0n and v  0n. Thus, by our Positivity Property:

u  u  u2  0 and v  v  v2  0.

Let us construct the linear combination:

w  ru  sv,

where r and s are any two scalars, possibly 0. Since w could be 0n, the best that we can say is that:

0  w2  w  w

 ru  sv  ru  sv

 ru  ru  ru  sv  sv  ru  sv  sv

 r2u  u  2rsu  v  s2v  v.

Since this is true for any s and t, let us first substitute s  u  u. Then we get:

0  r2u  u  2ru  uu  v  u  u2v  v,

and since u  u  u2 is positive, we can divide it out to obtain the equivalent inequality:

0  r2  2ru  v  u  uv  v.
Finally, we substitute r  u  v, and we get:

0  u  v2  2u  vu  v  u  uv  v,
which simplifies to:

u  v2  u  uv  v  u2v2.

Since both side are non-negative, by taking square roots, we equivalently obtain:

|u  v |  uv. 

Angles and Orthogonality

Thanks to the Cauchy-Schwarz Inequality, we can define the angle between any two vectors in n:

Definition: If u, v  n are non-zero vectors, we define the angle  between u and v by:

cos  u  v
uv

,

where 0    . Furthermore, we will say that u and v are orthogonal to each other if and
only if u  v  0.
Consequently, the zero vector 0n is orthogonal to all vectors in n.
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The definition for cos makes sense because the Cauchy-Schwarz Inequality assures us that this
quotient is between 1 and 1. Our convention for the zero vector is exactly the same as what we had
for 2 and 3.

Example: Let us find an approximation for the angle  between u  3,7, 4, 2 and
v  5, 2,3, 9, even though it is impossible to visualize vectors in 4:

cos  u  v
uv


35  72  43  29

9  49  16  4 25  4  9  81

 7
78 119

 7
9282

 0. 072657,

and thus   cos10. 072657  1. 4981 radians.

The following consequence of the Cauchy-Schwarz Inequality will be left as an Exercise:

Theorem — The Triangle Inequality:
For any two vectors u and v  n: u  v  u  v.

Its name comes from the fact that u, v and u  v form the sides of a triangle, and this Theorem says that
the sum of the lengths of two sides is at least the length of the third.

 

u
v

.

||  v  ||

||  u + v  ||
u + v

||  u  ||

.

The Triangle Inequality: u  v  u  v

We can say this in everyday language as “the shortest path between two points is along a straight line.”
Notice that we achieve equality if u and v are parallel and in the same direction, in which case the
three vectors are colinear. In other words, we have a “degenerate” triangle.

Distance Between Vectors

The distance formula that we see in basic algebra can be generalized using the following:

Definition: If u  u1, u2, . . . , un  and v  v1, v2, . . . , vn  are vectors from n, we define
the distance between u and v as:

du, v  u  v  u1  v1 2  u2  v2 2   un  vn 2 .
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.

d ( u , v )

v

u

.

u  v

The Distance Between Two Vectors u and v

This definition makes sense because u  v connects the head of u to the head of vwhen their tails are at
the same point, so its length measures the separation between the heads of the two vectors.

Example: Let u  7, 5,2 and v  2, 3, 4. Then:
u  v  7, 5,2  2, 3, 4  9, 2,6, and so

du, v  81  4  36  121  11. 

The distance function enjoys some properties that are inherited from the dot product. You will prove
them in the Exercises.

Theorem — Properties of Distances:
Let u, v, w  n and k  . Then, we have the following properties:

1. The Symmetric Property for Distances du, v  dv, u.

2. The Homogeneity Property for Distances dku, kv  |k|  du, v.

3. The Triangle Inequality for Distances du, w  du, v  dv, w.

Since the distance between two vectors is the length of the vector connecting one head to the other
when the vectors are in standard position (with their tails at the same point), we can visualize the last
property with the following diagram:

 
.

d (  u , v  )

d (  v , w  )

d (  u , w  )

.

u
v

w

The Triangle Inequality for Distances: du, w  du, v  dv, w
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1.3 Section Summary

If u  u1, u2, . . . , un  and v  v1, v2, . . . , vn  are from n, their dot product is:

u  v  u1v1  u2v2   unvn  uvcos,

where the length of a vector is defined by: u  u1
2  u2

2   un
2  u  u , and where

  0, is the angle between the two vectors.
Properties of the Dot Product: for any vectors u, v, w  n and scalar k  , we have:

1. The Commutative Property u  v  v  u.
2. The Right Distributive Property u  v  w  u  v  u  w.

3. The Left Distributive Property u  v  w  u  w  v  w.

4. The Homogeneity Property k  u  v  ku  v  u  k  v.

5. The Zero-Vector Property u  0n  0.

6. The Positivity Property If u  0n, then u  u  0.

7. The Non-Degeneracy Property u  u  0 if and only if u  0n, and 0n  0n  0.

For any vector v  n and k  : kv  |k|v.
In particular, if v  0n, then u1  1

v
v is the unit vector in the same direction as v,

and u2   1
v

v is the unit vector in the opposite direction as v.

Furthermore, v  0 if and only if v  0n.
The Cauchy-Schwarz Inequality says that for any two vectors u and v in n: |u  v |  uv.
If u and v are non-zero vectors in n, we define the angle  between them via:
cos  u  v

uv
, where   0,.

Two vectors u and v  n are perpendicular or orthogonal to each other if and only if u  v  0.
Consequently, 0n is orthogonal to all vectors in n.
A Cartesian equation for any plane  in 3 has the form ax  by  cz  d, where n  a, b, c is a
non-zero normal vector to .
The plane  passes through the origin if and only if d  0.
We call L  Spann the normal line to .
The Triangle Inequality says that for any two vectors u and v in n: u  v  u  v.
If u and v are vectors in n, we define the distance between them as: du, v  u  v.
Properties of Distances: Let u, v, w  n and k  . Then, we have the following properties:

1. The Symmetric Property for Distances du, v  dv, u.

2. The Homogeneity Property for Distances dku, kv  |k|  du, v.

3. The Triangle Inequality for Distances du, w  du, v  dv, w.
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1.3 Exercises

1. Find the length of u  3,5, 2, 9.
2. Find the exact cosine of the angle between 5, 2 and 3, 10 and approximate this angle. Graph

both vectors in standard position and verify that your answer is reasonable with a protractor.
3. Let u  5, 3 and v  4,7. Compare 2u  5v to 2u  5v.
4. Find the approximate angle between the two vectors 7,5, 3 and 8, 2,3.
5. Find the approximate angle between the two vectors 5, 2,4, 1 and 2,7, 3, 6.
6. Find the angle made by the main diagonal of a cube (i.e. the longest line segment contained in the

cube) with any one of the six edges it is adjacent to. Express your answer in degrees, correct to 4
decimal places.

7. A rectangular box has dimensions 2  3  5 inches. Find the angle made by its main diagonal
with each of the three kinds of edges it is adjacent to. Express your answer in degrees, correct to
4 decimal places.

For Exercises 8 to 12: Assume that u, v  n, not necessarily 2 or 3. The formula
w2  w  w will be useful in all of these problems. Find the indicated quantities. Do not
attempt to find u and v individually.

8. If u  5 and v  7, find 3u  8v  3u  8v.
9. If u  5 and v  7 and u  v  20, find 4u  11v.
10. If u  13, v  10, and u  v  32, find 7u  3v.
11. If 2u  7v  40, 637 , and 2u  7v  41, 981 , find u  v.
12. If 2u  7v  21, 305 , 6u  5v  13, 801 , and u  v  345, find u, v and

4u  9v.

13. Parallel Planes: Consider the plane 1 with Cartesian equation 6x  5y  2z  3.
a. Show that the point P4, 7,2 is not on 1.
b. Find a Cartesian equation for the plane 2 passing through P that is parallel to 1.

14. Find a Cartesian equation for the plane that contains 3,4,6 and is parallel to the plane
2x  5y  9z  8.

15. The Cross Product: Suppose that u  u1, u2, u3  and v  v1, v2, v3   3.
Let us define the vector:

u  v  u2v3  u3v2  i u1v3  u3v1  j u1v2  u2v1 k,

called the cross product of u and v.
Prove that for any u, v  3: u  v is orthogonal to both u and v.

16. Intersecting Lines: Consider the two lines given by:

x, y, z  3  5t, 7  2t, 4  t, and x, y, z  7  3s, 5  s, 10  2s.

a. Show that the two lines intersect at exactly one point, and find the coordinates of that point.
b. Find a Cartesian equation for the plane that contains the two lines. Hint: use the

cross-product on the two direction vectors.
17. Orthogonal Lines: We will say that two lines L1 and L2 are orthogonal to each other if they

intersect and any direction vector for L1 is orthogonal to any direction vector for L2.
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Show that the lines x, y, z  3  t, 5t,7  4t, and x, y, z  8  3s, 3  s, 1  2s are
orthogonal to each other, and find a Cartesian equation for the plane containing both lines. Where
do the lines intersect?

18. Find parametric equations for the line L1 that is orthogonal to the line
L2 : x, y, z  2  3t, 5  2t, 9  t and passes through the point P5,3, 7. Hint: first solve
for their point of intersection by connecting P to a general point on L2 and forcing orthogonality.

19. Revisiting Planes Containing Parallel Lines: Consider the two lines:

L1 : x, y, z  5  2t, 3  t, 3t, and L2 : x, y, z  7  4s, 5  2s, 8  6s.

a. Write down the definition of parallel lines from Section 1.2.
b. Show that L1 and L2 are parallel to each other.
c. Find a Cartesian equation for the plane that contains both lines. Hint: to find a normal vector

for the plane, form the vector from a point P on L1 to a point Q on L2 and take the cross
product of this vector with either direction vector.

20. Skew Lines: Two lines in 3 are called skew if they do not intersect and they are not parallel.
a. Show that the two lines given by the vector equations below are skew:

L1 : x, y, z  3  5t, 7  2t, 4  t, and L2 : x, y, z  7  s, 5  3s, 2s.

b. Use the cross product to find a vector n that is orthogonal to the directions of L1 and L2.
c. Use n to construct parallel planes 1 and 2, where 1 contains L1, and 2 contains L2.

21. Orthogonal Planes: We will define two planes 1 and 2 in 3 to be orthogonal to each other
if any normal vector to 1 is orthogonal to any normal vector to 2.
Show that the two planes 1 : 3x  5y  2z  6, and 2 : 2x  4y  7z  3 are orthogonal to
each other. What is the equation of their line of intersection?

22. Find a Cartesian equation for a plane 2 that contains the line x, y, z  2  t, 5  3t,7  t
and is also orthogonal to the plane 1 : 3x  5y  7z  4.

23. Suppose that 1 is the plane 3x  5y  2z  6.
a. Show that the points 3, 1, 1 and 5, 1,2 are both on 1.
b. Find a Cartesian equation for a plane 2 that contains the two points in part (a), such that

2 is orthogonal to 1. Hint: use the cross product.
c. Find a vector equation for the line L containing the two points in part (a) and check that

every point on L is on both planes.

24. Orthogonal Lines and Plane Pairs: We will say that a line L in 3 is orthogonal to a plane  if
any direction vector for L is parallel to any normal vector for .
Show that the line x, y, z  3  2t, 5  6t, 8t is orthogonal to the plane x  3y  4z  7.

25. Find a Cartesian equation for the plane  that contains the point 5,2, 7 and is orthogonal to
the line L with parametric equations: x, y, z  2, 1, 7  t8, 5,4.
At what point does the plane  intersect the line L?

26. Find parametric equations for the line that contains the point 5,2, 1 and is orthogonal to the
plane 3x  7y  4z  6. Where does this line intersect the plane?

27. Parallel Lines and Planes: We will say that a line L in 3 is parallel to a plane  if the line and
the plane do not intersect.
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a. Show that the line L with parametric equations x, y, z  2, 1, 7  t8, 5,4 is parallel
to the plane 1 : 2x  4y  z  3.

b. Find a Cartesian equation for the plane 2 that contains L and is orthogonal to 1.
28. True or False: u  v  0 if and only if either u  0n or v  0n. Explain your answer.

For Exercises 29 to 37: prove the properties. Assume that u, v and w  n and k  .
29. The Distributive Properties for Dot Products:

u  v  w  u  v  u  w and u  v  w  u  w  v  w.

30. The Homogeneity Property for Dot Products: k  u  v  ku  v  u  k  v.
31. The Property of the Zero Vector: u  0n  0.
32. The Positivity Property: If u  0n, then u  u  0.
33. The Triangle Inequality: u  v  u  v.

Hint: Use 0  u  v2  u  v  u  v.
34. The Symmetric Property for Distances: du, v  dv, u.
35. The Homogeneity Property for Distances: dk  u, k  v  |k|  du, v.
36. The Triangle Inequality for Distances: du, w  du, v  dv, w.

Hint: Use the Triangle Inequality for vectors and rewrite u  w as u  v  v  w.
37. Prove that 0n is the only vector in n that is orthogonal to itself. In other words, if v  n and v

is orthogonal to v, then v  0n.
38. The Parallelogram Law states that the sum of the squares of the two diagonals of a

parallelogram is equal to the sum of the squares of the four sides.
a. On your paper, copy the Parallelogram Principle found on page 29. Be sure you include the

labels of all the vectors involved.
b. Rewrite The Parallelogram Law in terms of the lengths of the vectors in the diagram.
c. Prove the Law using the identity w2  w  w.

39. We proved The Zero Factors Theorem in Section 1.1, which says that k  v  0n if and only if
either k  0 or v  0n. Use the dot product to prove directly that if v  0n and k  v  0n, then
k  0 (that is, without using Proof by Contradiction or Case-by-Case Analysis).

40. Prove that if n is orthogonal to all the vectors v1, v2, . . . , vk, then n is orthogonal to all the vectors
in Spanv1, v2, . . . , vk .

41. Show that in any n, the vectors in the standard basis e1, e2, . . . , en  are mutually orthogonal
to each other. This means that ei is orthogonal to ej if i  j.

42. Show that if a line L is orthogonal to a plane 1, then any plane 2 which contains L is also
orthogonal to 1. Note that we want the two planes to be orthogonal to each other.

43. Show that if a line L is parallel to a plane , then any direction vector for L must be orthogonal
to any normal vector for .

44. Suppose that u, v  3, with u not parallel to v. In Section 1.2, we found the general equation
ax  by  cz  0 for the plane   Spanu, v. Show that the normal vector n  a, b, c
obtained using the method from Section 1.2 is parallel to u  v (though not necessarily equal to
it). Hint: include the possibility that one or more of the components of u or v could be 0.

45. Suppose that u, v  n are both unit vectors, and let  be the angle between them. Prove that
u  v  2 sin 

2 . Review the half angle formulas from Trigonometry.
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1.4 Systems of Linear Equations

We saw in Section 1.2 that the Span of a single non-zero vector v is a line in n given by parametric
equations, and the Span of two non-zero, non-parallel vectors u and v is a plane in n, which can be
given by a Cartesian equation when the plane is in 3. It is not too difficult to check if an arbitrary
vector b is on a line or a plane given this information.

Example: Let b  8,6, 4 . Let us determine if b is a member of the following Spans:
 L: The line Span 4, 3,2 .
 1: The plane with Cartesian equation 3x  5y  2z  0.
 2: The plane with Cartesian equation 5x  4y  16z  0.

Since 8,6, 4  2 4, 3,2 , b is on L. For the two planes, we can substitute the coordinates of
b into the Cartesian equations:

38  56  24  24  30  8  14, and
58  46  164  40  24  64  0,

so b is on the plane on 2 but not on 1. 

The problem becomes much more difficult when we have the Span of three or more vectors. In order
to determine if a vector b is a member of Span v1, v2, . . . , vn , we will need to find coefficients
x1, x2,  , xn that satisfy the vector equation:

x1v1  x2v2   xnvn  b.
In this section, we will study the key computational method of Linear Algebra, the Gauss-Jordan
Algorithm, that will help us solve for these coefficients. First, though, let us see an equivalent form for
the vector equation above:

Example: To see if b  6, 17,12 is a member of:

Span 4, 3,2 , 8,6, 4 , 3,4, 3 , 9, 13,9  3,

we need to find coefficients x1 through x4 such that:
6, 17,12  x1 4, 3,2  x2 8,6, 4  x3 3,4, 3  x4 9, 13,9 .

Using the definitions of scalar multiplication and vector addition, we get:
6, 17,12  4x1, 3x1,2x1  8x2,6x2, 4x2  3x3,4x3, 3x3  9x4, 13x4,9x4

 4x1  8x2  3x3  9x4, 3x1  6x2  4x3  13x4,2x1  4x2  3x3  9x4 .

By the definition of vector equality, the coefficients x1 through x4 must satisfy all of the following
equations:

4x1 8x2 3x3 9x4  6
3x1 6x2 4x3 13x4  17
2x1 4x2 3x3 9x4  12
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This is called a system of linear equations. If you look at each column, you will see that their
coefficients correspond to the four vectors. For example, the column of coefficients for x3 forms the
vector 3,4, 3 , which is the third vector in our set.

Now, we want to find all vectors x  x1, x2, x3, x4 that satisfy all three equations. We know from
basic algebra that we can solve a system of two equations in two variables using the elimination
method: we can multiply each equation by a suitable constant so that the resulting coefficients of one
variable are negatives of each other, then add the equations together to eliminate this variable. For
example, by multiplying the third equation above by 2 and adding it to the first equation, we obtain an
equation which does not involve x1.
Notice that if we align the coefficients of the equations, we will not need to write the variables x1
through x4 all the time. We can thus encode all this information in what is called an augmented
matrix:

A 

4 8 3 9 | 6
3 6 4 13 | 17
2 4 3 9 | 12

.

We will say that A corresponds to our system of equations, which we also refer to as the system of A.
Notice that the columns of A are precisely the vectors in our set, but b is on the rightmost column. The
augmented matrix is an example of a common object we will use to work with vectors:

Definition: A matrix, A, is a rectangular table of numbers organized into m rows and n
columns. We say that the dimension of the matrix is m  n, pronounced “m by n. ”
We denote the entry in row i column j as A i,j or a i,j. Thus we write:

A 

a1,1 a1,2  a1,n

a2,1 a2,2  a2,n

   

am,1 am,2  am,n

.

In particular, an m  1 matrix will be called a column matrix, and a 1  n matrix will be
called a row matrix. An n  n matrix is called a square matrix. We will treat a 1  1 matrix
a11  as a scalar a11.
We say that A  B if both matrices are the same dimension and a i,j  b i,j for all i, j.
If S  v1, v2, . . , vn is a set of vectors from m, and b  m, we can form the
m  n  1 augmented matrix:

A  v1 v2  vn | b ,

where we assemble the vectors in S into columns, and we separate the last column b with a
dashed line to indicate that it represents the right side of a system of equations.
We use x1, x2, . . . , xn as the standard variables associated to each column.

We will now look at the easiest kind of system, where we can describe the solutions with little effort.
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The Reduced Row Echelon Form or RREF

A complete description of the solutions to a system of linear equations corresponding to a matrix in the
following form can be obtained very easily:

Definition: We will say that an m  n  1 augmented matrix is in row echelon form if it
satisfies the following conditions:
1. all the rows consisting entirely of zeroes are at the bottom of the matrix.
2. the first non-zero entry of any row is the number 1. This entry is called a “leading 1.”
3. if the next row is non-zero, its leading 1 is to the right of the previous leading 1.
Furthermore, we say that the matrix is in reduced row echelon form, or rref, if:
4. all the entries above a leading 1 are also zeroes.

If column j contains a leading 1, we call x j a leading variable, otherwise we call x j a free variable. We
can also call column j a leading column. Conditions 1 and 3 forces all entries below a leading 1 to be
zeroes. Condition 4 forces all entries above the leading 1 to be zeroes as well. Thus a standard basis
vector ei is found in a leading column. Because a leading 1 is found in every non-zero row, the vectors
e1, e2, , ek will appear in the leading columns, in that order, for some k  m and k  n.

Example: The following 4  7 augmented matrix A represents a system of equations in the variables
x1 through x6:

A 

1 5 7 0 3 0 | 6

0 0 0 1 2 0 | 9

0 0 0 0 0 1 | 4

0 0 0 0 0 0 | 0



1 5 7 0 3 0 | 6

0 0 0 1 2 0 | 9

0 0 0 0 0 1 | 4

0 0 0 0 0 0 | 0

Let us check that the four conditions are satisfied. The only row with all zeroes is at the bottom. The
first non-zero entry on each row is indeed a “1.” They are in a1,1, a2,4, and a3,6, as we boxed above.
We write the matrix A again below, but for emphasis, we box each leading column:

A 

1
0
0
0

5
0
0
0

7
0
0
0

0
1
0
0

3
2
0
0

0
0
1
0

|
|
|
|

6
9
4
0

.

We see that the leading 1 in the next row is indeed to the right of that in the previous row. All the
entries above and below each leading 1 are zeroes, so A is in rref. The leading variables are thus x1,
x4 and x6, hence the free variables are x2, x3 and x5. We see that the boxed columns 1, 4, and 6
contain e1, e2 and e3, respectively, but e4 does not appear.
Let us write the linear system corresponding to A:
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x1  5x2  7x3  3x5  6
x4  2x5  9

x6  4
0  0

.

First, notice that the last equation 0  0 is a true statement. However, it does not give us further
information about the solutions.
The third equation is the simplest one: it says x6  4.
The first two are more perplexing. How do we interpret them? This is where the concepts of the
leading variables and the free variables come in. We will allow the free variables to be any value we
want them to be. In other words, we will let:

x2  r, x3  s, and x5  t, where r, s, t  .
Now that we have established that, we will solve for the leading variables. Thus, our three non-zero
equations are equivalent to:

x1  6  5x2  7x3  3x5  6  5r  7s  3t.
x4  9  2x5  9  2t, and
x6  4.

We can thus summarize the solutions to our system in the following vector form:

x1, x2, x3, x4, x5, x6   6  5r  7s  3t, r, s,9  2t, t,4,
where x2  r, x3  s and x5  t are free variables. 

With practice, you should be able to write down the final solution from the rref without going through
all these steps. In general, though, a system will not be this transparent to solve. Let us now see what
we can do to the augmented matrix of a system so that we can find its solutions, if there are any.

Elementary Row Operations

In the same way that we can multiply both sides of an equation by a non-zero constant, exchange two
equations, and add a multiple of one equation to another, we are allowed to perform the following types
of operations on any matrix:

Definition: An elementary row operation is any one of the following actions on a matrix:

Type: Notation:

1. Multiply row i by a nonzero scalar c R i  cR i.

2. Exchange row i and row j R i  R j.

3. Add c times row j to row i R i  R i  cR j.

We pronounce these symbols as “multiply row i by c, ” “exchange row i and row j, ” and “add c times
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row j to row i . ” If c is negative in a Type 3 operation, we can say “subtract c times row j from row i”
instead.
Thus, to add twice the third row to the fifth row, we write:

R5  R5  2R3.
After we do any of these operations, we expect the new system to have exactly the same solution set
as our original system. We will prove this fact in the following:

Theorem — The Invariance of Solution Sets:
An elementary row operation does not change the solution set of an augmented matrix. In
other words, if A is an augmented matrix and B is obtained from A using an elementary row
operation, then the solution set of the system corresponding to A is exactly the same as the
solution set of the system corresponding to B.

Before we prove this Theorem, let us recall from Chapter Zero what it means for two sets to be equal:

Definition — Equality of Sets:
Two sets X and Y are equal if X is a subset of Y and Y is a subset of X:

X  Y  X  Y and Y  X .
Equivalently, every member of X is also a member of Y, and every member of Y is also a
member of X:

x  X  x  Y and y  Y  y  X.

Proof of the Theorem: Let x  x1, x2, . . . , xn  n. We have to show that if x is a solution for
the system of A then x is a solution for the system of B, and vice-versa. We will do a Case-by-Case
analysis involving each type of elementary row operation:
A Type 1 elementary row operation only changes row i. Suppose we write the equation corresponding
to row i of A as:

a i,1x1  a i,2x2   a i,nxn  a i,n1.
Then the corresponding equation for row i for B is:

ca i,1x1  ca i,2x2   ca i,nxn  ca i,n1.
where c  0. Thus, we can recover row i of A by dividing both sides of the second equation by c.
Hence, x satisfies row i of A if and only if x satisfies row i of B. All other rows of A and B are
identical, so x satisfies the system represented by A if and only if x satisfies the system represented
by B.
A Type 2 elementary row operation exchanges two rows (hence, two equations) without changing the
coefficients. Both systems have exactly the same equations, only in a different order. Thus x satisfies
the system represented by A if and only if x it satisfies the system represented by B.
Suppose B is obtained from A using the Type 3 elementary row operation:

R i  R i  c  R j.

Let us make this more explicit:
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Row i of B  Row i of A plus c times Row j of A.

All other rows of A are exactly the same as the rows of B: in particular, row j of A is still exactly the
same as row j of B. The only row that changed is row i. Thus the equation:

a j,1x1  a j,2x2   a j,nxn  a j,n1

corresponding to row j is in both systems. Thus, if x satisfies either the system of A or of B, then x also
satisfies:

ca j,1x1  ca j,2x2   ca j,nxn  ca j,n1 (1)

for any real number c. Next, the equation corresponding to row i of A is:

a i,1x1  a i,2x2   a i,nxn  a i,n1 (2)

and the equation corresponding to row i of B is:

a i,1  ca j,1 x1  a i,2  ca j,2 x2   a i,n  ca j,n xn  a i,n1  ca j,n1 (3)

that we obtain using our Type 3 row operation.
Now, we are ready to complete the proof. Suppose x satisfies the system of A, and thus equations (1)
and (2). By adding both sides of equation 1 to the corresponding sides of equation (2) and combining
like terms, we see that x also satisfies equation (3). Thus it satisfies the system of B. Similarly, if x
satisfies the system of B, it satisfies equations (1) and 3. By subtracting the sides of equation 1
from the corresponding sides of equation (3), we see that x also satisfies equation (2). Thus it satisfies
the system of A. 

This proof essentially says that each elementary row operation is reversible. Since a single elementary
row operation yields a new system with exactly the same solution set as the old system, so will a finite
sequence of elementary row operations. Our goal is to eventually produce an augmented matrix that is
in rref so that we can easily read off the solution set of our original system.
Surprisingly, another advantage of the rref is that any two sequences of row operations starting with
from A which both yield a matrix in rref must result in the same rref. The following will be proven in
the Exercises of Section 1.8:

Theorem — The Uniqueness of the Reduced Row Echelon Form:
The reduced row echelon form of a matrix is unique.
This means: if we start with a matrix A and arrive at two matrices H and J using two different
sequences of row operations, and both H and J are in rref, then H  J.

Now that we know there can be only one rref for each matrix, we need an efficient way to find it:
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The Gauss-Jordan Algorithm

Let us put it all together: To find out if a vector b is a member of the Span of a set of vectors, we need
to solve a system of linear equations. To avoid writing the variables x1, x2, . . . , xn all the time, we
form the augmented matrix corresponding to this system. Elementary row operations do not change
the solution set of an augmented matrix, so now we will use a finite sequence of elementary row
operations so that we obtain an augmented matrix in rref. We can then read off the solutions to our
original system. Thus, we need a systematic way to perform the required elementary row operations.
This is the essence of the following algorithm, which is often given as a programming project in an
introductory Computer Science class:

The Gauss-Jordan Algorithm:
1. Ignore all the leftmost columns that contain only zeros, if there are any.
2. Starting from the top row and going downward, find the first non-zero entry,

called the pivot.
3. If the pivot is not in the top row, exchange the top row with the pivot’s row

(this is a Type 2 row operation).
4. Produce a leading 1 in the top row by dividing the entire top row by the

pivot (this is a Type 1 row operation). We call this step normalizing the row.
5. Make the entries below the leading 1 all zeroes by adding suitable multiples

of the top row to each row below it (these are Type 3 row operations).
6. Now, cover the top row, the leading column and all columns to its left,

and repeat steps 1 through 5 on the smaller submatrix.

If we were to stop at Step 6, the algorithm above would be called Gaussian Elimination. It results in a
matrix in row echelon form. Now we continue from right to left, working upwards as we go:

7. Starting at the rightmost leading 1, produce zeroes above the leading 1 by adding
suitable multiples of this row to each row above it.
Again, these are Type 3 row operations.

8. Repeat Step 7 on the next rightmost leading 1, moving leftward, until the matrix
is in reduced row echelon form.

The entire process above is called the Gauss-Jordan Algorithm. If we stop at Step 6, we can still find
the solutions to the system using a process called back-substitution, which will be discussed in the
Exercises. Many computer packages and graphing calculators can produce the rref of a matrix. Check
the internet for a free app.

An Intelligent Modification:

Unfortunately, Step 4 of the algorithm can produce fractions. To avoid this when all the entries are
integers, we can produce a leading “1” using a Type 3 operation instead: multiply a row by a suitable
constant and add it to another row to get a “1,” then swap this row with the top row if necessary. This
is possible if two of the leftmost entries are relatively prime. We will call this the Modified
Gauss-Jordan Algorithm.
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Example: Let us find the solutions to our first example using the Modified Gauss-Jordan Algorithm:

4 8 3 9 | 6
3 6 4 13 | 17
2 4 3 9 | 12

R2  R2  R3

4 8 3 9 | 6

1 2 1 4 | 5

2 4 3 9 | 12

R2  R1

1 2 1 4 | 5

4 8 3 9 | 6
2 4 3 9 | 12

R2  R2  4R1

R3  R3  2R1

1 2 1 4 | 5
0 0 7 7 | 14
0 0 1 1 | 2

R3  R2

1 2 1 4 | 5

0 0 1 1 | 2

0 0 7 7 | 14

R3  R3  7R2

1 2 1 4 | 5
0 0 1 1 | 2
0 0 0 0 | 0

(row echelon form)

R1  R1  R2

1 2 0 3 | 3

0 0 1 1 | 2

0 0 0 0 | 0

(rref)

From the rref, we can see that the leading variables are x1 and x3, and the free variables are x2 and x4.
From this, we can read off the solutions, as before:

x1  3  2x2  3x4,
x3  2  x4,
x2  r, x4  s.

and thus:

x1, x2, x3, x4   3  2r  3s, r,2  s, s, where r, s  .
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Since this system has a non-empty solution set, the vector b is a member of SpanS. The easiest
solution would be to just set r and s to be 0, and we get:

x1, x2, x3, x4   3, 0,2, 0.
We easily check that:

34, 3,2  23,4, 3  6, 17,12  b.

However, since r and s can be any real number, there are infinitely many ways to express b as a linear
combination of the vectors in S. For instance, if we let r  2 and s  1, then we get:

x1, x2, x3, x4   3  22  31, 2,2  1,1  10, 2,3,1,
and in fact, we can verify that:

104, 3,2  28,6, 4  33,4, 3  9, 13,9  6, 17,12  b. 

If a system’s solution set contains at least one free variable, we can ask if solutions exist that possess
some given restrictions. Continuing with our Example above, we can ask: is there a solution where
x3  0? Since x3  2  s, then necessarily s  2. Thus, the solutions have the form:

x1, x2, x3, x4   3  2r  32, r,2  2, 2   r  3, r, 0, 2, where x2  r  .
Similarly, if we want a solution where x1  5 and x3  10, then we have to satisfy the two
conditions:

3  2r  3s  5, and  2  s  10.
Thus, s  8, and from the first equation, r  11. Thus, we will have only one solution with these
restrictions, namely x1, x2, x3, x4   5,11,10,8 .
On the other hand, if we want a solution where x1  5, x2  3, and x3  1, then we would need
r  3 and 2  s  1, or s  1. But then, x1  3  6  3  6, contradicting the first condition. Thus,
there is no solution where all three conditions are satisfied.

Success and Failure

In general, SpanS will not be all of m, so we must be able to tell in the course of applying the
Gauss-Jordan Algorithm if a particular b is not in SpanS. This happens when we get a
contradiction, in the form of a row consisting entirely of zeroes except for a non-zero entry in the
rightmost column (where b is found originally).

Example: Suppose we are given the following matrix A | b with corresponding rref R:

A | b 

5 7 1 | 3
1 1 5 | 9
4 5 2 | 2

; R 

1 0 3 | 0
0 1 2 | 0
0 0 0 | 1

.

The bottom row is all zeroes except for the 1 on the right side. This tells us that the system has no
solutions. Notice also that we have two leading variables and one free variable, so if there were
solutions, we would have obtained an infinite number of solutions.
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However, let us see what happens when we change just one entry in A. Let us change the 1 in the top
row into a 0. We get a new system with corresponding rref:

A / | b 

5 7 0 | 3
1 1 5 | 9
4 5 2 | 2

; R / 

1 0 0 | 115/9
0 1 0 | 86/9
0 0 1 | 8/3

.

Because we changed A, we now have three leading variables and no free variables. The rref also tells
us that the new system now has exactly one solution, and if the variables are x, y and z, then that
solution would be:

x  115/9, y  86/9, and z  8/3. 

The left side of R / is an example of a very special matrix, which frequently appears when we solve
systems where the number of equations is the same as the number of variables. We introduce them in
the following:

Definition — The Identity Matrices:
The n  n identity matrix, denoted In, is the matrix which contains e1 in column 1, e2 in
column 2, , en in column n:

In  e1 e2  en 

1 0  0
0 1  0
   

0 0  1

.

In our Example above, I3 appears on the left side of R /. More generally, if we are working with a
linear system with n equations and n variables, then we get exactly one solution to the system if the rref
of the corresponding augmented matrix contains In in the first n columns. The unique solution is the
vector which appears in the final column. But notice also from the same Example that when we had
one free variable, we also had one row of zeroes. We generalize this outcome in the following
Theorem. We leave its proof as an Exercise:

Theorem — The RREF of an Square Matrix:
If A is an n  n matrix, then exactly one of the following two cases happens to the rref R of A:
1. R is the identity matrix In, or
2. R contains at least one free variable and at least one row of zeroes.

Furthermore, if there are r leading 1’s, then:

the number of free variables in R  n  r  the number of rows of zeroes in R.

Systems of linear equations appear in almost all areas of Science, and so the Gauss-Jordan algorithm is
extremely useful. In the final Chapter, you can see its application in Balancing Chemical Equations and
in Basic Circuit Analysis.
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1.4 Section Summary

Our goal in this Section is to determine if b  SpanS, where S  v1, v2, . . . , vn  m. This is
equivalent to finding x1, x2, . . . , xn such that x1v1  x2v2   xnvn  b.
From this vector equation, we create the augmented matrix v1 v2 . . . vn | b by assembling the
vectors in columns. This augmented matrix represents a linear system of m equations in n unknowns.
A matrix is in row echelon form if it satisfies the following conditions:
1. All the rows consisting entirely of zeroes are at the bottom of the matrix.
2. The first non-zero entry of any row is the number 1. This entry will be called a leading 1.
3. The leading 1 in the next row is to the right of the leading 1 in the previous row.

Furthermore, we say that the matrix is in reduced row echelon form, or rref, if:
4. All the entries above a leading 1 are zeroes.

The rref of a matrix is unique.
An elementary row operation is any one of the following actions on a matrix:
1. Multiply row i by a nonzero scalar c: R i  cR i.
2. Exchange row i and row j: R i  R j.
3. Add c times row j to row i: R i  R i  cR j.

We perform the Gauss-Jordan Algorithm on the augmented matrix to bring it to rref. In order to
avoid producing fractions, we use a modified version:
1. Ignore all the leftmost columns that contain only zeros, if there are any.
2. Produce a leading 1 on the top row by either exchanging it with a row that already contains a

leading one in the first non-zero column, or add a multiple of one row to another row to produce
this leading one. If none of these is possible, divide any non-zero row by the first entry (the pivot
entry) to produce a leading 1. This is called normalizing the row. You may also try adding a
multiple of one row to another to produce smaller entries in the column, and consequently, a
smaller denominator in the fractions after normalization, if need be.

3. Make the entries below the leading 1 all zeroes by adding suitable multiples of the top row to
each row below it (these are Type 3 row operations).

4. Now, cover the top row, the leading column and all columns to its left, and repeat steps 1 through
5 on the smaller submatrix. When we reach the bottom, the matrix will be in row echelon form.

5. Starting at the rightmost (hence bottom) leading 1, produce zeroes above the leading 1 by adding
suitable multiples of this row to each row above it.

6. Repeat Step 5 on the next rightmost leading 1, moving leftward until the matrix is in rref, that is,
all entries above and below the leading 1 are zeroes.

If there is a row that consists entirely of zeroes in the rref, except for the entry in the last column, then
b  SpanS. Otherwise, we can find all solutions using the rref, and express b as a linear
combination of the vectors in S. Variables corresponding to a leading column are called leading
variables, otherwise they are called free variables, which may assume as their value any real number.
We solve for the leading variables in terms of the free variables. Thus, if there are free variables in the
rref when we have at least one solution, then we can find an infinite number of ways to express b as a
linear combination of the vectors in S.
The rref R of an n  n matrix is either: 1) R  In  e1 e2en , the n  n identity matrix, or 2) R
contains at least one free variable and at least one row of zeroes. Furthermore, if there are r leading
1’s, then the number of free variables in R  n  r  the number of rows of zeroes in R.
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1.4 Exercises

For Exercises 1 to 36: Verify that the following augmented matrices are in rref, then find the
solutions, if there are any, to the systems of equations corresponding to the rref. Assume that the
variables are x1, x2, . . . , xn. As part of your solution, determine the leading and the free variables. Use
the letters r, s, t, and u for values of the free variables.

1.
1 0 0 | 3
0 1 0 | 2
0 0 1 | 6

2.
1 0 0 | 9
0 1 0 | 4
0 0 1 | 0

3.
1 0 7 | 3
0 1 4 | 2
0 0 0 | 0

4.
1 3 0 | 6
0 0 1 | 7
0 0 0 | 0

5.
1 0 0 | 2
0 1 0 | 5
0 0 0 | 0

6.
1 5 2 | 8
0 0 0 | 0
0 0 0 | 0

7.
1 0 0 5 | 3
0 1 0 4 | 0
0 0 1 7 | 2

8.
1 0 3 0 | 5
0 1 2 0 | 6
0 0 0 1 | 4

9.
1 9 0 3 | 5
0 0 1 6 | 2
0 0 0 0 | 7

10.
1 4 0 0 | 5
0 0 1 1 | 3
0 0 0 0 | 0

11.
1 2 6 0 | 7
0 0 0 1 | 2
0 0 0 0 | 0

12.

1 0 0  2
3 | 5

3
0 1 0 4

3 |  7
3

0 0 1 1
3 | 2

3

13.

1 0 0 | 5
0 1 0 | 3
0 0 1 | 2
0 0 0 | 0

14.

1 0 3 | 2
0 1 5 | 4
0 0 0 | 0
0 0 0 | 0
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15.

1 6 0 | 7
0 0 1 | 2
0 0 0 | 0
0 0 0 | 0

16.

1 0 0 0 | 5
0 1 0 0 | 6
0 0 1 0 | 4
0 0 0 1 | 0

17.

1 0 0 4 | 0
0 1 0 7 | 3
0 0 1 3 | 8
0 0 0 0 | 0

18.

1 0 6 0 | 1
0 1 4 0 | 5
0 0 0 1 | 4
0 0 0 0 | 0

19.

1 5 0 0 | 2
0 0 1 0 | 3
0 0 0 1 | 7
0 0 0 0 | 0

20.

1 0 3 2 | 8
0 1 4 6 | 5
0 0 0 0 | 0
0 0 0 0 | 0

21.

1 5 0 9 | 2
0 0 1 4 | 6
0 0 0 0 | 0
0 0 0 0 | 0

22.
1 0 0 7 5 | 5
0 1 0 4 3 | 2
0 0 1 6 2 | 4

23.

1 0 3 4 6 | 5
0 1 2 9 8 | 1
0 0 0 0 0 | 0
0 0 0 0 0 | 0

24.

1 0 0 0 6 | 5
0 1 0 0 3 | 2
0 0 1 0 2 | 4
0 0 0 1 8 | 1

25.

1 0 3 0 0 | 5
0 1 2 0 0 | 6
0 0 0 1 0 | 4
0 0 0 0 1 | 9

26.

1 6 0 3 0 | 2
0 0 1 8 0 | 7
0 0 0 0 1 | 3
0 0 0 0 0 | 0

27.

1 5 0 0 4 | 2
0 0 1 0 7 | 9
0 0 0 1 3 | 6
0 0 0 0 0 | 0

28.

1 1 0 3 0 | 0
0 0 1 2 0 | 0
0 0 0 0 0 | 1
0 0 0 0 0 | 0
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29.

0 1 3 0 0 | 2
0 0 0 1 0 | 7
0 0 0 0 1 | 4
0 0 0 0 0 | 0

(careful!) 30.

1 0 0 0 5 3 | 4
0 1 0 0 3 0 | 5
0 0 1 0 2 4 | 2
0 0 0 1 7 6 | 3

31.

1 0 9 0 0 4 | 7
0 1 3 0 0 1 | 0
0 0 0 1 0 6 | 1
0 0 0 0 1 5 | 2

32.

1 6 0 3 5 0 | 2
0 0 1 8 2 0 | 9
0 0 0 0 0 1 | 1
0 0 0 0 0 0 | 0

33.

1 0 5 0 0 | 3
0 1 2 0 0 | 7
0 0 0 1 0 | 9
0 0 0 0 1 | 4
0 0 0 0 0 | 0

34.

1 0 4 0 7 | 2
0 1 6 0 3 | 5
0 0 0 1 9 | 6
0 0 0 0 0 | 0
0 0 0 0 0 | 0

35.

1 0 8 0 0 1 | 2
0 1 5 0 0 7 | 6
0 0 0 1 0 4 | 3
0 0 0 0 1 9 | 8
0 0 0 0 0 0 | 0

36.

1 0 0 6 0 0 | 5
0 1 0 7 0 0 | 2
0 0 1 4 0 0 | 3
0 0 0 0 1 0 | 8
0 0 0 0 0 1 | 9

For Exercises 37 to 48: Use the Modified Gauss-Jordan Algorithm to determine if b is in SpanS.
If so, express b as a linear combination of the vectors in S in the simplest possible way (i.e. with all free
variables set to 0). Is there only one solution or are there infinitely many?

37. b  20,26, 39; S  5,2, 3, 7, 4,6

38. b  34, 34,55; S   5,2, 3, 7, 4,6

39. b  3, 14, 15, S   3, 5, 6, 4, 1, 0, 2, 1,3

40. b  3, 4, 5, S   3, 5,2, 1, 1, 4, 1, 2,3

41. b  1, 2, 7, S   3, 5,2, 1, 1, 4, 1, 2,3

42. b  9, 7,8, 2; S   5,3, 2, 6, 2,3, 5, 8, 5, 4,2,3

43. b  44, 12, 31, 53, S   2,3, 2, 3, 6,3, 5, 8, 10, 9, 6, 11

44. b  7, 29,21,15, S   4, 3,3, 1, 2, 0, 1,1, 3, 4,2,4, 14, 22,19,9

45. b  2,6, 11,7, S   4, 3,3, 1, 2, 0, 1,1, 18, 6,1,3, 4, 9,13, 7
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46. b  6, 9,22, 15, S   4, 3,3, 1, 2, 0, 1,1, 18, 6,1,3, 4, 1,3, 2

47. b  13, 0, 1, 18,2, S   6, 0, 4, 3, 2, 3, 2, 7, 1,2, 5, 1, 2, 8,3

48. b  18,8,8, 11, 18, S   6, 0, 4, 3, 2, 3, 2, 7, 1,2, 12,4,2, 7, 10

For Exercises 49 to 58: Find the solution/s to the indicated system above, if any, which possess the
given restrictions. Use the parameters r, s, t, etc., if need be (i.e. if there is more than one solution
with the given restrictions), as before. Use the Answer Key for the correct general solution.

49. The system in Exercise 3, where x1  0.
50. The system in Exercise 7, where x2  x3.
51. The system in Exercise 10, where x1  x4 and x2  x3.
52. The system in Exercise 20, where x1  2x4.
53. The system in Exercise 30, where x1  7 and x4  31.
54. The system in Exercise 32, where x3  7. Note: to obtain a standard answer, keep x5 free and

solve for x4 in terms of x5.
55. The system in Exercise 35, where x1  x5. Note: to obtain a standard answer, keep x6 free and

solve for x3 in terms of x6.
56. The system in Exercise 40, where x1  5.
57. The system in Exercise 43, where x2  3.
58. The system in Exercise 45, where x1  14 and x2  2.

59. The following matrix is in row echelon form, but is not reduced.

1 3 5 6 7 | 1
0 0 1 2 3 | 8
0 0 0 0 1 | 2
0 0 0 0 0 | 0

a. Identify all leading and all free variables, without completing the reduction process.
b. Starting with the bottom row, solve for the leading variables in terms of the free variables

only.
c. Write the solutions to the system in standard form.

For Exercises 60 to 62: Apply the Modified Gauss-Jordan Algorithm to describe all the solutions,
if there are any, to the following systems of linear equations.

60. 3x  15y  5z  2w  27
2x  10y  3z  4w  28

5x  25y  2z  w  15

61. 3x  2y  19z  4w  39
4x  y  22z  3w  7
x  5y  15z  2w  30

x  2y  z  4w  5
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62. x  y  z  4
x  2y  5z  1

2x  y  4z  3
2x  y  5

63. Find parametric equations for the line of intersection of the two planes:

3x  5y  2z  10, and
 2x  4y  7z  8.

Express your answer in the form: x, y, z  x0, y0, z0   ta, b, c, where a, b, and c are all
integers. Hint: view this problem as a linear system.

64. Chris takes some shirts, slacks and jackets to the dry cleaners. Four shirts, a pair of slacks and
two jackets cost $25 to clean. On another trip, 6 shirts, 2 pairs of slacks and a jacket cost $26. On
a third trip, two shirts, four pairs of slacks and two jackets cost $37. How much does it cost to
clean each kind of clothing? You may assume that the prices do not change from trip to trip.

65. Farmer Pat wants to feed cows using three kinds of grains. Their nutritional contents, in grams
per kilogram, are shown below:

Fiber Carbohydrates Protein
Barley 200 400 50
Oats 100 500 150
Soy 150 250 400

If the cows must be fed so that they receive 800 grams of fiber, 2400 grams of carbohydrates and
1300 grams of protein, how many kilograms of each kind of grain should be used?

66. Integer Solutions to Linear Systems: Although a linear system may have an infinite number of
solutions, it is possible that we are only interested in those solutions where all the variables are
integers. This could happen, for example, when the variables represent objects being counted.
Consider the following:
A jar of coins contains only dimes (worth 10 cents each), nickels (worth 5 cents each) and
pennies (worth 1 cent each). The total value of the coins is $ 6.49 and the jar has 98 coins.
a. Set up the system of equations representing this system, in the variables d, n, and p.
b. Find the rref of this system.
c. If you did (b) correctly, p should be a free variable. Solve for d and n in terms of p, as

usual, then find the smallest positive integer value for p that will make both d and n positive
integers. Use trial and error, if need be. This gives one possible solution to the system, but
not necessarily the only one.

d. Find the solution with the largest number of pennies.
67. Prove the final Theorem in this Section: If A is an n  n matrix, then exactly one of the following

two cases happens to the rref R of A: (1) R is the identity matrix In, or (2) R contains at least one
free variable and at least one row of zeroes. Furthermore, if there are r leading 1’s, then:

the number of free variables in R  n  r  the number of rows of zeroes in R.
Hint: let Case 1 be that there are n leading ones in R, and let Case 2 be that there are fewer than n
leading ones in R.
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1.5 Linear Systems and Linear Independence

We saw in the previous section that determining if a vector b  m is a member of a Span of n vectors
from m led us to consider systems of m linear equations in n variables. Let us now see some ways by
which we can categorize such systems. We will first define terms that describe the presence or absence
of solutions:

Definition: A linear system is called consistent if it has at least one solution. A system is
called inconsistent if it does not have any solutions.

We can now recast the problem of determining when a vector b is a member of a certain SpanS. The
following Theorem follows directly from our construction from the previous Section and the definition
above:

Theorem: Let b  m and let S  v1, v2, . . . , vn  be a set of vectors from m. Then
b  SpanS if and only if the system of equations corresponding to the augmented matrix:

v1 v2 . . . vn | b

is consistent.

We also have special words describing the three possible relationships between the number of
equations and the number of variables:

Definition: A linear system with m equations in n variables is called:

1. underdetermined if m  n.
2. square if m  n.
3. overdetermined if m  n.

These three kinds of systems can be visualized as follows:

     | 

     | 

     | 

   | 

   | 

   | 

  | 

  | 

  | 

  | 

  | 

Underdetermined Square Overdetermined
System System System
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Geometric Interpretation in 2 and 3

It is easy to understand the meaning of a system of linear equations if there are only two or three
variables involved.

A linear system in two variables x and y represents a system of lines in 2. If only two lines are
involved, the system is square. If these two lines are parallel, then the system is automatically
inconsistent, and will remain inconsistent even if more equations are involved. If they are coincident,
in other words, the two equations have the same line as their graph, then the system is consistent, with
an infinite number of solutions. If the two lines intersect at exactly one point, then the system is
consistent, with a unique solution.
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A Square, Inconsistent System
Involving Two Parallel Lines
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A Square, Consistent System Involving
Two Lines With a Unique Intersection Point

If we add a third equation, we will get an overdetermined system. Suppose we include a third equation
in the system above, on the right. Then it will stay consistent if and only if the third line contains the
unique point of intersection, otherwise the system will be inconsistent:
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An Overdetermined, Consistent System
With a Unique Intersection Point
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An Overdetermined, Inconsistent System
With No Common Intersection Point

Now, let us consider systems with three variables, say x, y and z. We saw that a single linear equation
in these three variables corresponds to a plane in 3. Suppose that we had a system of two equations
in these variables. Thus, this system is underdetermined. If these planes are parallel, there will be no
intersection, which means that the system will have no solutions, as seen on the left:

84 Section 1.5 Linear Systems and Linear Independence



An Inconsistent, Underdetermined
System Involving Two Parallel Planes

A Consistent, Underdetermined
System Involving Two Intersecting Planes

Thus our system is inconsistent, and will remain inconsistent even if more equations are involved.
If the two planes are not parallel, though, they will intersect in a line, and our system will be
consistent, but with an infinite number of solutions, as we see in the diagram above on the right.
Suppose that we introduce a third equation to the system on the right above. Thus, this system will
now be square, because we have three equations in three variables. There are several possible
scenarios with this third plane involved. If the line of intersection of the first two planes intersects the
third plane at exactly one point, as seen below on the left, then the system is consistent and has a
unique solution. In contrast, if the line of intersection is fully contained in the third plane, as seen
below on the right, the system is again consistent, but has an infinite number of solutions.

A Consistent Square System with A Unique Solution, and An Infinite Number of Solutions

On the other hand, if this line of intersection is parallel to the third plane, then it will not intersect this
plane, so there will be no point in common among all the three planes involved. Thus, our system will
be inconsistent, as we see below:

An Inconsistent, Square System
Involving Pairwise Intersecting Planes
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Notice that each pair of planes intersects in a line, but the three planes, taken together, do not have a
common point of intersection. It is for this reason that this system is inconsistent. This system is
analogous to that of three equations in two variables where pairs of lines have a point of intersection,
but all three lines, taken together, do not have a common point of intersection.
Finally, let us see what happens if a third plane is introduced to a system involving two parallel planes,
as we see below. We already know that this system is inconsistent, but since it now involves three
planes, it is square. The third plane that we chose intersects each of the two parallel planes in a line,
but these two lines appear to be parallel to each other. Indeed, they are, as you will be proving in the
Exercises.

An Inconsistent, Square System
Involving Two Parallel Planes

Example: Let us investigate the system:

3x  y  z  3
x  3y  z  3
x  2y  z  0

.

Since we have 3 equations in 3 variables, this system is square. The augmented matrix is:

3 1 1 | 3
1 3 1 | 3
1 2 1 | 0

with rref

1 0  1
5 | 6

5
0 1 2

5 | 3
5

0 0 0 | 0

.

From the rref, we see that x and y are the leading variables, and z is a free variable. This system has
solutions, therefore it is consistent. The solutions are:

x, y, z  6
5 , 3

5 , 0  t
5 1,2, 5, where z  t  .

These solutions form a line, with direction vector 1,2, 5 . We graph the three planes below:

Three Planes Intersecting at a Common Line.
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Homogeneous Systems

Let us now study a type of system that plays a central role in Linear Algebra:

Definition: A homogeneous system of m equations in n unknowns is a system of linear
equations where the right side of the equations consists entirely of zeroes. In other words, the
augmented matrix has the form:

A |0m ,

where A is an m  n matrix. If the right side b is not the zero vector, we call the system
non-homogeneous.
Clearly, x  0n  0, 0, . . . , 0 is a solution to the homogeneous system.
We call this the trivial solution to a homogeneous system, and any other solution is called a
non-trivial solution.

Using the Gauss-Jordan algorithm, we can easily prove the following:

Theorem: A consistent linear system represented by the augmented matrix A |b has an
infinite number of solutions if and only if the rref of A has at least one free variable.

However, we can also see that we are guaranteed to produce a free variable if we have more variables
than equations:

Theorem: An underdetermined homogeneous system always has an infinite number of
solutions. In other words, a homogeneous system with more variables than equations has
an infinite number of solutions.

Proof: If we have a linear system with m equations, then we can have at most m leading variables
(possibly fewer). So if we have n unknowns where m  n, then we are guaranteed at least n  m  1
free variable/s, and thus an infinite number of solutions.

Example: In the previous section, we saw the augmented matrix:

4 8 3 9 | 6
3 6 4 13 | 17
2 4 3 9 | 12

, with rref
1 2 0 3 | 3
0 0 1 1 | 2
0 0 0 0 | 0

.

To review: this system is consistent, since it has solutions. It has 4 variables but only 3 equations, and
therefore it is underdetermined.
Now, to solve the corresponding homogeneous system, we change the rightmost columns entirely to
zeroes. This is valid because all of the row operations will preserve the zeroes on the rightmost
column. This also means that in future computations we need not bother writing down the zero vector
on the right side. Now, this homogeneous system has free variables x2 and x4, and the solutions are:

x1, x2, x3, x4   2r  3s, r, s, s, where r, s  . 
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We want to point out something very interesting: Any member of the solution set can be rewritten as:

x1, x2, x3, x4   2r, r, 0, 0  3s, 0, s, s  r2, 1, 0, 0  s3, 0, 1, 1,

and we recognize this as an arbitrary member of the Span of two vectors. This is not a coincidence,
and we will say more about this in a future section. But before we go further, let us introduce a
fundamental operation in Linear Algebra:

Matrix Products

We have now reached a point where we will combine a vector and a matrix in an arithmetic operation.
To begin, suppose that x  x1, x2,  , xn   n. We can arrange the components of x vertically
instead of horizontally, and thus think of x as an n  1 or a column matrix. We can call this column
matrix x , to signify that it comes from the vector x, but for the sake of brevity, we will also refer to
this column matrix as x so as to avoid the effort of writing the brackets. When the context is clear, this
should not result in confusion. Thus:

x  x1, x2,  , xn  

x1

x2



xn

Similarly, we can view an m  n matrix A as being partitioned into n columns:

A  c1 c2  cn ,

where each column ci  m can also be viewed as an m  1 matrix. Using this idea, let us define the
following operation:

Definition — Matrix Product:
If A  c1 c2  cn is an m  n matrix and x  n, we define the matrix product Ax
to be the linear combination:

Ax  c1 c2  cn

x1

x2



xn

 x1c1  x2c2   xncn.

Notice that since each column is an m  1 matrix, the matrix product is again an m  1
matrix. Thus, Ax is a linear combination of the columns of A with coefficients from x, and so
Ax  m.

In Section 1.7, we will see another way to compute this product, and in Chapter 2, we will also see that
we can multiply two matrices, in general, if they satisfy a certain compatibility requirement.
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Example: Let us compute the matrix product Ax, where:

A 

4 1 2 5
2 5 3 4

3 7 2 1

, and x 

3
2

7
0

.

By definition, we get:

Ax  3
4
2

3

2
1
5
7

7
2
3
2

0
5

4
1



24
5

19

.

Notice that although x  4, the product Ax  3, since A is 3  4. 

Matrix multiplication enjoys many properties that are similar to those of vector arithmetic, since it is
defined using linear combinations. However, the two most important properties are shown below. You
will prove them in the Exercises:

Theorem — Properties of Matrix Multiplication:
For all m  n matrices A, for all x, y  n, and for all k  , matrix multiplication enjoys
the following properties:

The Additivity Property Ax  y  Ax  Ay.
The Homogeneity Property Akx  kAx.

The Matrix Product Form of Linear Systems

Now, let us go back to the problem of determining if a vector b is a member of
Spanv1, v2, . . . , vn , that is, if we can find coefficients x1, x2,  , xn such that:

x1v1  x2v2   xnvn  b.
We formed the augmented matrix v1 v2  vn | b , and its rref told us whether or not b is a member
of Spanv1, v2, . . . , vn . But now that we have the concept of a matrix product, we can turn the left
side of the equation above into a matrix product, yielding:

v1 v2  vn

x1

x2



xn

 b.

We can write this symbolically as the matrix equation:

Ax  b,
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where the coefficient matrix A has as its columns v1, v2, . . . , vn. As before, we say that this system is
consistent if it has at least one solution x, otherwise we say it is inconsistent. Our discussion above
can be summarized in the following Theorem:

Theorem: Suppose that S  v1, v2, . . . , vn  be a set of vectors from m, and b  m.
Let us form the m  n matrix: A  v1 v2  vn .

Then: b  SpanS if and only if the matrix equation Ax  b is consistent.

Note the similarities and differences between this Theorem and the first one in this Section.

Linear Dependence and Independence

Homogeneous systems appear in the following important concept:

Definition: A set of vectors S  v1, v2, . . . , vn  from m is linearly dependent if we can
find a non-trivial solution x  x1, x2, . . . , xn   n, where at least one component is not
zero, to the vector equation:

x1v1  x2v2   xnvn  0m.
We will call this equation the dependence test equation for S. An equation of this form
where at least one coefficient is not zero will be referred to as a dependence equation. Thus,
for S to be linearly dependent, we must find a non-trivial solution x to the homogeneous
system:

Ax  0m,
where A  v1 | v2 | . . . | vn is the matrix with the vectors v1, v2, . . . , vn as its columns.
This is equivalent to the presence of a free variable in the rref of the matrix A.
However, if only the trivial solution x  0n exists for the dependence test equation, we say
that S is linearly independent. We often drop the adjective “linearly” and simply say that a
set S is dependent or independent.

Example: The standard basis S  e1, e2,  , em from m is a linearly independent set, because:

x1e1  x2e2   xmem  x1, x2,  , xm ,

so the linear combination is 0m if and only if x1  0, x2  0,  , xm  0. 

Example: Suppose that v1  3, 7,2 , v2  1, 5,4 and v3  15, 13, 4. To determine if
v1, v2, v3 is linearly independent, we need to check whether or not the dependence test equation:

x13, 7,2  x21, 5,4  x315, 13, 4  0, 0, 0,

has a nontrivial solution. We saw from the introductory subsection that the rightmost column of zeroes
will just stay as zeroes throughout the Gauss-Jordan Algorithm. Thus, it is pointless to include this
column of zeroes. Therefore, all we have to do is assemble the three vectors into columns, to get the
corresponding matrix:
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A 

3 1 15
7 5 13
2 4 4

with rref R 

1 0 4
0 1 3
0 0 0

.

Thus, x1 and x2 are leading variables, x3 is a free variable, and we get nontrivial solutions:

x1  4t, x2  3t, x3  t, where t  .

Thus, if we let t  1, we get the dependence equation:
 43, 7,2  31, 5,4  15, 13, 4  0, 0, 0.

We can now conclude that the set of three vectors S  v1, v2, v3 is dependent. Notice that we can
rewrite the corresponding dependence equation as:

15, 13, 4  43, 7,2  31, 5,4, i.e.
v3  4v1  3v2. 

Classifying Small Sets of Vectors

We saw in Section 1.2 how to geometrically describe the Span of a set of one or two vectors as a point,
a line, or a plane in 2 or 3. Let us now see what the concepts of linear independence and
dependence mean for these small sets of vectors. First, let us make some general observations:

Theorem: Any set S  0m, v1, v2, . . . , vn  m containing 0m is a dependent set.

Proof: 1  0m  0  v1  0 v2   0 vn  0m is a dependence equation with a non-zero coefficient
1 as the coefficient of 0m.

With that out of the way, let us investigate a set with one vector:

Theorem: A set S  v  m is independent if and only if v is a non-zero vector .

Proof:  Let us use the contrapositive: if v  0m, then S  0m is dependent, which we already
know to be true from the previous Theorem.  Consider the dependence test equation k  v  0n.
We know from The Zero Factors Theorem in Exercise 28 of Section 1.1 that k  v  0n if and only
if either k  0 or v  0n. Since v  0n, we must have k  0, hence we only have the trivial solution.
Thus S  v is independent.

Now, let us think of sets with two vectors, say, S  u, v. We already know that if one of them is the
zero vector, then the set is dependent. So suppose both vectors are non-zero, and we find a
dependence equation for them. For example, suppose: 3u  5v  0n.
But then we can solve for one of them, say u, and conclude that: u   5

3 v. This says that u and v are
parallel to each other! Let us prove in general:
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Theorem: A set S  u, v  m is dependent if and only if u and v are parallel to each
other.
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Proof:  Suppose u and v are vectors, and x1  u  x2  v  0n.
If we had a non-trivial solution, then either x1 or x2 is not zero. Suppose x1 is not zero. Then we can
solve for u, obtaining u   x2

x1
 v. Thus, u and v are parallel to each other.

Similarly, if x2 is not zero, vwill be a multiple of u.
 If u and v are parallel to each other, then u  a  v, or v  b  u, for some scalars a or b. We can
rewrite the first equation as:

1  u  a  v  0n.
This is a dependence equation, since the coefficient of u is not zero, and therefore u and v are linearly
dependent. A similar argument holds for v  b  u.

Example: The set  9, 15,12, 12,20, 32  is linearly dependent, since:

12,20, 32   4
3 9, 15,12. 

Now, suppose we had a set of three vectors, say, S  u, v, w  from some m. We know that if any
two of the vectors were parallel, then S will also be dependent, so let us assume that no two vectors in
S are parallel to each other (this also excludes the possibility that one of the vectors is 0m). By
definition, S is dependent if and only if we have a non-trivial solution to the dependence test
equation:

c1  u  c2  v  c3  w  03.
Without loss of generality, suppose c3  0. Then, we get:

w   c1
c3

u  c2
c3

v.

But this means that w  Spanu, v  , which is a plane through the origin. Thus, the three
vectors are coplanar. Let us take this a little further: since no two vectors are parallel to each other,
neither coefficient c1/c3 nor c2/c3 can be zero. This means that u  Spanv, w  and similarly,
v  Spanu, w . Thus, any two of the three vectors will Span the same plane . Conversely, we
see that if w is not a member of Spanu, v, then the set u, v, w  is independent.
We note that if two of the vectors are parallel to each other, then SpanS would be a line instead of a
plane, but this still means that the three vectors are coplanar. We can thus summarize our observations
concisely in the following:
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Theorem: A set S  u, v, w   m is dependent if and only if u, v and w are coplanar,
that is, all three vectors are on at least one plane .
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Three Dependent Vectors Three Independent Vectors
where w  Spanu, v   where w  Spanu, v  

Example: Consider the set S   1,3, 2, 2, 3,1, 1, 2, 4 .
It is clear that no two vectors are parallel to each other. Let us see if the third vector is a member of the
Span of the first two. Thus, let us try to solve the equation:

1, 2, 4  c11,3, 2  c22, 3,1.

Comparing the first two components, we must have:

c1  2c2  1 and  3c1  3c2  2.

Using the Addition Method from basic algebra, we multiply the 1st equation by 3 and add to the 2nd
equation to get 9c2  5. Thus c2  5/9 and c1  1  2c2  1/9.
However, checking the third component, we get:

2c1  c2  2/9  5/9  7/9  4.
Thus the three vectors are not coplanar, and the set S is independent.

The last few scenarios suggest the following generalization. We leave its proof as an Exercise.

Theorem: Suppose that S  v1, v2, . . . , vn  is a set of non-zero vectors from some m,
and S contains at least two vectors. Then: S is linearly dependent if and only if at least one
vector vi from S can be expressed as a linear combination of the other vectors in S.

Clearly, if we have a set with four or more vectors, the possibilities get too complicated to list, so we
will stop with sets consisting of three vectors. However, the following Theorem says that if a set is “too
big,” it is automatically dependent:

Theorem: A set S  v1, v2, . . . , vn  of n vectors from m is automatically linearly
dependent if n  m.
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Proof: Suppose that S  v1, v2, . . . , vn   m, with n  m. Assembling the vectors into the
columns of an m  n matrix, we obtain a homogeneous system with more variables than equations,
making it an underdetermined homogeneous system. Therefore, the system has non-trivial solutions.
Thus, S is dependent.

Example: The set:
S   5,3, 2, 2, 3,8, 1, 2, 4, 5, 1, 6

consists of 4 vectors from 3, and therefore S is automatically dependent.

1.5 Section Summary

A linear system is called consistent if it has at least one solution. A system is called inconsistent if it
does not have any solutions.

Let b  m and let S  v1, v2, . . . , vn   m. Then b  SpanS if and only if the system of
equations corresponding to the augmented matrix A  v1 v2 . . . vn | b is consistent.

A linear system with m equations in n variables is called (1 underdetermined if m  n, (2) square if
m  n, and (3) overdetermined if m  n.
A homogeneous system of m equations in n unknowns is a system of linear equations where the right
side of the equations consists entirely of zeros. In other words, the augmented matrix has the form

A | 0m , where A is an m  n matrix.

A homogeneous system has an infinite number of solutions if and only if the reduced row echelon
form of the coefficient matrix A has free variables.
An underdetermined homogeneous system always has an infinite number of solutions, i.e., a
homogeneous system with more unknowns than equations has an infinite number of solutions.
We define a matrix product of an m  n matrix A with an n  1 matrix x by the linear combination:

Ax  c1 c2  cn

x1

x2



xn

 x1c1  x2c2   xncn.

Matrix multiplication possesses the following properties: for all m  n matrices A, for all x, y  n,
and for all k  :
The Additivity Property: Ax  y  Ax  Ay, and The Homogeneity Property: Akx  kAx.
The set S  v1, v2, . . . , vn   m is linearly dependent if we can find a non-trivial solution to the
equation x1v1  x2v2   xnvn  0m. This is called the dependence test equation for S.
If only the trivial solution x1  0, x2  0, . . . , xn  0 exists, we say that S is linearly independent.

Any set S containing 0m is a dependent set. A set S  v consisting of a single non-zero vector is
independent. A set S  u, v consisting of two vectors from m is dependent if and only if u and v
are parallel to each other. A set S  u, v, w  consisting of three vectors from m is dependent if
and only if u, v and w are coplanar. A set of n vectors from m is linearly dependent if n  m.
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1.5 Exercises

For Exercises 1 to 10: Find the rref of each system, then classify the system according to being (a)
consistent or inconsistent; and (b) underdetermined, overdetermined or square.

1. x  2y  4
3x  7y  3

2. x  2y  7
2x  5y  31
3x  4y  29

3. x  2y  7
2x  5y  31
x  y  12

4. x  2y  5z  4
3x  7y  2z  3

5. x  2y  5z  4
3x  6y  15z  12

6. x  2y  5z  4
3x  y  z  2
2x  y  4z  6

7. x  2y  5z  4
3x  y  z  2
2x  5y  3z  7

8. The system in Section 1.4, Exercise 60.

9. The system in Section 1.4, Exercise 61.

10. The system in Section 1.4, Exercise 62.

For Exercises 11 to 17: In the Exercises of Section 1.4, you determined whether or not a
vector b was a member of SpanS. Based on the computations you already performed in these
Exercises (and without any further work), determine if the set S that appears in the indicated
Exercise from Section 1.4 is dependent or independent. Use the Answer Key for Section 1.4.

11. Exercise 39.

12. Exercise 42.

13. Exercise 43.

14. Exercise 45.
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15. Exercise 46.

16. Exercise 47.

17. Exercise 48.

For Exercises 18 to 24: Determine whether the following sets of vectors are dependent or
independent by assembling the vectors as the columns of a matrix A and finding the rref of A. If
the set is dependent, give an example of a dependence equation with integer coefficients relating
the vectors in the set.

18. S   4, 7,3, 5, 16,11, 3, 2,5
19. S   0,6, 9, 3, 6, 2, 1, 4, 7
20. S   1, 9, 2,7, 3,5, 2, 1, 5, 7, 4,2
21. S   5, 3,6,2, 5,4, 13, 16, 3,2, 5, 4
22. S   5, 3,6,2, 3,2, 5, 2, 1,2, 11, 6, 5,4, 1, 6
23. S   2, 3,1, 4, 5, 9, 1, 23, 18,20, 3, 2, 4, 6,1
24. S   2, 3,1, 4, 5, 3, 2, 0,2,1, 1, 4,2, 1, 3, 9,4, 6,2,5

For Exercises 25 to 29: The following sets S  v1, v2, . . . , vn   m are all dependent. As
before, assemble the vectors as the columns of a matrix A and find the rref of A. Unlike the sets in
Exercises 18 to 24, each associated rref has more than one free variable. Find a dependence
equation with the required conditions in each sub-item, again with only integer coefficients.

25. S   5, 3,6,2, 3,2, 5, 2, 1,2, 11, 6, 5,4, 1, 6.

a. Find a dependence equation involving only v1, v2 and v3.

b. Find a dependence equation involving only v1, v2 and v4.

c. Find a dependence equation involving only v2, v3 and v4. Hint: use (a) to eliminate v1 from
(b).

26. S   2, 3,1, 4, 5, 3, 2, 4,2,1, 1, 4,6, 10, 11, 1, 9,17, 26, 28.

a. Find a dependence equation involving only v1, v2 and v3.

b. Find a dependence equation involving only v1, v2 and v4.

c. Find a dependence equation involving only v2, v3 and v4. Hint: use (a) to eliminate v1 from
(b).

27. S   5, 3,4,2, 3,2, 4, 2, 1,1, 2, 2, 6, 5,4,8, 4, 5,6,8.

a. Find a dependence equation involving only v1, v2, v3 and v4.

b. Find a dependence equation involving only v1, v2, v3 and v5.

c. Find a dependence equation involving only v1, v3, v4 and v5.

28. S   5, 3,4,2, 3,2, 4, 2, 5, 2, 4, 2, 1,1, 2, 2, 4, 3,3,2.

a. Find a dependence equation involving only v1, v2, and v3.

b. Find a dependence equation involving only v1, v2, v4 and v5.

c. Find a dependence equation involving only v1, v3, v4 and v5.
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29. S   0,2, 6, 4, 2, 0, 5,15,10,5, 3,2, 4, 5, 0, 12, 3,1,10, 5, 9,1,3, 5,5.

a. Find a dependence equation involving only v1 and v2.

b. Find a dependence equation involving only v1, v3 and v5.

c. Find a dependence equation involving only v3, v4 and v5.

30. Without doing any computations whatsoever, decide whether or not the set:

S   1,6, 4, 2, 3, 1, 6, 2, 3, 8, 5,9, 1, 0, 4, 7, 1, 6,7, 3
is linearly independent, and explain how you got your conclusion.

31. Suppose that u, v and w are any three vectors in some n. Show that the set of three vectors:

S  2u  v, 4u  5v  4w, u  v  2w 

will always be a dependent set. Hint: find a dependence equation involving these three new
vectors.

32. For what value/s of r and s, if any, will the following system have: (1) no solution, (2) exactly one
solution, (3) an infinite number of solutions?

x  y  z  8
x  y  3z  5

2x  y  rz  s

33. For what value/s of r, s and t, if any, will the following system have: (1) no solution, (2) exactly
one solution, (3) an infinite number of solutions involving exactly one free variable, and (4) an
infinite number of solutions involving exactly two free variables?

x  2y  4z  2
3x  ry  2z  7
2x  4y  sz  t

34. What value of c will make the set S   3, 5,2, 3, c,25, 1,4, 7 dependent?

35. Suppose that S  v1, v2, v3, v4  m is linearly independent.

a. Prove that S /  v1, v3, v4 is also linearly independent.

b. Prove that S //  v2, v4 is also linearly independent.

36. We will generalize the previous Exercise: Prove that if S  v1, v2, . . . , vn   m is linearly
independent, then any subset of S is still linearly independent.
What is the contrapositive of this statement?

37. Give an example of an overdetermined homogeneous system which only has the trivial solution.

38. Give an example of an overdetermined homogeneous system with an infinite number of solutions.

39. Prove that if A is an m  n matrix, x and y are n  1 matrices, and k  , then: (a)
Ax  y  Ax  Ay, and (b) Akx  kAx.

40. Put together two of the Theorems in this section to prove: A set S  v from m consisting of
exactly one vector is dependent if and only if v  0m.
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41. Suppose that S  v1, v2, . . . , vn  is a set of non-zero vectors from some m, and S contains at
least two vectors. Prove that S is linearly dependent if and only if at least one vector vi from S
can be expressed as a linear combination of the other vectors in S.

42. Prove that the ordered list of non-zero vectors v1, v2, . . . , vn is linearly independent if and
only if no vector vi can be written as a linear combination of v1 up to vi1, that is, using only
the vectors preceding vi. How is this Theorem different from that in the previous Exercise?

43. The Extension Theorem: Suppose that S  w 1, w 2, . . . , w k  n is a linearly independent
set, and v  n is any vector which is not in SpanS. Prove that the bigger set S /  S  v is
still linearly independent. Hint: Form the dependence test equation for S / and divide your
analysis into two Cases, depending on whether the coefficient of v is 0 or not 0.

44. In this Exercise, we will guide you to prove that if A is an m  n matrix, b is an m  1 matrix, and
we can find at least two distinct solutions to the system Ax  b, then we can find an infinite
number of solutions to this system.
a. First, show that if x and y are two such distinct solutions to Ax  b, then x  y is a solution

of the homogenous system Ax  0m.
b. Next, we will use scalar multiples of x  y to construct an infinite number of solutions to the

homogeneous system in (a). Explain why t1x  y  t2x  y if t1  t2. You may want to
use the Zero Factors Theorem. Explain why this means that the set  tx  y | t   is an
infinite set.

c. Use x and part b) to construct an infinite number of solutions to the original system Ax  b,
and show that the vectors you constructed are indeed solutions to this system.

d. As a bonus, prove that any linear system Ax  b either has: 1 no solutions, 2 exactly one
solution, or 3 an infinite number of solutions. Hint: Use a Case-by-Case Analysis, but be
careful how you begin the 3rd Case.

45. Suppose that 1 and 2 are parallel planes in 3, given by:
1 : a1x  b1y  c1z  d1, and 2 : a1x  b1y  c1z  d2,

where d1  d2. Notice that we can use the same normal vector n1  a1, b1, c1   n2 for both
planes. Now, suppose that 3 is another plane given by:

3 : a3x  b3y  c3z  d3,
and n3  a3, b3, c3  is not parallel to n1. Show that the line of intersection between 1 and 3
is parallel to the line of intersection of 2 and 3. Consult Section 1.2 for the definition of
parallel lines in 3.

46. True or False: Determine whether each statement is true or false, and briefly explain your
answer by either applying a Theorem or providing a counterexample or a convincing argument.
a. A consistent square system has exactly one solution.
b. An underdetermined linear system has an infinite number of solutions.
c. An underdetermined homogeneous linear system has an infinite number of solutions.
d. A consistent system of 4 equations and 7 variables will have exactly 3 free variables.
e. A consistent system of 4 equations and 7 variables will have at least 3 free variables.
f. A consistent system of 4 equations and 7 variables could have exactly 2 free variables.
g. A homogeneous system of 7 equations in 10 unknowns has non-trivial solutions.
h. A homogeneous system of 10 equations in 7 unknowns only has the trivial solution.
i. A set of 8 non-zero vectors from 5 is always linearly dependent.
j. A set of 5 non-zero vectors from 8 is always linearly independent.
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1.6 Independent Sets versus Spanning Sets

We have spent much time studying and describing the Span of a set of vectors S, and likewise,
determining if S is linearly dependent or independent. We will now see that there are strong
relationships between Spanning sets and linearly dependent or independent sets. Every Theorem that
we will see in this Section (except two) will involve both Spanning and dependence conditions. Let us
start with the lone exceptions:

Equality of Spans

If S is a set containing a non-zero vector, the Span of S contains an infinite number of vectors. So it is
very possible to choose a different set of vectors, say S /, so that SpanS /  produces exactly the same
set of vectors as SpanS. Here is a very easy way to do this:

Theorem: Let S  v1, v2,  , vn  m, and k1, k2, . . . , kn   a list of n non-zero
scalars. Let us form a new set: S /  k1v1, k2v2,  , knvn. Then: SpanS  SpanS / .

Proof: We must show that every linear combination of vectors from S also looks like a linear
combination of vectors from S /, and vice versa. Starting with a linear combination of vectors from S,
we get:

c1v1  c2v2   cnvn  c1
k1
k1

v1  c2
k2
k2

v2   cn
kn
kn

vn

 c1
k1
k1v1  

c2
k2
k2v2    cn

kn
knvn ,

which is a linear combination of vectors from S /. This is possible, since every non-zero k i has a
reciprocal. Thus, every member of SpanS is also a member of SpanS / . Similarly, a linear
combination of k1v1, k2v2, . . . , knvn has the form:

c1k1v1   c2k2v2    cnknvn   c1k1 v1  c2k2 v2   cnkn vn,

so every member of SpanS /  is also a member of SpanS. Thus, the two Spans are the same.

Example: Let S  15,35, 10,30, 25,  16
3 , 12, 4, 8

3 , 4
3 ,  35

4 ,14, 63
4 , 7, 21

2 .

Notice that we can factor out 5 from the 1st vector, 4/3 from the 2nd, and 7/4 from the 3rd. If we do
so, we obtain a new set:

S /   3,7, 2,6, 5, 4, 9, 3,2, 1, 5, 8, 9,4, 6,

and by our Theorem above, SpanS  SpanS / . In general, if all the vectors in S have rational
components, we can find a set of vectors S / with integer components with the same Span as S. 

The previous Theorem is a very easy case because the pairs of vectors are parallel to each other. We
can ask in general, though, when are the Spans of two sets of vectors S and S / exactly the same, even
when the vectors do not look obviously related to each other? Here is the complete answer:
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Theorem — The Equality of Spans Theorem:
Let S  v1, v2,  , vn and S /  w 1, w 2, , wm be two sets of vectors from some
Euclidean space k, where n, m, and k are any positive integers. Then:
SpanS  SpanS /  if and only if every vi can be written as a linear combination of the
w 1 through wm, and every w j can also be written as a linear combination of the v1 through
vn.

Proof:  Suppose that Spanv1, v2,  , vn  Spanw 1, w 2, , wm. We must show that
every vi can be written as a linear combination of the w 1 through wm, and every w j can also be written
as a linear combination of the v1 through vn. But since Spanv1, v2,  , vn includes v1, v2, . . . , vn
themselves, and the two Spans are equal, this means that each vi is indeed a linear combination of the
w 1 through wm. Exactly the same reasoning also applies to the vectors w 1, w 2, . . . , wm.
 Now, suppose that every vi can be written as a linear combination of the w 1 through wm, and
every w j can also be written as a linear combination of the v1 through vn. We must show that
Spanv1, v2,  , vn  Spanw 1, w 2, , wm. Since these are two sets, we must show that the
first Span is a subset of the second Span, and vice versa. Any member of the first Span looks like:

c1v1  c2v2   cnvn.

However, we are told that each vi can be written in terms of the w js. We will use what is called
double-index notation to express these linear combinations:

v1  a1,1w 1  a1,2w 2   a1,mwm,
v2  a2,1w 1  a2,2w 2   a2,mwm,

vn  an,1w 1  an,2w 2   an,mwm,

for some real numbers a i,j. We will substitute these expressions into our original linear combination
above to get:

c1v1  c2v2   cnvn  c1a1,1w 1  a1,2w 2   a1.mwm  

c2a2,1w 1  a2,2w 2   a2.mwm   

cnan,1w 1  an,2w 2   an.mwm .

Upon distributing and collecting like terms (which we conveniently see in columns above), we see that
this we will obtain a linear combination of the w 1 through wm:

c1v1  c2v2   cnvn  c1a1,1w 1  c1a1,2w 2   c1a1.mwm 

c2a2,1w 1  c2a2,2w 2   c2a2.mwm  

cnan,1w 1  cnan,2w 2   cnan.mwm

 c1a1,1  c2a2,1   cnan,1 w 1 

c1a1,2  c2a2,2   cnan,2 w 2  

c1a1,m  c2a2,m   cnan,m wm.

Thus, a member of Spanv1, v2,  , vn is also a member of Spanw 1, w 2, , wm. A similar
argument shows that a member of Spanw 1, w 2, , wm is also a member of
Spanv1, v2,  , vn, and will be left as an Exercise.
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Unfortunately, this Theorem says that to check if two Spans are equal, we need to solve for n  m
dependence test equations. This is a huge task, especially if we have large sets of vectors with no
obvious dependence relationships among them. Let us demonstrate this Theorem with just a small
number of vectors:

Example: Let us show that:

Span 3,2, 5, 1, 7,4  Span 10, 1, 11, 6, 4,10, 17, 4, 17.
We need to show that every vector in the second set is a linear combination of the vectors in the first
set, and vice versa. Let us show it for the first element:

10, 1, 11  x3,2, 5  y1, 7,4,
so we must have, using only the first two coordinates, that:

3x  y  10 and  2x  7y  1.
Solving this system of equations, we get x  3 and y  1. We check that indeed:

10, 1, 11  33,2, 5  1, 7,4.
Repeating this process for the other two vectors, we also get:

6, 4,10  23,2, 5, and 17, 4, 17  53,2, 5  21, 7,4.
Now for the other set:

3,2, 5   1
2 6, 4,10, and 1, 7,4  1

2 17, 4, 17  5
4 6, 4,10.

Thus, the two Spans are the same.

Now, as promised, let us look at some of the deeper connections between the Span of a set of vectors
and linearly independent sets of vectors.

The Elimination Theorem

We saw in the previous Section that the set S  v1, v2, v3   3, 7,2, 1, 5,4, 15, 13, 4 is
linearly dependent. In fact, we saw that:

v3  4v1  3v2.

This means that we can simplify a linear combination of the three vectors as follows:

c1v1  c2v2  c3v3  c1v1  c2v2  c34v1  3v2 

 c1v1  c2v2  4c3v1  3c3v2

 c1  4c3 v1  c2  3c3 v2,

or in other words, we can express any member of SpanS exclusively as a linear combination of v1
and v2 only. Similarly, we can express v2 in terms of v1 and v3, and v1 in terms of v2 and v3.
Consequently:

SpanS  Spanv1, v2  Spanv2, v3  Spanv1, v3.

In general, we have the following:
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Theorem — The Elimination Theorem:
Suppose that S  v1, v2,  , vn is a linearly dependent set of vectors from m, and
vn  c1v1  c2v2   cn1vn1. Then:

SpanS  SpanS  vn.
In other words, we can eliminate vn from S and still maintain the same Span.
More generally, if c1v1  c2v2   cnvn  0 m, where none of the coefficients in this
dependence equation is 0, then:

SpanS  SpanS  vi,
for all i  1. . n. Thus, we can eliminate any vector from S and maintain the same Span.

We leave the proof as an Exercise. Recall from Chapter Zero that S  vi means the set S with vi
removed. This Theorem says that if we start with a set of dependent vectors, we can remove one vector
from this set, and the Span of the remaining vectors is identical to the original Span. Consequently, if
this smaller set is still dependent, we can remove another vector, and so on, removing one vector at a
time from the set until we can no longer find a dependence equation for the remaining vectors. At this
point, the set is independent, and has the same Span as the original set.

Example: Let S   3, 3, 5, 2, 4, 3, 2, 0,1, 6, 12, 12, 20, 8, 16, 0, 1, 5, 3,2 , and let us
call these vectors v1, v2, v3, and v4, in that order.
If you stare at these four vectors long enough, you will probably see the dependency relations. It is
obvious, though, that v1 is not parallel to v2. However, v3  4v1, so we can Eliminate v3. Next,
v4  v1  v2, so we can also Eliminate v4. Thus:

Spanv1, v2, v3, v4  Spanv1, v2. 

Obviously, this process is inefficient if there are more than a handful of vectors, or if the components
are large, with no obvious relationships. The next Theorem gives us a more efficient way:

The Minimizing Theorem

The Gauss-Jordan Algorithm will now enable us to express the Span of a set of vectors with as few
vectors as possible:

Theorem — The Minimizing Theorem:
Let S  v1, v2,  , vn be a set of vectors from m, and let A  v1 v2  vn be the
m  n matrix with v1, v2, . . . , vn as its columns.
Suppose that R is the rref of A, and i1, i2,  , ik are the columns of R that contain the
leading variables. Then the set S /  vi1 , vi2 , . . . , vik , that is, the subset of vectors of S
consisting of the corresponding columns of A, is a linearly independent set, and:

SpanS  SpanS / .

Furthermore, every vi  S  S /, that is, the vectors of S corresponding to the free variables
of R, can be expressed as a linear combination of the vectors of S /, using the coefficients
found in the corresponding column of R.
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We call this The Minimizing Theorem because we immediately go from a Spanning set S to a linearly
independent subset S / that has the same Span as S. We have mentioned that linearly independent
subsets are as small as possible, so in a sense, we have reduced the size of S until we can reduce it no
further — that is, S / is as efficient as possible to describe SpanS.

Proof of the Theorem: The Gauss-Jordan Algorithm does not change the solution set of a
homogeneous system, so x is a solution to Ax  0 m if and only if x is a solution to Rx  0 m, where
R is the rref of A. Thus, the components of x  x1, x2,  , xn  give us a dependence equation for the
columns of A if and only if they give us a dependence equation for the columns of R:

x1v1  x2v2   xnvn  0m if and only if

x1c1  x2c2   xncn  0m also,

where c1 through cn are the columns of R. The same reasoning works for just a subset of the columns
of A and the corresponding columns of R, by setting some of the components of x to 0. Thus, a subset
of the columns of A is linearly independent if and only if the corresponding columns of R also form a
linearly independent set.
Notice that the columns of R that contain the leading 1’s are precisely e1, e2,  , ek for some
k  m. For example, the rref of A could be:

R 

1 a b 0 d 0 f
0 0 0 1 g 0 h
0 0 0 0 0 1 k
0 0 0 0 0 0 0



1
0
0
0

a
0
0
0

b
0
0
0

0
1
0
0

d
g
0
0

0
0
1
0

f
h
k
0

.

We see that e1, e2 and e3 are in columns 1, 4 and 6, which we boxed on the right. Thus, these three
columns are linearly independent. By the reasoning above, the corresponding columns in A must also
be linearly independent.

Now, suppose that column i of R does not contain a leading 1. By definition of the rref, every non-zero
entry of column i has a leading 1 to its left. Thus, we can express column i as a linear combination of
the columns of R that contain only the leading 1’s to the left of column i. Thus:

c2  a  e1  a  c1,

c3  b  e1  b  c1,

c5  d  e1  g  e2  d  c1  g  c4, and

c7  f  e1  h  e2  k  e3  f  c1  h  c4  k  c6.

According to our reasoning above, columns 2, 3, 5 and 7 of the original matrix A will be linear
combinations of columns 1, 4 and 6 of A, using the same coefficients: v2  a  v1, v3  b  v1,
v5  d  v1  g  v4, and v7  f  v1  h  v4  k  v6.

By our reasoning in the first part of the proof, the same coefficients for these linear combinations will
also enable us to express each column of A that does not correspond to a leading 1 as a linear
combination of the columns of A that correspond to the leading 1’s. 
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Example: Suppose that:

S  v1, v2, v3, v4, v5   1,2,3, 4, 2,1,1, 2, 1, 4, 7,8, 3,3,2, 5, 5,4, 7, 2.

This is a set of 5 vectors from 4, so it is certainly dependent, but it is not obvious just how many
vectors we will need to eliminate. We form the matrix A using the vectors as columns:

A 

1 2 1 3 5
2 1 4 3 4
3 1 7 2 7
4 2 8 5 2

with rref R 

1 0 3 0 5
0 1 2 0 4
0 0 0 1 6
0 0 0 0 0

.

The leading ones are in c1, c2 and c4, so SpanS  Spanv1, v2, v4. Notice that:

c3 

3
2
0
0

 3

1
0
0
0

 2

0
1
0
0

 3c1  2c2 and

c5 

5
4

6
0

 5

1
0
0
0

 4

0
1
0
0

 6

0
0
1
0

 5c1  4c2  6c4.

Thus, we can express v3 and v5 as linear combinations of v1, v2, and v4 using exactly the same
coefficients:

v3 

1
4
7
8

 3

1
2
3
4

 2

2
1
1

2

 3v1  2v1 and

v5 

5
4
7
2

 5

1
2
3
4

 4

2
1
1

2

 6

3
3
2
5

 5v1  4v2  6v4. 

The Size of Dependent Sets from Spanning Sets

We saw in the previous Section that if we have a set S of m vectors from n, where m  n, then S is
definitely dependent. This is a particular instance of the following Theorem that allows us to compare
the relative size of certain linearly dependent sets generated by a Spanning set S:
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Theorem — The Dependent Sets from Spanning Sets Theorem:
Suppose we have a set of n vectors:

S  w 1, w 2, , w n,
from some Euclidean space k, and we form SpanS. Now, suppose we randomly choose a
set of m vectors from SpanS to form a new set:

L  u1, u2,  , um.
We can now conclude that if m  n, then L is automatically linearly dependent.
In other words, if we chose more vectors from SpanS than the number of vectors we used
to generate the Span, then this new set will certainly be dependent.

Proof: This will be the deepest Theorem of this Chapter, but the strategy behind the proof is simple:
create an underdetermined homogeneous system of n equations in m variables.
Our goal is to show that L, as constructed above, is linearly dependent. The members of
L  u1, u2,  , um are vectors from Spanw 1, w 2, , w n, so we can write u1, u2, . . . , um as
linear combinations of w 1, w 2, . . . , w n.
However, since we will be writing m different linear combinations, one for each ui, we will again use
the double-index notation that we saw in the Equality of Spans Theorem. Let us write:

u1  a1,1w 1  a1,2w 2   a1,nw n,
u2  a2,1w 1  a2,2w 2   a2,nw n, 

um  am,1w 1  am,2w 2   am,nw n.

Let us form the dependence test equation: c1u1  c2u2   cmum  0k.
We will show that there must be a non-trivial solution to this dependence test equation. As in the
Equality of Spans Theorem, we will substitute the expressions that we wrote down above for u1 to um
into the dependence test equation. We get:

0k  c1a1,1w 1  a1,2w 2   a1,nw n  

c2a2,1w 1  a2,2w 2   a2,nw n   

cmam,1w 1  am,2w 2   am,nw n 

 c1a1,1w 1  c1a1,2w 2   c1a1,nw n 

c2a2,1w 1  c2a2,2w 2   c2a2,nw n  

cmam,1w 1  cmam,2w 2   cmam,nw n

 c1a1,1  c2a2,1   cmam,1 w 1 

c1a1,2  c2a2,2   cmam,2 w 2  

c1a1,n  c2a2,n   cmam,n w n.

Now, we can force a solution to this equation if we set all of the coefficients of the vectors w 1 through
w n to be zero, that is:

c1a1,1  c2a2,1   cmam,1  0,
c1a1,2  c2a2,2   cmam,2  0,  and
c1a1,n  c2a2,n   cmam,n  0.
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The only thing we need to notice about this homogeneous system of equations is that there are n
equations and m unknowns (the coefficients c1 through cm). But since m  n, we have more
unknowns than equations, that is, we have an underdetermined homogeneous system. Such a system
would have a free variable and therefore have an infinite number of solutions. Thus, we can obtain
non-trivial values for c1, c2,  , cm that will satisfy our original dependence equation for u1 through
um. Thus L  u1, u2,  , um is a dependent set.

The contrapositive of our Theorem is also worth stating:

Theorem — The Independent Sets from Spanning Sets Theorem:
Suppose we have a set of n vectors S  w 1, w 2, , w n from some Euclidean space k,
and we form SpanS.
Suppose now we randomly choose a set of m vectors from SpanS to form a new set:

L  u1, u2,  , um.
We can now conclude that if L is independent, then m  n.

Example: A set of 10 vectors from Spanw 1, w 2, . . . , w 8 must be linearly dependent, since 10  8.
However, a set with 8 or fewer vectors from this same Span is not necessarily linearly independent
(i.e., they could be all be parallel to each other).

The Extension Theorem

One of the Exercises in the previous Section is of such importance that we mention it again here. It tells
us how to extend a linearly independent set by one vector so that the new set is still linearly
independent:

Theorem — The Extension Theorem:
Let S  v1, v2,  , vn be a linearly independent set of vectors from m, and suppose
vn1 is not a member of SpanS. Then, the extended set:

S /  S  vn1  v1, v2,  , vn, vn1

is still linearly independent.

Proof: Let us construct the dependence test equation for the extended set:

c1v1  c2v2   cnvn  cn1vn1  0m.
We must show that we can only get the trivial solution: c1  0, c2  0, . . . cn1  0. At this point, let
us break up the analysis into two cases:
Case 1. Suppose we can find a solution where cn1  0. Then we get a (shorter) dependence equation:

c1v1  c2v2   cnvn  0m.
However, we know that S is linearly independent, so all the coefficients c1 through cn of this equation
must be 0. Thus c1  c2    cn1  0, so S / is linearly independent.
Case 2. Suppose we can find a solution where cn1  0. Then the dependence equation can be used
to solve for vn1:
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cn1vn1  c1v1  c2v2   cnvn, or

vn1   c1
cn1

v1  c2
cn1

v2   cn
cn1

vn.

But this equation implies that vn1 is a member of SpanS, and thus Case 2 leads to a contradiction.
Thus, only Case 1 is possible, so S / is linearly independent. 

Example: Let S   2, 0,7, 4, 0,3, 2, 5  4. The two vectors of S are clearly not parallel, so
S is linearly independent. Let us extend S by one more vector, say v3  0, 0, 3,5. We need only
check that v3 is not a linear combination of v1 and v2. Suppose:

0, 0, 3,5  c12, 0,7, 4  c20,3, 2, 5.
The first two coordinates tell us that 0  2  c1  0  c2, and 0  0  c1  3  c2.
Thus c1  0  c2. But these values will imply in the equation above that:

0, 0, 3,5  0  2, 0,7, 4  0  0,3, 2, 5  0, 0, 0, 0,

which is clearly a contradiction. Thus 0, 0, 3,5 is not in SpanS, so the extended set
S /   2, 0,7, 4, 0,3, 2, 5, 0, 0, 3,5 is still a linearly independent subset of 4. 

1.6 Section Summary

Theorem: Let S  v1, v2,  , vn  m, and k1, k2, . . . , kn   a list of n non-zero scalars. Let us
form a new set: S /  k1v1, k2v2,  , knvn. Then: SpanS  SpanS / .
The Equality of Spans Theorem: Let S  v1, v2,  , vn  k and S /  w 1, w 2, , wm  k,
where n, m, and k are any positive integers. Then: SpanS  SpanS /  if and only if every vi can
be written as a linear combination of the w 1 through wm, and every w j can also be written as a linear
combination of the v1 through vn.
The Elimination Theorem: Suppose that S  v1, v2,  , vn is a linearly dependent set of vectors
from m, and c1v1  c2v2   cnvn  0m, where none of the coefficients in the dependence
equation is 0. Then: SpanS  SpanS  vi , for all i  1. . n. Thus, we can eliminate any of the
vectors v1, v2, . . . , vn and still maintain the same Span.
The Minimizing Theorem: Let S  v1, v2,  , vn  m, and let A  v1 v2 . . . vn . Suppose
that R is the rref of A, and i1, i2, . . . , ik are the leading columns of R. Then the set
S /  vi1 , vi2 , . . . , vik , that is, the subset of vectors of S consisting of the corresponding columns of
A, is a linearly independent set, and SpanS  SpanS / . Furthermore, every vi  S  S /, that is,
the vectors of S corresponding to the free variables of R, can be expressed as a linear combination of
the vectors of S /, using the coefficients found in the corresponding column of R.
The Dependent/Independent Sets from Spanning Sets Theorem:
Suppose S  w 1, w 2, , w n  k, and we form SpanS. Suppose now we form a new set
L  u1, u2,  , um consisting of m vectors randomly chosen from SpanS. We can then conclude
that: if m  n, then L is automatically linearly dependent. Consequently, if L is linearly independent,
then m  n.
The Extension Theorem: Let S  v1, v2,  , vn be a linearly independent set of vectors from m,
and suppose vn1 is not a member of SpanS. Then, the extended set S /  v1, v2,  , vn, vn1 is
still linearly independent.
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1.6 Exercises

1. Show that the sets:

S   3, 6,2, 7, 1, 2,4, 5, 15, 0,25, 20 , and
S /   6,12, 4,14, 3, 6,12, 15, 3, 0, 5,4 

have exactly the same Span, by comparing corresponding pairs of vectors. Very few
computations should be necessary.

2. Apply the Equality of Spans Theorem to show that the sets:

S   3, 6,2, 7, 1, 2,4, 5  and S /   4, 10,5, 13, 3, 0, 5,4, 7, 10, 0, 9 

have exactly the same Span. In other words, show that every vector in S is a linear combination of
the vectors in S /, and vice versa. Why can’t we apply the same reasoning as Exercise 1?

3. Show that the sets:

S   3, 6, 5,2, 7, 13, 34, 39,18, 45  and S /   11, 14, 1, 2, 11, 1, 2, 7,4, 5 

have exactly the same Span. Which of the first two Theorems should we apply?
4. Show that the sets:

S   3, 6, 5,2, 7, 4,8,28, 16,20  and S /   1 5, 30, 25,10, 35, 1, 2, 7 ,4, 5 

have exactly the same Span. Which of the first two Theorems should we apply?
5. Consider the set S  v1, v2, v3, v4, v5, v6,

S   3, 6,12, 12,24, 48, 7,3, 4, 5, 10,20, 19, 4,12, 0, 1, 0 .
a. Explain why S is certainly linearly dependent.
b. Scan the vectors for all parallel vectors, if any.
c. Eliminate some vectors from S using your findings in b to obtain a smaller set S / with the

same Span as S.
d. Show that v5 can be expressed as a linear combination of v1 and v3.
e. Use The Elimination Theorem to construct a subset S // of S with as few vectors as possible

so that SpanS  SpanS // . How many vectors are left?
f. Check that the final set S // is now linearly independent.

6. Consider the set:
S  v1, v2, v3, v4, v5 

  1, 0,1, 3, 2, 3, 1,1, 7,6,5, 11, 10,15,5, 5, 0, 3,1, 5.

a. Explain why S is certainly linearly dependent.
b. Scan the vectors for all parallel vectors, if any.
c. Eliminate some vectors from S using your findings in b to obtain a smaller set S / with the

same Span as S.
d. Show that v3 and v5 can be expressed as linear combination of v1 and v2.
e. Use The Elimination Theorem to construct a subset S // of S with as few vectors as possible

so that SpanS  SpanS // . How many vectors are left?
f. Show that the final set S // is now linearly independent.
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7. Suppose that S  v1, v2, v3, v4, v5  7, and you are told that:
3v1  8v2  2v3  07, and 5v4  6v5  07.

Use the Elimination Theorem to decide which of the following sets of vectors definitely have the
same Span as S :
a. S1  v1, v2, v4, v5 b. S2  v1, v3, v4 c. S3  v1, v4, v5
d. S4  v1, v2, v5 e. S5  v3, v5

8. Suppose that S  v1, v2, v3, v4, v5, v6, v7, v8, v9, v10  10, and you are told that:
2v1  5v2  v3  010, 8v4  3v5  7 v6  010, and 4v7  2v8  5 v9  6 v10  010.

Use the Elimination Theorem to decide which of the following sets of vectors definitely have the
same Span as S :
a. S1  v1, v2, v4, v6, v7, v8, v9 b. S2  v2, v3, v4, v5, v7, v10
c. S3  v1, v3, v5, v8, v9, v10 d. S4  v1, v2, v5, v6, v7, v9, v10
e. S5  v1, v2, v3, v4, v6, v7, v8, v9

9. Suppose that S  v1, v2, v3, v4, v5  6, and you are told that:
7v1  3v2  8v3  06, 4v1  5v2  9v4  06, and 2v1  4v3  2v5  06.

Use the Elimination Theorem to decide which of the following sets of vectors definitely have the
same Span as S:
a. S1  v2, v3, v4, v5 b. S2  v1, v2, v3 c. S3  v2, v3, v4
d. S4  v2, v3, v5 e. S5  v2, v5 f. S6  v1, v2

Assisted Computation: For Exercises 10 to 34: Suppose that S  v1, v2,  , vn  m,
and A  v1 v2 . . . vn is the m  n matrix obtained by assembling the vectors into columns.
Suppose that R is the rref of A, as shown in each item. Use the Minimizing Theorem to find a
linearly independent subset S /  vi1 , vi2 , . . . , vik  of S such that SpanS  SpanS / , and
express each vector vi  S  S / as a linear combination of the vectors in S /. You may express
your answers in terms of v1, v2,  , vn.

10. A 

2 3 3 12
3 0 1 5
4 5 2 10

; R 

1 0 0 3
0 1 0 2
0 0 1 4

11. A 

3 2 5 12
1 1 5 1
1 2 7 4

; R 

1 0 3 2
0 1 2 3
0 0 0 0

12. A 

2 10 3 9
4 20 2 2
3 15 4 11

; R 

1 5 0 3
0 0 1 5
0 0 0 0

13. A 

5 2 1 9 5
2 3 3 12 8
3 4 2 11 8

; R 

1 0 0 3 2
0 1 0 4 3
0 0 1 2 1
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14. A 

5 2 6 1 9
2 3 13 3 12
3 4 16 2 11

; R 

1 0 4 0 3
0 1 7 0 4
0 0 0 1 2

15. A 

1 4 2 5 5
3 12 3 8 2
2 8 4 8 3

; R 

1 4 0 0 1
2

0 0 1 0  3
2

0 0 0 1 1
2

16. A 

1 3 2 8 5
3 9 3 6 2
2 6 4 0 3

; R 

1 3 0 4 0
0 0 1 2 0
0 0 0 0 1

17. A 

2 5 7 12 1
3 2 6 7 4
5 3 11 11 7

; R 

1 0 4 1 2
0 1 3 2 1
0 0 0 0 0

18. A 

3 2 0
2 1 7
1 2 8
4 2 2

; R 

1 0 2
0 1 3
0 0 0
0 0 0

19. A 

3 2 5
7 4 6
1 0 8
9 5 2

; R 

1 0 0
0 1 0
0 0 1
0 0 0

20. A 

2 3 8 3
1 2 3 16
2 1 0 17
2 4 10 8

; R 

1 0 1 6
0 1 2 5
0 0 0 0
0 0 0 0

21. A 

3 2 1 5
7 4 7 6
1 0 5 8
9 6 3 2

; R 

1 0 5 0
0 1 7 0
0 0 0 1
0 0 0 0
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22. A 

3 9 1 11
7 21 4 19
5 15 2 33
4 12 3 8

; R 

1 3 0 5
0 0 1 4
0 0 0 0
0 0 0 0

23. A 

0 2 9 4 6
7 1 13 3 15
8 2 11 1 11
2 2 14 6 14

; R 

1 0 5
2 0 1

0 1 9
2 0 7

0 0 0 1 5
0 0 0 0 0

24. A 

3 2 5 3 3
7 4 6 7 2
1 0 3 1 0
9 6 9 3 4

; R 

1 0 0 5 0
0 1 0 4 0
0 0 1 2 0
0 0 0 0 1

25. A 

3 2 5 3 9
7 4 6 7 5
1 0 3 1 5
9 6 9 3 3

; R 

1 0 0 5 7
0 1 0 4 5
0 0 1 2 4
0 0 0 0 0

26. A 

15 3 0
3 2 1
13 4 1
9 1 2
11 2 3

; R 

1 0 1
7

0 1  5
7

0 0 0
0 0 0
0 0 0

27. A 

3 2 5
7 4 6
1 0 3
9 6 9
4 3 7

; R 

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

28. A 

15 3 21 0
3 2 10 1
13 4 24 1
9 1 1 2
11 2 2 3

; R 

1 0 4
7

1
7

0 1 29
7  5

7

0 0 0 0
0 0 0 0
0 0 0 0
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29. A 

3 2 1 2
7 4 3 6
1 0 5 1
9 6 3 8
4 3 4 9

; R 

1 0 5 0
0 1 8 0
0 0 0 1
0 0 0 0
0 0 0 0

30. A 

5 3 2 7
3 2 1 4
3 4 3 18
9 1 1 17
1 2 2 16

; R 

1 0 0 2
0 1 0 3
0 0 1 4
0 0 0 0
0 0 0 0

31. A 

12 2 3 13 5
6 1 2 11 3
18 3 4 15 0
6 1 1 16 7
12 2 2 4 1

; R 

1 1
6 0 7

6 0

0 0 1 9 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

32. A 

2 4 8 5 2
1 2 4 3 1
3 5 7 1 0
1 0 6 0 5
4 6 6 1 2

; R 

1 0 6 0 5
0 1 5 0 3
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

33. A 

3 2 1 2 5
7 4 3 6 6
1 0 5 1 3
9 6 3 8 9
4 3 4 9 7

; R 

1 0 5 0 0
0 1 8 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

34. A 

2 3 13 1 12 13
1 2 11 3 19 17
3 4 15 2 20 18
1 1 16 2 11 4
2 2 4 1 1 1

; R 

1 0 7 0 2 4
0 1 9 0 1 6
0 0 0 1 5 3
0 0 0 0 0 0
0 0 0 0 0 0
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For Exercises 35 to 45: Use The Minimizing Theorem to find a subset S / of the set S so that
S / is as small as possible and SpanS  SpanS / . Next, express the vectors in S  S / as linear
combinations of the vectors in S /. Use technology to compute the rrefs, if permitted by your
instructor.

35. The set S in Exercise 5.
36. The set S in Exercise 6.
37. S  v1, v2, v3, v4, v5    1, 14, 9, 2, 1,3, 4,7,13, 1, 5, 2, 1,4,5 
38. S  v1, v2, v3, v4, v5    1, 4,3, 4,2, 10, 6, 3,15, 1,5, 2, 3, 2, 7 

39. S  v1, v2, v3, v4, v5 
  3,2, 5, 1, 2, 6, 3,4, 2,28,2, 18, 2,37, 5, 24, 0,22, 1, 14 

40. S  v1, v2, v3, v4, v5, v6 
  2,1, 3,1, 5,3, 1, 0, 6, 5, 17,7, 1, 0,1, 2, 1, 1, 2,2, 15, 10,2, 10 

41. S  v1, v2, v3, v4, v5, v6 
  1, 0,1, 2, 1, 1, 2,2, 3, 8, 11,6, 5,3, 1, 0, 18,5, 13,4, 11,3, 4, 2 

42. S  v1, v2, v3, v4, v5    3, 2, 5,1, 7, 2,3,4, 1, 6, 6,4,10, 2,14,
1,5,9, 2,1, 4,19,30, 7, 16 

43. S  v1, v2, v3, v4, v5    3,2, 5,1, 3, 2, 3,4, 1,2, 6, 1, 8,1, 6,
1,5, 2, 2,1, 7,4,4, 9,7 

44. S  v1, v2, v3, v4, v5, v6    3,2, 1, 2, 0, 2, 1, 0,3, 2, 5,4, 3, 0, 2,
9, 6,3,6, 4, 3, 1,1, 1,1, 8, 1, 0,3, 3 

45. S  v1, v2, v3, v4, v5, v6    3,2, 1, 2, 0, 2, 1, 0,3, 2, 5,4, 3, 0, 2,
1, 1,1, 1, 2, 3, 1,1, 1,1, 1, 1, 0, 3,2 

46. Consider the set: S  v1, v2  4, 5,2, 6, 7, 3  3, and let e1, e2, e3 be the
standard basis vectors for 3, as usual.
a. Explain why S is linearly independent.
b. Find the Cartesian equation of the plane   Spanv1, v2
c. Which of the standard basis vectors, if any, are in SpanS?

The rest of this Exercise concerns the application of The Extension Theorem:
d. Is S /  v1, v2, e1 still linearly independent? Why or why not?
e. Is S //  v1, v2, e2 still linearly independent? Why or why not?
f. Is S ///  v1, v2, e3 still linearly independent? Why or why not?

47. Consider the set:

S1  v1, v2, v3   3,2, 5, 4,6, 3, 4, 5, 4,6, 3,2, 2, 4,6,

and let e1, e2, e3, e4, e5 be the standard basis vectors for 5, as usual.

a. Show that S1 is linearly independent. (take this opportunity to look at the similarities
among the vectors in S)

b. Is S2  v1, v2, v3, e1 still linearly independent?
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c. Is S3  v1, v2, v3, e2 still linearly independent?
d. Is S4  v1, v2, v3, e3 still linearly independent?
e. Is S5  v1, v2, v3, e1, e5 still linearly independent? Think carefully!

48. Let v1  5,3, 4, 2,6,1, v2  3,4, 2, 5,7, 1 and v3  5, 10, 6,17, 11,9.
a. Form the matrix A  v1 v2 v3 e1 e2 e3 e4 e5 e6 
b. Find the rref R of A. Use technology if allowed by your instructor.

Now, decide which of the following sets are linearly independent, and explain why:
c. v1, v2, v3, e1 
d. v1, v2, v3, e1, e2 
e. v1, v2, v3, e1, e3, e4 
f. v1, v2, e1, e2, e3, e4 
g. v2, v3, e1, e2 

49. Use the Dependent Sets from Spanning Sets Theorem to give a different proof that a set S of n
vectors from m is linearly dependent if n  m. Hint: express m as a Span of a set of vectors.
Which set could you use?

50. Prove that if S  v1, v2,  , vn is a linearly independent set from m, then vn is not a member
of Spanv1, v2,  , vn1. Hint: Use Proof by Contradiction. This is basically the converse of
The Extension Theorem.

51. Complete the last part of The Equality of Spans Theorem:
Suppose that every w j can also be written as a linear combination of the v1 through vn. Show that
every member of Spanw 1, w 2, , wm is likewise a member of Spanv1, v2,  , vn.
Imitate the proof of the first part found in the text, but be careful not to confuse m and n.

52. Prove The Elimination Theorem: Suppose that S  v1, v2,  , vn is a linearly dependent set
of vectors from m, and vn  c1v1  c2v2   cn1vn1. Then:

SpanS  SpanS  vn.

More generally, if c1v1  c2v2   cn1vn1  cnvn  0 m, where none of the coefficients in
the dependence equation is 0, then SpanS  SpanS  vi, for all i  1. . n. Hint: Use the
Equality of Spans Theorem.

53. True or False: Determine whether each statement is true or false, and briefly explain your
answer by either applying a Theorem or providing a counterexample or a convincing argument.
a. If S has 5 non-zero vectors, then any set of 4 vectors from SpanS will always be linearly

independent.
b. If S has 5 non-zero vectors, then any set of 7 vectors from SpanS will always be linearly

dependent.
c. If S has 9 non-zero vectors, then any set of 9 vectors from SpanS will always be linearly

independent.
d. If a set of 7 vectors from SpanS is linearly independent, then S has at least 7 vectors.
e. If a set of 7 vectors from SpanS is linearly independent, then S has exactly 7 vectors.
f. If a set of 7 vectors from SpanS is linearly independent, then S has at most 7 vectors.
g. If a set of 5 vectors from SpanS is linearly dependent, then S has at least 5 vectors.
h. If a set of 5 vectors from SpanS is linearly dependent, then S has exactly 5 vectors.
i. If a set of 5 vectors from SpanS is linearly dependent, then S has at most 5 vectors.
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1.7 Subspaces of Euclidean Spaces; Basis and Dimension

We know that the sum of two integers is again an integer, and similarly, the sum of two rational
numbers is again a rational number. We say that the set of integers is closed under addition, and so is
the set of rational numbers. Similarly, we want to define special subsets of Euclidean space that have
analogous closure properties:

Definition: A subspace W of n is a non-empty subset of vectors of n such that if u,
v  W, and r   , then we also have:

u  v  W and r  v  W.

We say W is closed under vector addition and scalar multiplication, and write:

W  n

to indicate that W is a subspace of n. We call n the ambient space of W.

The symbol  is a stylized version of the subset symbol . We also say informally that “W lives in
n. ” Next, let us see that any subspace contains a familiar friend:

Theorem: The zero vector 0n is always a member of any subspace W  n.

Proof: Since W is not empty, W has at least one member, say v. But any scalar multiple of vmust be a
member of W, so 0  v  0n is a member of W also.

Next, any n has at least two subspaces (we leave the proof as an Exercise):

Definition/Theorem: For any n, there are two trivial subspaces:
(1) the subspace 0n consisting only of the zero vector, and (2) all of n itself.

The opposite of trivial is non-trivial or proper. Now let us look at one particular non-trivial Example
that we have already seen.

Span(S) as a Subspace

The primary example of a subspace of n is the Span of a set of vectors:

Theorem: If S  u1, u2,  , uk is a non-empty set of vectors from n, then W  SpanS
is a subspace of n.

Proof: First, W is non-empty since it contains u1, u2,  , uk. Next, we have to show that W is closed
under vector addition and scalar multiplication. This means that the sum of two linear combinations of
this set of vectors is again a linear combination of the same set, and a scalar multiple of a linear
combination of this set is again a linear combination of the same set.
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Once again, we just need to write this symbolically, using proper notation. Let us write two arbitrary
vectors in SpanS as: v  c1u1  c2u2   ckuk, and w  d1u1  d2u2   dkuk. Thus:

v  w  c1u1  c2u2   ckuk   d1u1  d2u2   dkuk 

 c1u  d1u1  c2u2  d2u2   ckuk  dkuk

 c1  d1 u1  c2  d2 u2   ck  dk uk,

which is again a linear combination from S. Notice that we used the Associative, Commutative and
Distributive Properties of vector arithmetic. Similarly:

rv  rc1u1  c2u2   ckuk   rc1u1   rc2u2    rckuk 

 rc1 u1  rc2 u2   rck uk,

is a linear combination from S. This time, we used the Distributive Property and the Associative
Property of Scalar Multiplication. Thus, SpanS is closed under addition and scalar multiplication.

Examples: In 2, we already know the two trivial subspaces: 02 and 2. Now, if v is any
non-zero vector, then Spanv is a line L passing through the origin:

 y

x21






1
2

 3 4

.

L = Span ({ v })

.

A Line Through the Origin is a Subspace of 2

Thus L is a subspace of 2. Similarly, in 3, we have the trivial subspaces 03 and 3. If v is a
non-zero vector, then Spanv is again a line L passing through the origin, and if v and w are
non-zero, non-parallel vectors, then Spanv, w  is a plane  passing through the origin:

 

.

v 

u

z

y
x

.

v 

L Span  v 

.

z

y
x

Span  u, v 

Lines or Planes Through the Origin are Subspaces of 3. 
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Basis for a Subspace

We encountered the standard basis e1, e2, . . . , en  for n in Section 1.1, and saw that any vector in
n can be expressed as a linear combination of these vectors in exactly one way. We will now set the
stage to generalize this concept:

Definition: A basis for a non-zero subspace W  n is a non-empty set of vectors
B  w 1, w 2,  , w k  W which Spans W and is also linearly independent.

Since SpanB includes the vectors w 1, w 2, . . . , w k, it is clear that these vectors must automatically
belong to W to begin with. We will also agree that the trivial subspace 0n does not have a basis,
because any set containing 0n (which is the only possible candidate) is automatically dependent.

Example: Since we know that the “standard basis” e1, e2,  , en  is linearly independent and Spans
n, this set is a basis for n, according to our definition above. 

Example: If L  Spanv is any line through the origin of n, where v  0n, then any vector in L
has the form k  v, for some scalar k. Thus, v is a basis for L.
Now, suppose  is the plane  through the origin in 3 given by:

 : 3x  5y  2z  0.

To find a basis for , we need to find a set of vectors that Spans  and is also linearly independent.
But notice that we can think of this single equation as a homogeneous system of one equation in three
variables, and therefore it is consistent with two free variables, which in this case are y and z.

Solving for the leading variable x, we get: x  5
3 y  2

3 z. Thus we have:

x, y, z  5
3 y  2

3 z, y, z  5
3 y, y, 0   2

3 z, 0, z  y
3 5, 3, 0  z

3 2, 0, 3.

This shows that every vector on  is a linear combination of the vectors 5, 3, 0 and 2, 0, 3, and
thus these two vectors Span . But we can see immediately that these two vectors are not parallel,
and so they are linearly independent. Thus, a possible basis for  is:

B   5, 3, 0, 2, 0, 3.
We note that this is not the only basis for . In fact, there are an infinite number of choices for B. 

A Basis for Span(S)

So far, we have been working with very simple examples, that is, lines or planes through the origin. In
our constructive Theorem above, though, we now know that every subspace W of n can be written as
SpanS, so we will next focus our attention on how to efficiently construct a basis for SpanS,
whenever possible. Let us start with the easiest case:

Theorem: The set B  w 1, w 2,  , w k is a basis for W  SpanB if and only if B is
linearly independent.
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Proof:  If B is a basis for W, then B Spans W and is linearly independent.
 Conversely, if B is linearly independent, and W  SpanB, then B is a basis for W. 

Example: Suppose S   1, 7, 3,8, 2, 4,2, 5, 3,4. The two vectors in S are from 5 and are
obviously not parallel to each other. Therefore, S is linearly independent. Thus, S is a basis for
W  SpanS, a subspace of 5. 

With more than two vectors, though, there is a lot more work to do in order to check whether or not S
is already linearly independent. However, The Minimizing Theorem from Section 1.6 tells us that if
we assemble the vectors of S into the columns of a matrix A, and S / are the columns of A
corresponding to the columns of the rref R of A that contain the leading 1’s, then:

SpanS  SpanS / .

Moreover, this Theorem also says that S / is linearly independent, and thus S / is a basis for
W  SpanS. We can thus rephrase this Theorem as follows:

Theorem — The Minimizing Theorem (Basis for a Subspace Version):
Suppose S  w 1, w 2,  , w k  n, and W  SpanS. If A  w 1 w 2  w k , and R
is the rref of A, then the columns of A corresponding to the leading columns of R form a
basis for W.

Example: Suppose W  SpanS, where:

S  w 1, w 2, w 3   11,13,8, 17, 4, 7, 3,6, 10,5,7, 16   4.

We assemble these vectors as the columns of a 4  3 matrix:

A 

11 4 10
13 7 5
8 3 7
17 6 16

with rref R 

1 0 2
0 1 3
0 0 0
0 0 0

.

The leading 1’s of R are in the 1st and 2nd columns, and thus a basis for SpanS is:

B   11,13,8, 17, 4, 7, 3,6,
the corresponding columns in A. Notice that the coefficients in column 3 tell us how the 3rd vector is a
linear combination of the first two:

10,5,7, 16  211,13,8, 17  34, 7, 3,6. 

Constructing a Basis for Any Subspace

We already know that n itself has a basis, namely the standard basis e1, e2,  , en , and we saw
above that it was easy to find a basis for a plane through the origin, or for W  SpanS. However,
suppose that W is not given as the solution to an equation or as the Span of a set of vectors.
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The following Theorem tells us that for any non-zero subspace W of n, we can always construct a
basis for W, one vector at a time:

Theorem — Existence of a Basis Theorem:
If W is any non-zero subspace of n, then there exists a basis B  w 1, w 2,  , w k  W
for W. In other words, we can write:

W  SpanB  Spanw 1, w 2,  , w k,

where B is a linearly independent set that Spans W. Furthermore, we must have k  n.

Proof: We will prove this Theorem by explicitly constructing a basis for W using repeated applications
of The Extension Theorem. Since W is not the zero subspace, we can pick any non-zero vector
w 1  W, and form the set S1  w 1 . Since w 1 is a non-zero vector, S1 is independent. Now, if
W  SpanS1 , then we are finished. Otherwise, consider any w 2  W which is not a member of
SpanS1 . The new set S2  w 1, w 2 must be linearly independent by The Extension Theorem. We
ask again if W  SpanS2 . If so, we are done, otherwise we extend S2 using another vector w 3  W
which is not in SpanS2 , thus producing another independent set S3  w 1, w 2, w 3.
In general, let us proceed by Induction: suppose we have constructed a linearly independent subset
S i  w 1, w 2,  , w i of W. If W  SpanS i , then we are done, otherwise we find another vector
w i1  W which is not in SpanS i , and create the extended set S i1  S i  w i1, which is still
independent by the Extension Theorem. Since any subset of n with n  1 vectors is linearly
dependent, this process must terminate with some set Sk  w 1, w 2,  , w k, for some k  n, which
is linearly independent and Spans W. Thus Sk is a basis for W. 

This Theorem tells us that in fact every subspace of n can be written as the Span of a set of vectors.
Since we know exactly what the Spans of vectors look like in 2 and 3, we can now formally list all
their subspaces:

Theorem — The Subspaces of Euclidean 2-Space and 3-Space:
The only subspaces of 2 are:
(a) the zero subspace 02 ,

(b) the lines through the origin, and
(c) all of 2.
Similarly, the only subspaces of 3 are:
(a) the zero subspace 03 ,

(b) the lines through the origin,
(c) the planes through the origin, and
(d) all of 3.

Let us take a second look at our proof concerning the existence of a basis for a subspace W  n.
Since we randomly choose the vectors w 1, then w 2, and so on, to form our basis, it is certainly possible
to create two completely different bases (the plural of basis, but pronounced bay-sees) for W. In fact,
there are an infinite number of them. However, they all have something in common.
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The Dimension of a Subspace

We said in Section 1.1 that we call n the dimension of n. We intuitively think of a line as a
one-dimensional object. We think of the Cartesian plane, or any plane for that matter, as a
two-dimensional object, and the universe that we live in as three-dimensional space. The notion of
dimension is therefore of fundamental importance in Linear Algebra (and in fact, most of
Mathematics), and we are now ready to rigorously define this concept:

Theorem/Definition — The Dimension of a Subspace:
If B and B / are any two bases for the same non-zero subspace W  n, then B and B /

contain exactly the same number of vectors. We call this number the dimension of W, and
we write dim(W) k. We also say that W is k-dimensional.
We agreed that the trivial subspace 0n does not have a basis. By convention,
dim 0n  0. Conversely, dimW is a positive integer for a non-zero subspace W.

Proof: By the Independent Sets from Spanning Sets Theorem from Section 1.6, a linearly
independent subset of W  SpanS has at most as many members as a Spanning subset S for W.
However, both B and B / are bases, and so both sets are linearly independent and Span W. Thus, the
number of members of B is at most the number of members of B /. Similarly, the number of elements
of B / is at most the number of elements of B. Hence, they have the same number of elements.

Example: Since the set S  e1, e2, . . . , en  is a basis for n, we can now formally say that
dimn  n.

Example: Suppose that  is the plane 3x  5y  2z  0 from our second Example. We saw that the
set  5, 3, 0, 2, 0, 3 is a basis for . Thus, dim  2, that is,  is a 2-dimensional subspace
of 3. This matches our intuition of a 2-dimensional object is: one that is flat and lacking depth.
Similarly, if L is the normal line to , then L  Span3,5, 2, and so L is a 1-dimensional
subspace of 3. Again, this matches our intuition of a line as a 1-dimensional object.

Example: We saw that if W  SpanS, where:
S  w 1, w 2, w 3   11,13,8, 17, 4, 7, 3,6, 10,5,7, 16 ,

then B   11,13,8, 17, 4, 7, 3,6 is a basis for W. Note that S has three vectors in it, but the
basis B only has two. Thus, W is only 2-dimensional.

More generally, the Minimizing Theorem tells us that if S  w 1, w 2,  , w k  n and
W  SpanS, then W is at most k-dimensional. The exact value of dimW is the number of leading
ones in the rref R of the n  k matrix A  w 1 w 2  w k .

Example: Suppose that W  SpanS, where:
S   3,2, 5, 4, 1,6, 5,3, 6, 3, 2,8, 11, 5,2, 11,6, 8,

2, 1,4,2, 0, 6, 4, 1,1, 7,1, 6   6.
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Since S has 5 vectors, we can only say at this point that W is at most 5-dimensional. To find its true
dimension, we assemble these five vectors from 6 into the columns of the 6  5 matrix:

A 

3 5 11 2 4
2 3 5 1 1
5 6 2 4 1
4 3 11 2 7
1 2 6 0 1
6 8 8 6 6

, with rref: R 

1 0 8 0 5
0 1 7 0 3
0 0 0 1 2
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

.

We see that the leading columns are columns 1, 2 and 4, and thus:

B   3,2, 5, 4, 1,6, 5,3, 6, 3, 2,8, 2, 1,4,2, 0, 6 
is a basis for W. We can also conclude that W is 3-dimensional.

1.7 Section Summary

A subspace W of n is a non-empty subset of vectors of n such that if u, v  W, and if r  , then
u  v  W also, and rv  W also.
We say that W is closed under vector addition and scalar multiplication, and write W  n to indicate
that W is a subspace of n. We call n the ambient space of W.
The zero vector 0n is always a member of any subspace W  n.
If S  u1, u2, . . . , uk  n is a non-empty set, then W  SpanS is a subspace of n.
A basis for a subspace W  n is a set of vectors B  w 1, w 2,  , w k which Spans W and is also
linearly independent.
The set B  w 1, w 2,  , w k is a basis for W  SpanB if and only if B is linearly independent.
The Minimizing Theorem — Basis for a Subspace Version: Suppose S  w 1, w 2,  , w k  n,
and W  SpanS. If A  w 1 w 2  w k is the matrix with the vectors assembled in columns, and
R is the rref of A, then the columns of A corresponding to the leading columns of R form a basis for
W. Consequently, dimW is the number of leading ones of R, and dimW  k.
If W is any non-zero subspace of n, then there exists a basis B  w 1, w 2,  , w k  W for W. In
other words, we can write W  SpanB, where B is a linearly independent set that Spans W.
Furthermore, we must have k  n.

The only subspaces of 2 are: (a) 02 , (b) a line through the origin, and (c) all of 2.

The only subspaces of 3 are: (a) 03 , (b) a line through the origin, (c) a plane through the origin,
and (d) all of 3.
If B and B / are any two bases for the same non-zero subspace W  n, then B and B / contain exactly
the same number of vectors. We call this number the dimension of W, and we write dim(W) k. We
also say that W is k-dimensional.

By convention, W  0n has no basis, and dim 0n  0. Conversely, dimW is a positive
integer for a non-zero subspace W.
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1.7 Exercises

1. Find a basis for the line through the origin in 2 with equation y  5
7 x, consisting of a single

vector with integer coordinates, whose entries are as small as possible.

2. Explain why the line with equation y  3
4 x  2 is not a subspace of 2.

3. Find a basis for the plane  : 3x  7y  4z  0 in 3, consisting of two vectors with integer
coordinates, where one component in each vector is 0. There is more than one correct answer.

4. Find a basis for the plane  : 2x  5z  0 in 3, consisting of two vectors with integer
coordinates, where at least one component in each vector is 0.

5. Explain why the plane with equation 5x  2y  8z  7 is not a subspace of 3.

For Exercises 6 to 13: State a basis for W  SpanS, where S is the set of vectors in the
indicated Exercise from Section 1.6, and state dimW. You may use your computations or the
Answer Key for Section 1.6:

6. Exercise 29.

7. Exercise 30.

8. Exercise 31.

9. Exercise 32.

10. Exercise 33.

11. Exercise 34.

12. Exercise 35.

13. Exercise 36.

For Exercises 14 to 25: Use the Minimizing Theorem (Basis for a Subspace Version) to find
a basis for the subspace W  SpanS, for each of the sets S below. State dimW. Use
technology if permitted by your instructor.

14. S   5,3, 6, 7, 3,1, 4, 5, 5, 1, 8, 11, 1, 5, 4, 7 

15. S   5,3, 6, 7, 3,1, 4, 5, 7,9, 6, 5, 5, 1, 8,3 

16. S  5,3, 6, 7, 3,1, 4, 5, 7,5, 8, 9, 1, 3,1, 1, 1, 3,9, –7

17. S   7, 5,4, 3, 9, 4, 3,2, 1, 5, 3, 1,4, 7, 5, 8,7, 2, 3,9 

18. S   7, 5,4, 3, 9, 4, 3,2, 1, 5, 1, 2, 2,6, 0, 4, 3,5, 9, 5, 5, 2, 0,6, 8 

19. S   7, 5,4, 3, 9, 4, 3,2, 1, 5, 4, 3,5, 4, 5, 4, 5,16, 9, 3, 2, 3,7, 2, 1 

20. S   5,3, 7,4, 6, 3, 9,7, 8,9, 4, 7, 4,5,3,6,7, 5,

3, 2, 14, 2, 19,2, 7,6,1,7,3, 6

21. S   7,3, 4, 2,5, 2, 5,2, 3, 3,4, 1, 5,3, 2,8,1, 4,

7,4, 3,9,2, 5, 4, 1,3,8, 5, 1

122 Section 1.7 Subspaces of Euclidean Spaces; Basis and Dimension



22. S   7,3, 4, 2,5, 2, 5,2, 3, 3,4, 1, 5,3, 2,8,1, 4,
6,4, 3,9,2, 5, 4, 1,3,8, 5, 1

Note: the only change from the previous Exercise is in the 1st component of the 4th vector, which
was changed from 7 to 6.

23. S   7,3, 4, 2,5, 2, 5,2, 3, 3,4, 1, 5,3, 2,8,1, 4,
7,4, 3,9,2, 5, 4, 1,3,2, 4,1, 1,5,4,1, 6, 0

Note: the first three vectors are identical to those in the last two Exercises.

24. S   7,3, 4, 2,5, 2, 5,2, 3, 3,4, 1, 5,3, 2,8,1, 4,
8,4, 3,9,2, 5, 4, 1,3,2, 4,1, 1,5,4,1, 6, 0

Note: The only change from the previous Exercise is in the 1st component of the 4th vector,
which was changed from 7 to 8.

25. S   7,3, 4, 2,5, 2, 5,2, 3, 3,4, 1, 5,3, 2,8,1, 3,
8,4, 3,9,2, 5, 4, 1,3,2, 4,1, 1,5,4,1, 6, 0

Note: The only change from the previous Exercise is in the last component of the 3rd vector,
which was changed from 4 to 3.

26. Show that W   x, y, z  3 |y  0 is a subspace of 3. Describe in words what this
subspace is. Find a basis for W consisting of vectors with integer coordinates, and state its
dimension.

27. Show that W  x, y, z  3 |y  0 and z  0 is a subspace of 3. Describe in words what
this subspace is, and find a basis for W consisting of vectors with integer coordinates, and state its
dimension.

28. Suppose that W  x, y, z  3 |y  0 or z  0 . Decide whether or not W is a subspace of
3. Note the difference between this Exercise and the previous one.

29. Show that W  x1, x2, x3, x4   4 |x1  5x3 and x2  x4 is a subspace of 4. Find a
basis for W consisting of vectors with integer coordinates, and state its dimension.

30. Show that W  x1, x2, x3, x4, x5   5 |x2  5x3  6x4 and x1  7x5 is a subspace of
5. Find a basis for W consisting of vectors with integer coordinates, and state its dimension.

31. Explain why W  x1, x2, x3, x4   4 |x1  2x4  3 and x3  0 is not a subspace of 4.

32. Suppose that W  x1, x2   2 |x1 and x2 are integers . Decide if W is a subspace of 2.

33. Show that in any Euclidean space n: (a) The set 0n consisting only of the zero vector is a
subspace of n. (b) n is itself a subspace of n. Hint: show that both subsets are non-empty
and closed under vector addition and scalar multiplication.

34. Prove that for any subspace W of n: W  n if and only if dimW  n.
Hint: the forward direction is obvious. For the other direction, use Proof by Contradiction and The
Extension Theorem.

35. Prove that a non-empty subset U of n is a subspace of n if and only if U  SpanS for
some non-empty subset S of n. Warning: read this statement several times before attempting to

Section 1.7 Subspaces of Euclidean Spaces; Basis and Dimension 123



prove it. There is one special Case that you also have to treat separately.

36. Tying Up A Loose End: Prove the last Theorem from Section 1.2: If u, v and w  3 are three
non-parallel vectors which are not coplanar, that is, none of these vectors is on the plane
determined by the two others, then: Spanu, v, w   3.
In other words, any vector z  3 can be expressed as a linear combination: z  ru  sv  tw,
for some scalars r, s and t. Hint: interpret this Theorem in terms of basis and dimension. The
Extension Theorem can be useful.

37. Suppose that W  n with dimW  m, and S  w 1, w 2,  , wm is a subset of W. Prove that
S is a basis for W if and only if we can find at least one vector b  W such that the equation:

b  c1w 1  c2w 2   cmwm

has exactly one solution in c1, c2, . . . , cm. Hint: what does this say about the augmented matrix
that represents this equation? Which direction (forwards or backwards) is obvious?

38. Equivalent Conditions for a Basis of a Subspace: Suppose that W  n is a non-zero
subspace, and S  w 1, w 2,  , wm is any subset of W (we are not assuming that S is a basis
for W, and neither are we assuming that dimW  m). Prove the following statements:

a. S is a basis for W if and only if S is a maximal linearly independent subset of W. This
means that if S / is another subset of W, with more vectors than S, then S / must be linearly
dependent. Hint: use Proof by Contradiction and the Extension Theorem to show that S
must also Span W in the converse direction.

b. S is a basis for W if and only if S is a minimal Spanning set of W. This means that if S // is
another subset of W, with fewer vectors than S, then S // cannot Span W. Hint: use Proof by
Contradiction and the Elimination Theorem to show that S must also be linearly independent
in the converse direction.

c. S is a basis for W if and only if for every w  W, the equation:

w  c1w 1  c2w 2   cmwm

has exactly one solution in c1, c2, . . . , cm.
This is called the Uniqueness of Representation Property of a basis.
Note/Hint: Why is this different from Exercise 37?

d. Use (a) to show that dimW  k if and only if there exists a maximal linearly
independent subset of W consisting of k vectors.

e. Use (b) to show that dimW  k if and only if there exists a minimal Spanning subset of
W consisting of k vectors.

39. Nested Subspaces: Suppose that V and W are both subspaces of n. We say that V is a subspace
of W, and write V  W, if as subsets of n, V  W. We say that V is nested inside W, or that
V  W  n is a nesting of subspaces.

a. Let L be the line Span4,2,11, and  the plane 3x  5y  2z  0, both subspaces
of 3. Show that L    3.

b. Prove in general that if V  W  n, then dimV  dimW. Furthermore,
dimV  dimW if and only if V  W. Hint: imitate the proof of The Existence of a
Basis Theorem (starting with V), and use the Extension Theorem to construct a basis for W.
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1.8 The Fundamental Matrix Spaces

We will now define four important subspaces associated with any matrix:

Definitions/Theorem — The Four Fundamental Matrix Spaces:
Let A be an m  n matrix. The rowspace of A is the Span of the rows of A.
The columnspace of A is the Span of the columns of A.
The nullspace of A is the set of all solutions to Ax  0m:

rowspaceA  Span r1, r2,  , rm,
colspaceA  Spanc1, c2,  , cn, and

nullspaceA  x  n | Ax  0m ,

where r1, r2,  , rm are the rows of A (considered as vectors from n),
and c1, c2,  , cn are the columns of A (considered as vectors from m).
Let us define the transpose matrix operation, where A (“A transpose”) is the n  m matrix
obtained from A by writing row 1 of A as column 1 of A, writing row 2 of A as column 2 of
A, and so on. Consequently, column 1 of A becomes row 1 of A as well, and so on.
The fourth fundamental matrix space is:

nullspaceA   y  m | Ay  0n .

Under these definitions, the subspaces and the corresponding ambient spaces are:

rowspaceA  colspaceA   n, colspaceA  rowspaceA   m,
nullspaceA  n, and nullspaceA   m.

Proof: The rowspace and columnspace of A are expressed as Spans, and are therefore subspaces of
their respective ambient spaces. Since each row has n entries, and each column has m entries, we
obtain the ambient spaces: rowspaceA  n and colspaceA  m.
Thus, we only need to show that the nullspace of A is a subspace of n (the proof is similar for A.
The nullspace is non-empty, since it always contains 0n. Next, we must show that if x1 and x2 are both
members of the nullspace of A, and k is any scalar, then x1  x2 and kx1 are also members of the
nullspace. So suppose Ax1  0m and Ax2  0m. Then:

Ax1  x2   Ax1  Ax2  0m  0m  0m,

and similarly, Akx1   kAx1   k0m  0m. Thus x1  x2 and kx1 are both in nullspaceA.

We will now find a basis for each of these matrix spaces. As expected, the rref of A (and A) will be
useful, because of the following:

Theorem — Basis for the Rowspace:
Elementary row operations do not change the rowspace of a matrix. Thus, if B is obtained
from A using an elementary row operation, then rowspaceA  rowspaceB.
Consequently, if R is the rref of A, then the non-zero rows of R form a basis for
rowspaceA.
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The proof will be left as an Exercise. Next, we can rephrase The Minimizing Theorem from the
previous Section to help us describe the columnspace:

Theorem — The Minimizing Theorem (Basis for the Columnspace Version):
If an m  n matrix A has reduced row echelon form R, then the columns of A that correspond
to the leading columns of R form a basis for colspaceA.

Finally, we know that the rref R also lets us describe nullspaceA:

Ax  0m if and only if Rx  0m.
As in Section 1.5, we write the equations obtained from R and solve for the leading variables in terms
of the free variables. Recall that we were able to describe the solutions as a linear combination of
several vectors, where each vector in the linear combination corresponds to a free variable x i.
The vector we obtain from x i contains 1 in the ith component. However, there will be a zero in the ith
component of another vector corresponding to a different free variable x j of R. Thus, a linear
combination of these vectors can result in 0m if and only if all the coefficients are 0. Thus, these
vectors will Span the nullspace and will also be linearly independent. This proves the following:

Theorem — Basis for the Nullspace:
Let A be an m  n matrix with reduced row echelon form R. Then:

nullspaceA  nullspaceR.
Furthermore, if R has k free variables, then nullspaceA will be k-dimensional, and we
obtain a basis for nullspaceA by solving for the leading variables in terms of the free
variables, as usual. A similar equation applies to A and its rref.

Warning: We can directly use the entries of the rref of A to find a basis only for the rowspace and
nullspace of A. However, we have to go back to the original columns of A to find a basis for the
columnspace of A, using the leading ones to guide us.

Example: Suppose we have the matrix:

A 

5 7 1 5 6 0
3 4 1 4 3 1
1 2 1 2 3 3
2 4 2 4 5 2

with rref R 

1 0 3 8 0 5
0 1 2 5 0 7
0 0 0 0 1 4
0 0 0 0 0 0

.

The three non-zero rows of R form a basis for rowspaceA, and we write:

rowspaceA  Span1, 0, 3, 8, 0, 5 , 0, 1,2,5, 0,7 , 0, 0, 0, 0, 1, 4   6.

These rows are linearly independent because we only find zeroes above and below each leading 1.
Thus, to produce a linear combination that adds up to the zero vector, all coefficients must be zero. Let
us see this concretely: if we create the dependence test equation for these three vectors, we get:
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c1  1, 0, 3, 8, 0, 5 

 c2  0, 1, 2, 5, 0, 7 

 c3  0, 0, 0, 0, 1, 4   06.

If c1 were non-zero, we would have a non-zero entry in the 1st component, due to the leading 1 in row
1. Thus, c1 must be zero. By the same reasoning, c2 must also be zero because of the leading 1 in the
2nd component of the 2nd row. Finally, c3 must also be zero by the Zero-Factors Theorem.
We can also verify that each of the original rows of A can be expressed as a linear combination of
these three vectors. Again, thanks to the placement of the leading 1’s, we can easily eyeball the correct
coefficients. For example, row 1 of A can be written as:

5 7 1 5 6 0  5 1 0 3 8 0 5 

7 0 1 2 5 0 7  6 0 0 0 0 1 4 .

Thus, these three rows Span rowspaceA. Since we already know that they are linearly independent,
we have verified that they form a basis for rowspaceA.
Now let us investigate colspaceA. We will denote the original columns of A as c1 through c7. The
rref R tells us that the leading variables correspond to columns 1, 2 and 5, and the free variables
correspond to columns 3, 4, and 6. Thus, c1, c2 and c5 form a basis for colspaceA, and we write:

colspaceA  Spanc1, c2, c5  Span 5, 3, 1, 2, 7, 4, 2, 4, 6, 3, 3, 5  4.

Notice that we wrote the columns horizontally as vectors in 4. The Minimizing Theorem tells us that
not only are these three columns linearly independent, but we can also write c2, c4, c6 and c7 in terms
of these three columns, using the coefficients in these columns in R:

c3  3c1  2c2

c4  8c1  5c2, and
c6  5c1  7c2  4c5.

This verifies that c1, c2 and c5 Span colspaceA. Since we already know that they are linearly
independent, we have verified that they form a basis for colspaceA.
Next, to find a basis for nullspaceA, we set up the three homogeneous equations represented by R:

x1  3x3  8x4  5x6  0
x2  2x3  5x4  7x6  0

x5  4x6  0

The leading variables are x1, x2, and x5, and the free variables are x3, x4, and x6. We solve for the
leading variables in terms of the free variables:
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x1  3x3  8x4  5x6,
x2  2x3  5x4  7x6, and
x5  4x6.

Instead of using a parameter, such as x3  r, let us just use the names of the free variables. Thus, we
will write our solutions as:

x1, x2, x3, x4, x5, x6 

 3x3  8x4  5x6, 2x3  5x4  7x6, x3, x4,4x6, x6 

 3x3, 2x3, x3, 0, 0, 0  8x4, 5x4, 0, x4, 0, 0  5x6, 7x6, 0, 0,4x6, x6 

 x3 3, 2, 1, 0, 0, 0  x48, 5, 0, 1, 0, 0  x6 5, 7, 0, 0,4, 1 .

where the free variables x3, x4, and x6 can be any real numbers. Thus, the three vectors above Span
nullspaceA, and we write:

nullspaceA  Span 3, 2, 1, 0, 0, 0, 8, 5, 0, 1, 0, 0, 5, 7, 0, 0,4, 1  6.

If we were to arrange these four vectors on top of each other in a dependence test equation, just like we
did for the basis for rowspaceA, we can see that a similar pattern appears: there is a 1 in the
component corresponding to the free variable x i that produced that vector, and there are only zeroes
above and below that 1:

x3  3, 2, 1, 0, 0, 0 

 x4  8, 5, 0, 1, 0, 0 

 x6  5, 7, 0, 0, 4, 1   06.

Using the same logic as we applied to the rowspace, x3 has to be zero, otherwise we get a non-zero
entry in the 3rd component of the sum, thanks to the 1 in the 3nd component of the 1st vector. Now
that x3  0, we must also have x4  0 because of the 1 in the 4th component of the 2nd vector.
Finally, x6  0 thanks to the Zero-Factors Theorem. Thus, this set both Spans nullspaceA and is
linearly independent, and so we have a basis for nullspaceA.
Lastly, to find a basis for nullspaceA , we will need A and its rref:

A 

5 3 1 2
7 4 2 4
1 1 1 2
5 4 2 4
6 3 3 5
0 1 3 2

with rref R / 

1 0 2 0
0 1 3 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

.

If we refer to the four variables for the homogeneous system corresponding to A as y1 through y4, we
can set up the three equations:

128 Section 1.8 The Fundamental Matrix Spaces



y1  2y3  0
y2  3y3  0

y4  0

The leading variables are y1, y2 and y4, and the only free variable is y3. We solve for the leading
variables in terms of y3, and we get: y1  2y3, y2  3y3 and y4  0.
Thus, our solutions are:

y1, y2, y3, y4   2y3, 3y3, y3, 0  y3 2, 3, 1, 0 .

Our basis for nullspaceA  therefore consists of a single vector, and we write:

nullspaceA   Span 2, 3, 1, 0  4. 

Rank and Nullity

The dimensions of the Four Fundamental Matrix Spaces go by special names:

Definition/Theorem: Rank and Nullity:
Let A be an m  n matrix. The dimension of the nullspace of A is called the nullity of A.
The dimension of the rowspace of A is exactly the same as the dimension of the
columnspace of A, and we call this common dimension the rank of A.
Furthermore, since rowspaceA  colspaceA , and colspaceA  rowspaceA , we
can conclude that rankA  rankA .
We write these dimensions symbolically as:

rank(A)  dimrowspaceA  dimcolspaceA  rank(A),

nullity(A)  dimnullspaceA, and

nullity(A)  dimnullspaceA .

Proof: All we need to show is that dimrowspaceA  dimcolspaceA. We saw that the non-zero
rows of the rref R of A form a basis for rowspaceA. Thus, the dimension of rowspaceA is the
number of leading ones of R. However, the Minimizing Theorem says that the columns of A
corresponding to the leading ones of R form a basis for the columnspace of A. Thus, the dimension of
colspaceA is also the number of leading ones of R, and so these two dimensions are equal. 

Example: For the matrix in our previous Example, we found that:

rowspaceA  Span1, 0, 3, 8, 0, 5 , 0, 1,2,5, 0,7 , 0, 0, 0, 0, 1, 4 ,
colspaceA  Span 5, 3, 1, 2, 7, 4, 2, 4, 6, 3, 3, 5,

nullspaceA  Span 3, 2, 1, 0, 0, 0, 8, 5, 0, 1, 0, 0, 5, 7, 0, 0,4, 1, and
nullspaceA   Span 2, 3, 1, 0.
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We also showed in this Example that each set of vectors above is a basis for the corresponding matrix
space. Thus: rankA  3  rankA , nullityA  3 and nullityA   1. 

Simply staring at a matrix which is not in reduced row echelon form will usually not allow you to
correctly guess its rank or nullity. However, we can set some bounds on these dimensions:

Theorem/Definition — Bounds on Rank and Nullity:
Suppose A is an m  n matrix. Then:

0  rankA  rankA   minm, n,
n  m  nullityA  n, and m  n  nullityA   m.

We say that A has full-rank if rankA  minm, n.

The symbol min(m,n) means the smaller of the two values m and n. For example, min4, 7  4. We
leave the details of the proofs for these inequalities as an Exercise. Notice also that if m  n, then
n  m  0, and thus we effectively just get 0  nullityA  n, since nullity cannot be negative.
Likewise, if m  n, we just get 0  nullityA   m.

Example: If A is a 5  9 matrix, then 0  rankA  rankA   5  min5, 9. Since 9  5  4,
nullityA is between 4 and 9, inclusively. However, 5  9  4, and since nullityA  cannot be
negative, all we can conclude is that 0  nullityA   5. However, we already knew this since
nullspaceA   5. Thus, our bounds give us no additional useful information about nullityA .

The Dimension Theorem for Matrices

We now present one of the central Theorems of Linear Algebra:

Theorem — The Dimension Theorem for Matrices:
For any m  n matrix A:

rankA  nullityA  n, and similarly, rankA   nullityA   m.

Proof: If R is the rref of A, the rank of A is the number of leading 1’s of R, and the nullity of A is the
number of free variables. But since we have n variables, and every variable is either leading or free
(but not both), the first equation follows. A similar argument applies to A. 

Example: In the previous Example, A is a 4  6 matrix with rank 3 and nullity 3. The Dimension
Theorem is thus verified, since rankA  nullityA  3  3  6  n.
A is not a full-rank matrix, since min4, 6  4  3. 

Sight-Reading the Nullspace

We will now present a way to find a basis for the nullspace of a matrix by inspection, without having
to explicitly solve for our leading variables. Let us bring back the rref R and the basis that we found for
nullspaceA in the previous Example:
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R 

1 0 3 8 0 5
0 1 2 5 0 7
0 0 0 0 1 4
0 0 0 0 0 0

and
  3, 2, 1, 0, 0, 0 ,

 8, 5, 0, 1, 0, 0 ,
 5, 7, 0, 0, 4, 1  .

We begin by identifying the leading ones in the rref, which are highlighted, and the free variables, as
usual. Our free variables are x3, x4, and x6. This tells us that we will need three vectors in our basis,
corresponding to each free variable. We create a skeleton for these three vectors and write them on
separate lines so we can align the six components properly. For each vector, place a one on the entry
corresponding to the free variable, and put a zero on the entries above and below this one on the other
vectors, because free variables do not affect each other. Put a zero as well on all coordinates to the
right of each one, because a free variable only affects a leading variable to its left. For example, x4
only affects x1 and x2, but not x5. Leave the other entries blank for now:

  __, __, 1, 0, 0, 0 ,
 __, __, 0, 1, 0, 0 ,
 __, __, 0, 0, __, 1  .

The entries in the 3rd column of R appear in the 1st basis vector for the nullspace, but with the
opposite signs, in the 1st and 2nd components. This happens because we solve for x1 and x2 from the
homogeneous system, thus x3 moves to the other side of the equation. Similarly, the entries in the 4th
column of R appear in the 2nd basis vector, again in the 1st and 2nd components, but with opposite
signs. Finally, the entries in the 6th column of R appear in the 3rd basis vector, but with the opposite
signs, in the 1st, 2nd and 5th components.
In general, the entries in column i corresponding to the free variable x i will appear in a single basis
vector for nullspaceA, in the component corresponding to the leading one on that row, but with the
opposite sign. Thus, the “4” on column 6 appears as 4 in the 5th component of the final basis vector,
because the leading 1 on the row containing 4 is in the 5th column. In this way, we complete our basis
for nullspaceA without having to solve the corresponding homogeneous system: just remember to
reverse the signs and place the entry in the correct component. As a final check, the numbers appearing
vertically in column i of R must now appear horizontally in the basis vector corresponding to x i.

The General Solution of Ax  b

The columnspace and nullspace of A are important because they are intrinsically connected to any
matrix equation Ax  b. The following can be proven using the Gauss-Jordan algorithm and two
equivalent Theorems in Section 1.5, so we leave its proof as an Exercise:

Theorem — The Columnspace Test for Consistency:
The matrix equation Ax  b is consistent if and only if b is a member of colspaceA.
Furthermore, if Ax  b is consistent, suppose xp is a fixed solution (also called a particular
solution) of this system. Then, a vector x is a solution of this system if and only if it can be
written in the form: x  xp  xh, where xh is a member of nullspace(A).
Consequently, if x and y are any two solutions to Ax  b, then x  y  nullspaceA.
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Recall that in Section 1.2, we defined the translate of a Span of vectors in 2 and 3. Since all
subspaces of n can be expressed as SpanB for some basis B, we will make the following equivalent
definition:

Definition: If b is a fixed vector of n, and W is a subspace of n, then:
b  W  b  w | w  W is called a translate of the subspace W.

From the Theorem above, the set of all solutions to Ax  b is a translate of the nullspace of A, and we
can rewrite part of the previous Theorem as follows:

Theorem: If b is a member of colspaceA, the set X of all solutions x to Ax  b is a
translate of nullspace(A), that is:

X  xp  nullspaceA,
where xp is a fixed or particular solution for Ax  b.

Example: Let us consider the system given by the augmented matrix:

A |b 

3 15 5 1 3 | 2
2 10 3 2 2 | 3
4 20 5 8 3 | 5
2 10 4 2 2 | 2

, with rref R 

1 5 0 7 0 | 3
0 0 1 4 0 | 5
0 0 0 0 1 | 6
0 0 0 0 0 | 0

.

The system is consistent, the leading variables are x1, x3 and x5, and the free variables are x2 and x4.
We solve the equations:

x1  5x2  7x4  3
x3  4x4  5

x5  6

for x1, x3 and x5, and we obtain the solutions:

x1, x2, x3, x4, x5   3  5x2  7x4, x2, 5  4x4, x4, 6 

 3, 0, 5, 0, 6   x2 5, 1, 0, 0, 0  x4 7, 0,4, 1, 0 ,

where x2 and x4 are free. Thus, our particular solution can be xp  3, 0, 5, 0, 6 . Notice that 3, 5 and
6 are precisely the numbers on the right side of the rref. They appear in xp, but take note of their
locations. They are found exactly in the entry for the corresponding leading variable on that row.
If we ignore the rightmost column of R, we can sight-read a basis for the nullspace of A:

nullspaceA  Span 5, 1, 0, 0, 0 , 7, 0,4, 1, 0 .

Notice that these are the same vectors that appear in the other two terms of our solutions. We verify
that they are not parallel, so they are linearly independent and thus form a basis for nullspaceA. We
can thus write:

xh  x2 5, 1, 0, 0, 0  x4 7, 0,4, 1, 0 .
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Therefore, we can write our solution set X to Ax  b as:

X  xp  nullspaceA  3, 0, 5, 0, 6   Span 5, 1, 0, 0, 0 , 7, 0,4, 1, 0 .

As a bonus, we verify the Dimension Theorem for the 4  5 matrix A: rankA  3, nullityA  2,
and 3  2  5, the number of columns of A. 

Properties of Full-Rank Matrices

Systems of linear equations involving full-rank matrices have special qualities, depending on their size:

Examples: Let us look at some full-rank matrices from each type according to size. Consider:

A1 

3 5 6 2
2 6 4 3
4 7 7 5

, A2 

3 5 2
2 6 3
4 7 5

, and A3 

3 5 2
2 0 4
1 3 3
5 6 5

.

A1 is a 3  4 matrix (underdetermined), A2 is a 3  3 matrix (square), and A3 is a 4  3 matrix
(overdetermined). Thus, any of them would be of full rank if and only if their rank is 3. Thus, we
want to see 3 leading 1’s in all the rrefs. Now, let us try to solve the systems:

A1x 
1
4
5

, A2y 
1
4
5

, and A3z 

1
4
2
3

.

For the first system, we form the augmented matrix:

3 5 6 2 | 1
2 6 4 3 | 4
4 7 7 5 | 5

with rref R1 

1 0 7 0 | 4
0 1 3 0 | 3
0 0 0 1 | 2

.

We see three leading 1’s, so indeed A1 has full rank. This system is consistent, and in fact we have an
infinite number of solutions because x3 is a free variable. We can also conclude in this case that
A1x  b is solvable for any b  3, likewise with an infinite number of solutions, because the rref of

A1 |b will have exactly the same left side regardless of which b we put on the right side.

Similarly, let us solve the 2nd system using the augmented matrix:

3 5 2 | 1
2 6 3 | 4
4 7 5 | 5

with rref R2 

1 0 0 | 4
0 1 0 | 3
0 0 1 | 2

.
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Notice that A2 is just A1 but we deleted the 3rd column of A1. Since the other three columns are
linearly independent, as seen in the columns of R1, they remain independent when we assemble them
in A2. Again, we have three leading 1’s, so A2 is also of full rank. But this time, we do not have any
free variable, and so the solution y  4,3,2 is unique. Notice also that the left side of R2 is I3,
and the rref of A2 |b will contain I3 on the left side for any b  3. Thus, the system A2y  b will
have exactly one solution for any b  3.
Finally, let us form the augmented matrix:

3 5 2 | 1
2 0 4 | 4
1 3 3 | 2
5 6 5 | 3

with rref R3 

1 0 0 | 8
0 1 0 | 3
0 0 1 | 5
0 0 0 | 0

.

Again, we have three leading 1’s, and so A3 is also of full rank. There are no free variables in R3 either,
but notice that there is a row of zeroes. The system is still consistent, though, and the solution
z  8,3, 5 is also unique. The row of zeroes on the left side, though, should tell us that there will
be systems A3 |b which are inconsistent. For example, let us change just one component on the
final column (say, change 4 to 5, which we show boxed below), and we get the augmented matrix:

3 5 2 | 1

2 0 4 | 5

1 3 3 | 2
5 6 5 | 3

with rref R4 

1 0 0 | 0
0 1 0 | 0
0 0 1 | 0
0 0 0 | 1

.

Notice that the right-hand column of R4 is now completely different from that of R3. More
significantly, the bottom row now tells us that this new system is inconsistent.
In fact, since colspaceA3   4 and rankA3   3  4, there will be an infinite number of vectors
b  4 which are not in colspaceA3 , and for these vectors, A3 |b is inconsistent.

Let us generalize our observations above in the following, whose proof is an Exercise:

Theorem — Linear Systems with a Full-Rank Coefficient Matrix:
Suppose that A |b is an augmented matrix, where A is an m  n full-rank matrix. Then:

1. If m  n (the system is underdetermined), then the system is consistent for any
b  m, and furthermore, the system always has an infinite number of solutions.

2. If m  n (the system is square), then the rref of A is In, and the system is consistent
for any b  n.
Furthermore, the system has exactly one solution for every b  n.

3. If m  n (the system is overdetermined), and the system is consistent, then it has
exactly one solution. However, there are an infinite number of vectors b  m

for which the system is inconsistent.
Thus, we can also say that an overdetermined full-rank system has at most one solution.
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1.8 Section Summary

The Four Fundamental Matrix Spaces: Let A be an m  n matrix. We define the subspaces:
rowspace(A)  Span r1, r2,  , rm  n,
colspace(A)  Spanc1, c2,  , cn  m, and

nullspace(A)  x  n | Ax  0m  n,

where r1, r2,  , rm are the rows of A (considered as vectors from n), and c1, c2,  , cn are the
columns of A (considered as vectors from m).
A (pronounced “A transpose”) is the n  m matrix obtained from A by writing row 1 of A as column 1
of A, writing row 2 of A as column 2 of A, and so on. The fourth fundamental matrix space is:

nullspace(A)  y  m | Ay  0n  m.

Let R be the rref of A. The non-zero rows of R form a basis for the rowspace of A.
The columns of A corresponding to the leading columns of R form a basis for the columnspace of A.
We can find a basis for nullspaceA from R, by solving for leading variables in terms of free
variables, and expressing each member of nullspaceA as a linear combination of vectors, one for
each free variable.
The dimensions of these spaces are known by:

rank(A)  dimrowspaceA  dimcolspaceA  rank(A),
nullity(A)  dimnullspaceA, and nullity(A)  dimnullspaceA .

The Dimension Theorem for Matrices:
For any m  n matrix A: rankA  nullityA  n, and rankA   nullityA   m.
We also have the bounds: 0  rankA  rankA   minm, n, n  m  nullityA  n, and
m  n  nullityA   m. We say that A has full-rank if rankA  minm, n.
The Columnspace Test for Consistency:
The matrix equation Ax  b is consistent if and only if b is a member of colspaceA. .
Furthermore, if Ax  b is consistent, suppose xp is a fixed solution (also called a particular solution)
of this system. Then, a vector x is a solution of this system if and only if it can be written as:
x  xp  xh, where xh is a member of nullspace(A). In particular, if x and y are any two solutions to
Ax  b, then x  y is a member of nullspaceA. In other words, the set X of all solutions x of a
consistent matrix equation of Ax  b is a translate of the nullspace, that is, X  xp  nullspaceA,
where xp is a particular solution for Ax  b.
Linear Systems with a Full-Rank Coefficient Matrix:
Suppose that A |b is an augmented matrix, where A is an m  n full-rank matrix. Then:
1. If m  n (the system is underdetermined), then the system is consistent for any b  m, and

furthermore, the system always has an infinite number of solutions.
2. If m  n (the system is square), then the system is consistent for any b  m, and furthermore,

the system has exactly one solution.
3. If m  n (the system is overdetermined), and the system is consistent, then it has exactly one

solution. However, there are an infinite number of vectors b  m for which the system is
inconsistent. Thus, an overdetermined full-rank system has at most one solution.
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1.8 Exercises

For Exercises 1 to 16: (a) Find a basis for rowspaceA, colspaceA, nullspaceA, and
nullspaceA , if possible, for the matrix A that appears in the following Exercises from Section 1.6.
You were given the rref R of A in Section 1.6, so you need only to compute A and its rref. Use
technology if allowed by your instructor. The bases should consist of vectors with integer entries (we
suggest that you also practice sight-reading a basis for the nullspaces). (b) State the rank and nullity of
A and A, and verify that the Dimension Theorem is satisfied by both A and A. (c) Express the
original rows of A in terms of the basis for rowspaceA that you found in (a).

1. Exercise 10. 2. Exercise 12. 3. Exercise 14. 4. Exercise 16.

5. Exercise 17. 6. Exercise 19. 7. Exercise 20. 8. Exercise 22.

9. Exercise 23. 10. Exercise 25. 11. Exercise 28. 12. Exercise 29.

13. Exercise 30. 14. Exercise 31. 15. Exercise 33. 16. Exercise 34.

For Exercises 17 to 36: Suppose that A |b is a consistent system of equations whose rref is
shown in the following Exercises from Section 1.4. Express all the solutions of the system, in the form
x  xp  xh, where xp is a fixed solution, and xh is a member of the nullspace of A. Again, practice
sight-reading the nullspace.

17. Exercise 7. 18. Exercise 8. 19. Exercise 10. 20. Exercise 11.

21. Exercise 14. 22. Exercise 15. 23. Exercise 17. 24. Exercise 19.

25. Exercise 20. 26. Exercise 22. 27. Exercise 23. 28. Exercise 25.

29. Exercise 27. 30. Exercise 29. 31. Exercise 30. 32. Exercise 32.

33. Exercise 33. 34. Exercise 34. 35. Exercise 35. 36. Exercise 36.

For Exercises 37 to 45: Express all the solutions of the system Ax  b, in the form x  xp  xh,
where xp is a fixed solution, and xh is a member of the nullspace of A. Use technology to find the rref,
if permitted by your instructor.

37.
2x  3y  7z  10
3x  7y  47z  77

38.
2x1  x2  4x3  12x4  8
3x1  5x2  2x3  9x4  17

7x1  4x2  3x3  14x4  13

39.
3x1  2x2  20x3  6x4  36
2x1  5x2  39x3  3x4  4

3x1  2x2  20x3  4x4  54

40.

3x1  12x2  2x3  x4  13
2x1  8x2  x3  17x4  4
6x1  24x2  5x3  5x4  28

4x1  16x2  3x3  x4  18
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41.
5x1  6x2  22x3  27x4  3
x1  3x2  17x3  9x5  3
7x1  4x2  51x4  22x5  13

42.
2x1  8x2  12x3  5x4  29x5  10
5x1  20x2  30x3  2x4  29x5  33
3x1  12x2  18x3  x4  18x5  19

43.

4x1  20x2  2x3  20x4  36x5  46
2x1  10x2  5x3  2x4  6x5  43
3x1  15x2  4x3  4x4  5x5  26
x1  5x2  2x3  x5  16

44.

7x1  9x2  4x3  2x4  30x5  4
4x1  3x2  2x3  x4  6x5  5

6x1  5x2  3x3  3x4  8x5  21
2x1  7x2  4x3  3x4  33

45.

9x1  3x2  36x3  7x4  2x5  31x6  23
7x1  4x2  23x3  2x4  5x5  31x6  14
2x1  4x2  22x3  10x4  5x5  72x6  29

5x1  2x2  19x3  7x4  2x5  21x6  31
3x1  6x2  3x3  2x4  5x5  19x6  26

Assisted Computation: For Exercises 46 to 56: You are given a matrix A, its rref R, and the rref
R / of A. (a) Find a basis for rowspaceA, colspaceA, and nullspaceA, if possible, using only the
information found in A and R. (b) Find a basis for nullspaceA  using only the information found in
R /. Again, practice sight-reading the nullspaces. (c) State the rank and nullity of A and A, and verify
that the Dimension Theorem is satisfied by both A and A.

46. A 

3 2 8 9
5 7 6 4

16 29 6 7

; R 

1 0 4 5
0 1 2 3
0 0 0 0

; R / 

1 0 3
0 1 5
0 0 0
0 0 0

47. A 

5 6 2 1
4 7 5 2
3 2 6 3

; R 

1 0 4 0
0 1 3 0
0 0 0 1

; R / 

1 0 0
0 1 0
0 0 1
0 0 0
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48. A 

5 6 2 1 8
4 7 5 2 11
3 2 6 3 0

; R 

1 0 4 0 6
0 1 3 0 3
0 0 0 1 4

; R / 

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

49. A 

3 4 0 3 7
5 7 1 4 3
1 2 2 1 15
4 3 7 2 7

; R 

1 0 4 0 2
0 1 3 0 5
0 0 0 1 7
0 0 0 0 0

; R / 

1 0 3 0
0 1 2 0
0 0 0 1
0 0 0 0
0 0 0 0

50. A 

4 2 6 5 9
6 3 9 7 10

17 8 29 20 28
28 13 49 30 25

; R 

1 0 5 0 8
0 1 7 0 3
0 0 0 1 7
0 0 0 0 0

; R / 

1 0 0 9
0 1 0 5
0 0 1 2
0 0 0 0
0 0 0 0

51. A 

4 11 16 9 15
2 5 6 4 5
5 12 13 10 11
7 9 13 8 20

10 19 6 17 1

; R 

1 0 7 0 9
0 1 4 0 3
0 0 0 1 2
0 0 0 0 0
0 0 0 0 0

; R / 

1 0 0 6 3
0 1 0 3 4
0 0 1 5 6
0 0 0 0 0
0 0 0 0 0

52. A 

3 2 2 1 1
1 1 1 1 0
0 2 10 3 4
1 6 26 7 13
4 7 19 8 6

; R 

1 0 4 0 0
0 1 5 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

; R / 

1 0 0 3 0
0 1 0 8 0
0 0 1 4 0
0 0 0 0 1
0 0 0 0 0

53. A 

4 2 4 2 1
9 4 6 7 2
0 2 12 10 1

11 5 8 8 2
6 2 0 8 1
9 4 6 7 1

; R 

1 0 2 3 0
0 1 6 5 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

R / 

1 0 9 0 5 3
0 1 4 0 2 5
0 0 0 1 4 6
0 0 0 0 0 0
0 0 0 0 0 0
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54. A 

3 1 4 2 0
0 1 7 2 5

12 1 5 14 15
1 1 6 1 4
12 0 12 17 22
1 0 1 4 6

; R 

1 0 1 0 0
0 1 7 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

; R / 

1 0 4 0 5 0
0 1 3 0 2 0
0 0 0 1 3 0
0 0 0 0 0 1
0 0 0 0 0 0

55. A 

3 1 9 0 4 1
4 3 1 2 5 8
1 2 4 1 1 4
6 1 9 2 9 6
1 1 1 2 3 1
9 2 24 18 18 5

; R 

1 0 2 0 0 5
0 1 3 0 0 2
0 0 0 1 0 7
0 0 0 0 1 4
0 0 0 0 0 0
0 0 0 0 0 0

;

R / 

1 0 0 2 0 4
0 1 0 5 0 3
0 0 1 8 0 2
0 0 0 0 1 7
0 0 0 0 0 0
0 0 0 0 0 0

56. A 

3 1 3 7 2 2 15
4 3 11 4 2 3 17
3 2 6 1 1 1 16
1 4 40 37 12 17 24
5 3 7 1 0 1 22

; R 

1 0 4 5 0 0 3
0 1 9 8 0 0 4
0 0 0 0 1 0 4
0 0 0 0 0 1 5
0 0 0 0 0 0 0

;

R / 

1 0 0 3 0
0 1 0 5 0
0 0 1 4 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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57. Use The Equality of Spans Theorem to show that if B is obtained from A using a single row
operation, then rowspaceA  rowspaceB. You will need to consider the three types of
elementary row operations. Hint: the Proof will be very similar to that of the Invariance of
Solutions Theorem in Section 1.4, so review this Proof first.

58. Use the previous Exercise to show that the rowspace of A is the Span of the non-zero rows of the
reduced row echelon form R of A.

59. Suppose that A is an m  n matrix. Prove that:

0  rankA  minm, n, n  m  nullityA  n, and m  n  nullityA   m.

60. Prove that the matrix equation Ax  b is consistent if and only if b  colspaceA.
61. Prove that every solution x of a consistent matrix equation Ax  b can be written as x  xp  xh,

where xp is a fixed solution of Ax  b and xh  nullspaceA. Hint: compute Ax  xp . What
does this imply?

62. Suppose that the matrix equation Ax  b is consistent, where A is an m  n matrix. Use the
previous Exercise to prove that the equation has exactly one solution if and only if
nullspaceA  0n .

63. Suppose that you are told that the rank of a matrix A is 5, the nullity is 8, and the columnspace of
A is a subspace of 6. How big is A?

64. Suppose that A is an a  n matrix, and B is a b  n matrix, where a and b could possibly be
different positive integers. Prove that rankA  rankB if and only if nullityA  nullityB.

65. Suppose that A is an n  n matrix. Prove that nullityA  nullityA .
66. Suppose that A |b is an augmented matrix, where A is an m  n full-rank matrix.

a. If m  n (the system is underdetermined), prove that the system is consistent for any
b  m, and furthermore, the system always has an infinite number of solutions.

b. If m  n (the system is square), prove that the system is consistent for any b  m, and
furthermore, the system has exactly one solution.

c. If m  n (the system is overdetermined), and the system is consistent, prove that the
system has exactly one solution.

d. Prove that in the third case m  n, there are an infinite number of vectors b  m for
which the system is inconsistent. Hint: start with colspaceA, and apply the Extension
Theorem to obtain a basis for m. Why do we get an infinite number of vectors b for which

A |b is inconsistent?

67. True or False: Determine whether each statement is true or false, and briefly explain your
answer by citing a Theorem, providing a counterexample, or a convincing argument.

a. If A is a 7  4 matrix, then A can have rank 5.
b. If A is a 4  7 matrix, then A can have nullity 5.
c. If A is a 7  4 matrix, then A can have nullity 5.
d. If A is a 7  4 matrix, then rankA  nullityA  7.
e. If A is a 6  8 full rank matrix, then nullityA  2.
f. If A is a 5  8 full-rank matrix, then A |b is always consistent for any b  5.

g. If A is a 5  8 full-rank matrix, then A |b always has a unique solution for any b  5.
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h. If A is a 7  5 full-rank matrix, and A |b is consistent for some b  7, then this system
has a unique solution .

i. If A is a 7  5 full-rank matrix, and A |b is consistent for some b  7, then A |d is
consistent for any other d  7.

j. If A is a 7  5 full-rank matrix, then A |b always has a unique solution for any b  7.

k. If A is a 7  7 full-rank matrix, then A |b always has a unique solution for any b  7.

l. If A is a 6  8 full-rank matrix, then A |b always has an infinite number of solutions for
any b  6.

m. If A is a 5  8 matrix, then A |b is always consistent for any b  5.

n. If A is a 5  8 matrix, and A |b is consistent for some b  5, then A |d is consistent
for any other d  5.

o. If A is a 7  5 matrix, then A |b always has a unique solution for any b  7.

68. The Uniqueness of the Reduced Row Echelon Form: We are now in a position to prove that if
A is an m  n matrix, and we obtain two matrices H and J from A using a finite sequence of
elementary row operations, and both H and J are in reduced row echelon form, then H  J. Thus,
the rref of A is unique. We will use the Principle of Mathematical Induction.
a. First let us take care of the trivial case: If A consists entirely of zeroes, prove that

H  A  J.
Thus we can assume for the rest of the Exercise that A is a non-zero matrix.

b. Explain why rowspaceH  rowspaceA  rowspaceJ.
c. Explain why the number of non-zero rows of H must be the same as the number of

non-zero rows of J. Hint: what does this number represent?
Thus we can conclude that both H and J have r non-zero rows, for some positive number r.
We must now show that every pair of corresponding rows are equal.

d. Numerical Warm-Up: both H and J below are in rref, and both of them have rank 3:

H 

1 5 0 4 0
0 0 1 3 0
0 0 0 0 1

; J 
1 0 4 0 7
0 1 3 0 9
0 0 0 1 8

.

Explain why rowspaceH is not the same as rowspaceJ, even though they have the same
dimension. Use the Equality of Spans Theorem. Start with comparing the first rows.

e. The Basis Step for Induction: Let h1 be the first row of H and j1 the first row of J. Prove
that the leading 1 of h1 is exactly in the same place as the leading 1 of j1. Hint: Keep in
mind for this entire Exercise that the leading 1’s below each row are to the right of those
from the previous rows, and use The Equality of Spans Theorem.

f. (continued) Next, prove that h1  j1, that is, the rest of the entries in the first row must also
be exactly the same. Hint: use the same ideas as in part (e).

g. If r  1, then we are done. Otherwise, assume by the Inductive Hypothesis that we have
already shown that h1  j1, h2  j2, . . . , hk  jk for some k  r, where h i is row i of H
and j i is row i of J.
Complete the proof with the Inductive Step: show that hk1  jk1.
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Section 1.9 Orthogonal Complements

A plane  through the origin in 3 has equation ax  by  cz  0, and we saw that this can be written
as a dot product:

a, b, c  x, y, z  0.
Thus, every vector x, y, z on  is orthogonal to any vector on the normal line
L  Spana, b, c. We will now generalize this idea:

Definition/Theorem: If W is a subspace of n, then W (pronounced “W perp”), the
orthogonal complement of W, defined as:

W  v  n | v  w  0 for all w  W
is also a subspace of n.

Proof: First, W contains 0n, since 0n  w  0 for all w  W (in fact, for all w  n. Thus, W is
non-empty. Next, suppose that v and u are vectors in W. Thus:

v  w  0 and u  w  0 for all w  W.
We must show that v  u and rv are also vectors in W, for any r  . Thus:

v  u  w  v  w  u  w  0  0  0 for all w  W,

so again v  u is a vector in W. Similarly:

rv  w  rv  w  r0  0 for all w  W.
Thus W is closed under addition and scalar multiplication, and is a subspace of n



Examples: Let L1 be any line in 2 passing through the origin. If L1  Spane1 , the x-axis, then
clearly every vector on L2  Spane2 , the y-axis, is orthogonal to L1, and vice versa. Thus
L1
  L2 and L2

  L1. More generally, if L1 has non-zero slope m, then the line L2 with slope
m /  1/m and passing through the origin is perpendicular to L1, as we know from basic algebra:

 

L z

y

x

.

L1

y

x

.

L2

L1 : y  mx, m  0, and L2 : y   1
m x  : ax  by  cz  0, and L  Spana, b, c

Orthogonal Complements in 2 and 3
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Similarly, let  be any plane in 3 passing through the origin, with equation ax  by  cz  0. Its
normal vector is n  a, b, c. All the vectors on the normal line L  Spann  are perpendicular to
all the vectors on , and vice versa, as represented in the diagram above on the right. Thus we can say
that   L, and L  . 

More generally, checking that a given vector v is orthogonal to all vectors in a subspace W seems like a
monumental task. However, the following Theorem gives us a significant shortcut. Its proof will be left
as an Exercise:

Theorem: If W  Spanw 1, w 2, . . . , w k  n, then:
W  v  n |v  w i  0 forall i  1k .

Example: Suppose S  1, 3,2, 5, 2, 5, 7,8 and W  SpanS  4. Let us find a basis for
W. We want to find all vectors x1, x2, x3, x4  so that:

1, 3,2, 5  x1, x2, x3, x4   0, and
2, 5, 7,8  x1, x2, x3, x4   0.

In other words, we want to solve:
x1  3x2  2x3  5x4  0 and

 2x1  5x2  7x3  8x4  0.

This is a homogeneous system of equations, and the vectors that we want are precisely the vectors in
nullspaceA, where A is the coefficient matrix:

A 
1 3 2 5
2 5 7 8

with rref R 
1 0  31

11
49
11

0 1 3
11

2
11

.

The leading variables are x1 and x2, and the free variables are x3 and x4. This is a good opportunity to
practice sight-reading the nullspace when fractions are involved. We need two vectors, one for x3 and
one for x4, and we get:

31
11 , 3

11 , 1, 0 and  49
11 , 2

11 , 0, 1 .

Clearing the denominators from these two vectors, we can write:

W  Span 31,3, 11, 0, 49,2, 0, 11.

We can easily check by taking dot products that every vector in our Spanning set is orthogonal to every
vector in S   1, 3,2, 5, 2, 5, 7,8, so we have confidence that our description is correct. For
example, taking the dot product of the first vectors of each set, we get:

31,3, 11, 0  1, 3,2, 5  31  9  22  0,

and similarly for the three other pairs.

We were able to describe W by finding the nullspace of a coefficient matrix A in this Example. This
will be true in general, but before we can prove this, we need a new point of view:
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A Dot Product Perspective of Matrix Multiplication

One of the beauties of Mathematics is that we can sometimes look at the same object in different ways.
The matrix product Ax is a good example. We first defined Ax as a linear combination of the columns
of A using the coefficients from x. Let us spell it out, entry by entry:

Ax 

a1,1 a1,2  a1,n

a2,1 a2,2  a2,n

   

am,1 am,2  am,n

x1

x2



xn

 x1

a1,1

a2,1



am,1

 x2

a1,2

a2,2



am,2

  xn

a1,n

a2,n



am,n

However, notice that the top entry of Ax can be written as:

x1a1,1  x2a1,2   xna1,n  x1, x2, . . . , xn   a1,1, a1,2, . . . a1,n   x  r1,

where r1 is the first row of A. Similarly, we can see that the second entry is x  r2. Continuing thus, we
get:

Ax 

r1

r2





rm

x1

x2



xn



x  r1

x  r2





x  rm



r1  x
r2  x




rm  x

.

From this, we can see that:

Theorem: A vector x  n is a solution to Ax  0m if and only if x  ri  0 for all the
rows ri of A. In other words, x is in the nullspace of A if and only if x is orthogonal to all
the rows of A. Thus:

If W  rowspaceA, then W  nullspaceA.
Similarly, if U  nullspaceA, then U  rowspaceA.

This last Theorem shows us the relationship between rowspaceA and nullspaceA, and also gives
us an efficient algorithm to describe the orthogonal complement of a subspace:

Theorem: Suppose W  Spanw 1, w 2,  , w k  n. If we form the matrix A with rows
w 1, w 2, . . . , w k, then:

W  rowspaceA and W  nullspaceA.
Thus, the non-zero rows of the rref of A form a basis for W, and we can obtain a basis for
W exactly as we would find a basis for nullspaceA using the rref of A.
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Note: This is the only place in this book where we assemble vectors into the rows of a matrix. The rest
of the time, we will assemble vectors into the columns of a matrix.

Example: Let us consider the subspace W  SpanS  5, where:

S  w 1, w 2, w 3, w 4   3,2, 1, 5, 0, 5,3, 2, 6, 1, 8, 3,5, 3,7, 4, 1, 0,2, 3 .

Notice that there are four vectors in S. Our main objective is to find a basis for W. To do this, we
assemble the four vectors that generate W into the rows of a matrix, as prescribed by our Theorem:

A 

3 2 1 5 0
5 3 2 6 1
8 3 5 3 7

4 1 0 2 3

, with rref: R 

1 0 0 2
5

2
5

0 1 0  18
5

7
5

0 0 1  17
5

8
5

0 0 0 0 0

.

The leading variables are x1, x2 and x3, and the free variables are x4 and x5. Again, let us sight-read
the nullspace. We will need two vectors, corresponding to x4 and x5:

W  nullspaceA  Span  2
5 , 18

5 , 17
5 , 1, 0 ,  2

5 , 7
5 , 8

5 , 0, 1 , or

W  Span 2, 18, 17, 5, 0, 2,7,8, 0, 5 ,

by clearing the denominators, as we did in the previous Example. Thus, W is 2-dimensional.
There is, however, a bonus outcome from the rref. Since we assembled the vectors from S into the
rows of A, then W  SpanS  rowspaceA. But we saw in the previous Section that the non-zero
rows of R form a basis for rowspaceA. But notice that there are only three non-zero rows of R.
Thus, we can more efficiently say that:

W  Span 1, 0, 0, 2
5 , 2

5 , 0, 1, 0, 18
5 , 7

5 , 0, 0, 1, 17
5 , 8

5 , or

W  Span 5, 0, 0, 2, 2, 0, 5, 0,18, 7, 0, 0, 5,17, 8 ,
again, by clearing denominators. Thus, W is only 3-dimensional.
Let us think about this some more: Since W is 3-dimensional, this means that the original Spanning set
S which consists of four vectors has to be dependent, by the Dependent Sets from Spanning Sets
Theorem. It is far from obvious, though, how the four vectors are related to each other. The rref R only
tells us the dependency relationships of the columns of A, but unfortunately, not its rows. If we really
want to know how the four original vectors depend on each other, we would need to use The
Minimizing Theorem and assemble the vectors in S into the columns of a matrix, say:

B  A 

3 5 8 4
2 3 3 1
1 2 5 0
5 6 3 2
0 1 7 3

with rref R / 

1 0 9 0
0 1 7 0
0 0 0 1
0 0 0 0
0 0 0 0

.

Now we can see that w 3 is a linear combination of the first two vectors: w 3  9w 1  7w 2.
Thus, by the Minimizing Theorem, S /  w 1, w 2, w 4 is another basis for W. 
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You will prove the following properties of orthogonal complements in the Exercises.

Theorem — Properties of Orthogonal Complements:
For any subspace W  n:
a) W W  0n

b) W   W. Thus, we can say that W and W are orthogonal complements
of each other, or that W and W form an orthogonal pair of subspaces.

The Dimension Theorem for Matrices can be used to prove an analogous statement concerning a
subspace W and its orthogonal complement W. Its proof is also left as an Exercise:

Theorem — The Dimension Theorem for Orthogonal Complements:
If W is a subspace of n with orthogonal complement W, then: dimW  dimW   n.

Example: Suppose that:

W  Span 15,10, 5, 25, 0, 9, 6,3,15, 0, 1,2,5, 11, 8, 5,3, 3, 6,2  5.
For now, all we can say is that W is at most 4-dimensional. As before, we find W by assembling the
vectors into the rows of a matrix and finding its nullspace:

A 

15 10 5 25 0
9 6 3 15 0
1 2 5 11 8
5 3 3 6 2

with rref: R 

1 0 3 3 4
0 1 4 7 6
0 0 0 0 0
0 0 0 0 0

.

The leading variables are x1 and x2, and the free variables are x3, x4 and x5. Since there are two
non-zero rows in R and three free variables, dimW  2 and dimW   3. This verifies that
dimW  dimW   2  3  5, the dimension of the ambient space 5. The non-zero rows of R will
be a basis for W, and by sight-reading the nullspace, we get a basis for W:

W  Span 1, 0, 3,3,4, 0, 1, 4,7,6, and
W  Span 3,4, 1, 0, 0, 3, 7, 0, 1, 0, 4, 6, 0, 0, 1.

We can check that any vector in our basis for W is orthogonal to any vector in our basis for W. 

Using dim(W) to Find Other Bases for W

Knowing the dimension of a subspace W allows us to more efficiently check whether or not a subset B
of W is a basis for W:

Theorem — The “Two for the Price of One” or “Two-for-One” Theorem:
Suppose W is a subspace of n, and dimW  k. Let B  w 1, w 2,  , w k be any subset
of k vectors from W. Then: B is a basis for W if and only if either B is linearly independent
or B Spans W. In other words, it is necessary and sufficient to check B for only one
condition without checking the other, if B already contains the correct number of vectors.
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Proof:  This direction is obvious because by definition, a basis B is linearly independent and
Spans W.
 Suppose that dimW  k and B  w 1, w 2,  , w k is linearly independent. We must show
that B also Spans W.
Let us use Proof by Contradiction. Suppose that B does not Span W, so we can find some vector
w  W so that w  SpanB. But then B  w will still be linearly independent, according to The
Extension Theorem.
However, if B / is any basis for W, then B / will have exactly k members, and so B  w  is an
independent set from W  SpanB /  that has more elements than B /. This is impossible by the
Dependent Sets from Spanning Sets Theorem.
Similarly, if B Spans W, let us show that B must also be linearly independent. If B were dependent,
then according to The Minimizing Theorem, we can find a subset B / of B which still Spans W but is
also linearly independent. Thus, B / is a basis for W. Since B is dependent, the subset B / has strictly
less than k vectors. This contradicts the fact that dimW  k. 

In practice, once we know that B is a subset of W with dimW members, it is much easier to check
linear independence rather than Spanning, because it always involves a homogeneous system.

Example: In the previous Example, we investigated W  SpanS, where:

S  w 1, w 2, w 3, w 4

  15,10, 5, 25, 0, 9, 6,3,15, 0, 1,2,5, 11, 8, 5,3, 3, 6,2.

We found that dimW  2, and a basis for W is the set:

B   1, 0, 3,3,4, 0, 1, 4,7,6.

Notice, though, that these two vectors bear no resemblance whatsoever to the original set of four
vectors. However, since dimW  2, we only need two vectors from S which are not parallel to each
other in order to form a basis for W. We can see that w 1 and w 2 are actually parallel to each other, but
there are no other pairs in S which are parallel. Therefore, each of the following sets of vectors:

w 1, w 3, w 1, w 4, w 2, w 3, w 2, w 4, and w 3, w 4

are also bases for W. 

We must warn that if dimW  k  2, it is not enough that we make sure that no two vectors in a
subset S  w 1, w 2,  , w k  W are parallel to each other before declaring that S is a basis for W,
even if S has exactly the correct number of vectors. We must test, as usual, that S is linearly
independent by checking that the rref of A   w 1 w 2 w k  does not contain any free variables.

Example: Suppose we have W  SpanS  5, where:

S  w 1, w 2, w 3, w 4, w 5

  3,2, 4, 1,3, 1,1, 2,1, 0, 7,4, 8, 5,9, 1, 2,1, 0, 3, 5,1, 2, 11,12.

Let us find a basis for W and a basis for W. We assemble the five vectors into the rows of a matrix:
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A 

3 2 4 1 3
1 1 2 1 0
7 4 8 5 9
1 2 1 0 3
5 1 2 11 12

, with rref: R 

1 0 0 3 3

0 1 0  10
3 5

0 0 1  11
3 4

0 0 0 0 0
0 0 0 0 0

.

There are three leading variables (x1, x2 and x3 and two free variables (x4 and x5. Thus, W is
3-dimensional and W is 2-dimensional. Our basis for W will be the non-zero rows of R, which we
scale to clear denominators:

W  Span 1, 0, 0, 3,3, 0, 3, 0,10, 15, 0, 0, 3,11, 12.

We find a basis for W by sight-reading the nullspace of R, taking note that our free variables are x4
and x5:

3, 10
3 , 11

3 , 1, 0 , 3,5,4, 0, 1.

Clearing fractions, we get a basis consisting of vectors with integer coordinates, and write:
W  Span 9, 10, 11, 3, 0, 3,5,4, 0, 1.

Let us think some more about W. Notice that there are five vectors in S, but W is only 3-dimensional.
However, none of the vectors in S are parallel to each other. Thus, it is far from obvious if a random set
of three vectors from S will be dependent or independent. For example, we can decide if w 1, w 2, w 3
is independent by assembling these vectors into the columns of a matrix and applying the Minimizing
Theorem. But since there are only 5 vectors in S, we may as well assemble all 5 vectors into the
columns of a matrix (which would be A) and apply the Minimizing Theorem:

B  A 

3 1 7 1 5
2 1 4 2 1
4 2 8 1 2
1 1 5 0 11
3 0 9 3 12

, with rref R / 

1 0 3 0 4
0 1 2 0 7
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

.

From R /, we see that w 1, w 2, w 3 is in fact dependent, with w 3  3w 1  2w 2. However, we also see
from R / that w 1, w 2, w 4 is independent, since these correspond to the leading columns. Thus, we
have found another basis for W:

W  Spanw 1, w 2, w 4.

We can ask, though: is it possible to use a different combination of three columns from B? Indeed, we
can, as long as these columns are also independent. Thus, we can also write:

W  Spanw 2, w 3, w 4, and

W  Spanw 3, w 4, w 5.

In fact, there are three more possible combinations that will also produce a basis for W. On the other
hand, w 1, w 2, w 5 would not be a basis either, because w 5  4w 1  7w 2. 
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1.9 Section Summary

If W is a subspace of n, then the orthogonal complement of W, defined as:
W  v  n | v  w  0 forall w  W ,

is also a subspace of n. If W  Spanw 1, w 2, . . . , w k  n, then:

W  v  n |v  w i  0 forall i  1k .

Furthermore, if we form the matrix A with rows w 1, w 2,  , w k, then:

W  rowspaceA and W  nullspaceA.
Thus, nullspaceA and rowspaceA are orthogonal complements of each other.
For any subspace W  n: (a) W W  0n , and (b) W   W.
The Dimension Theorem for Orthogonal Complements:
If W is a subspace of n with orthogonal complement W, then: dimW  dimW   n.
The “Two for the Price of One” or “Two-for-One” Theorem:
Suppose W is a subspace of n, and dimW  k.
Let B  w 1, w 2,  , w k be any subset of k vectors from W.
Then: B is a basis for W if and only if either B is linearly independent or B Spans W.

1.9 Exercises

For Exercises 1 to 10: (a) Assemble the vectors in each Exercise into the rows of a matrix A, and
find the rref R of A. (b) Use R to find a basis for each subspace W, and find a basis for W as well.
Both bases should consist of vectors with integer entries. (c) State the dimensions of W and W and
verify that the Dimension Theorem is true for these subspaces.

1. W  Span 1, 5,2, 3, 4, 7
2. W  Span 2, 6, 5,4, 5,2, 7, 1
3. W  Span 3,2, 5, 7, 0, 4, 1, 0,3, 6
4. W  Span 2,5, 6,3 
5. W  Span 3,1, 5, 2, 6 
6. W  Span 2, 6, 5,4, 5,2, 7, 1, 3,8, 2, 6
7. W  Span 2, 6, 5,4, 5,2, 7, 1, 3,8, 2, 5. Compare to Exercises 2 and 6.

8. W  Span 2, 4, 5,4, 9, 6, 2, 4, 2, 0, 5, 5,3,7, 11
9. W  Span 3,2, 5, 7, 0, 4, 1, 0,3, 6, 2, 5, 4, 0,2, 1, 2, 5,2, 3
10. W  Span 2, 1, 3,1, 4, 4, 2, 5, 0, 6, 8, 4, 7, 6, 6, 5, 3,1, 0, 1, 2,1, 0,5, 2
11. In the final Example of this Section, we asked if certain subsets of S  w 1, w 2, w 3, w 4, w 5

were also a basis for the 3-dimensional subspace W  SpanS. Decide whether or not the
following subsets also form a basis for W:
a. w 1, w 3, w 4 b. w 1, w 4, w 5 c. w 1, w 2, w 5
d. w 2, w 4, w 5 e. w 1, w 3, w 5 f. w 2, w 3, w 5
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12. Suppose W  SpanS  5, where:

S   2,4, 7, 5, 3, 6, 12,21,15,9, 3,2, 6, 1,4, 11, 2,16, 5, 26.

a. Form the matrix A whose rows are the vectors of S and find its rref R.
b. Use R to find a basis for W with integer coefficients.
c. Use R to find a basis for W with integer coefficients.
d. Find the dimensions of W and W, and verify the Dimension Theorem.
e. Decide which of the following sets of vectors are also bases for W (and briefly explain how

you arrived at your conclusion):
B1   2,4, 7, 5, 3, 6, 12,21,15,9;
B2   2,4, 7, 5, 3, 11, 2,16, 5, 26;
B3   3,2, 6, 1,4, 11, 2,16, 5, 26.

13. Suppose W  SpanS  5, where:

S   3,2, 2, 1,2, 3, 2, 10, 11, 6, 3,2, 6, 1,4, 6,4, 7, 5,3 .

a. Form the matrix A whose rows are the vectors of S and find its rref R.
b. Use R to find a basis for W with integer coefficients.
c. Use R to find a basis for W with integer coefficients.
d. Find the dimensions of W and W, and verify the Dimension Theorem.
e. Now, form the matrix B whose columns are the vectors of S and find its rref R /.
f. Use R / to decide which of the following sets of vectors are also bases for W (and briefly

explain how you arrived at your conclusion):

B1   3,2, 2, 1,2, 3, 2, 10, 11, 6, 3,2, 6, 1,4 ;
B2   3,2, 2, 1,2, 3, 2, 10, 11, 6, 6,4, 7, 5,3 ;
B3   3,2, 2, 1,2, 3,2, 6, 1,4, 6,4, 7, 5,3 ;
B4   3, 2, 10, 11, 6, 3,2, 6, 1,4, 6,4, 7, 5,3 .

14. Suppose W  SpanS  4, where:

S   3,2, 1, 4, 5,4, 3, 7, 4, 6,8,7, 5, 6,4,6, 2, 6,8, 3 .

a. Form the matrix A whose rows are the vectors of S and find its rref R.
b. Use R to find a basis for W with integer coefficients.
c. Use R to find a basis for W with integer coefficients.
d. Find the dimensions of W and W, and verify the Dimension Theorem.
e. Now, form the matrix B whose columns are the vectors of S and find its rref R /.
f. Use R / to decide which of the following sets of vectors are also bases for W (and briefly

explain how you arrived at your conclusion):

B1   3,2, 1, 4, 5,4, 3, 7, 4, 6,8,7 ;

B2   3,2, 1, 4, 5,4, 3, 7, 5, 6,4,6 ;

B3   5,4, 3, 7, 4, 6,8,7, 5, 6,4,6 ;

B4   4, 6,8,7, 5, 6,4,6, 2, 6,8, 3 .
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Assisted Computation: For Exercises 15 to 18: the following Exercises are similar in spirit
to the previous three. You are given a set S of m vectors from some n. These vectors were
assembled in an m  n matrix A whose rows are the m vectors. The rref R of A is given, as well
as the rref R / of A. Suppose that W  SpanS. (a) Find a basis for W using R. (b) Find a basis
for W using R /. (c) Find a basis for W. The bases in (a) through (c) should have integer
components. (d) Use The Two-For-One Theorem to decide whether or not each set of vectors
Bi forms a basis for W. There are no further computations necessary.

15. S  w 1, w 2, w 3, w 4  5,
S   4, 3, 8, 5,5, 5, 7,3, 6, 5, 3, 4,1, 4, 0, 6, 5, 10, 7,3 ;

R 

1 0 5 0 4
0 1 4 0 3
0 0 0 1 6
0 0 0 0 0

; R / 

1 0 0 7/5
0 1 0 4/5
0 0 1 6/5
0 0 0 0
0 0 0 0

.

B1  w 1, w 2; B2  w 1, w 2, w 4; B3  w 2, w 3, w 4.

16. S  w 1, w 2, w 3, w 4, w 5  5,
S   5, 8,3, 7,4, 3, 4,2, 4,2, 6, 4,5, 7,2, 8,9, 5,7, 5, 3, 6, 3, 5,2 ;

R 

1 0 0 10/3 2/3
0 1 0 4/3 1/3
0 0 1 13/3 2/3
0 0 0 0 0
0 0 0 0 0

; R / 

1 0 3 0 5
0 1 7 0 4
0 0 0 1 2
0 0 0 0 0
0 0 0 0 0

.

B1  w 1, w 2, w 3; B2  w 1, w 2, w 5; B3  w 3, w 4, w 5.

17. S  w 1, w 2, w 3, w 4, w 5  5,
S   7, 4,3, 2, 9, 3,5, 2,1, 6, 6, 9,7, 3, 8, 5, 3, 8, 3,6, 4,2, 5,1, 7 ;

R 

1 0 0 0 81/44
0 1 0 0 25/66
0 0 1 0 29/44
0 0 0 1 487/132
0 0 0 0 0

; R / 

1 0 0 8 0
0 1 0 5 0
0 0 1 6 0
0 0 0 0 1
0 0 0 0 0

B1  w 1, w 2, w 4, w 5; B2  w 1, w 3, w 4, w 5; B3  w 1, w 2, w 3, w 4.

18. S  w 1, w 2, w 3, w 4, w 5, w 6   3, 5,4, 3, 3, 5, 2,4, 6,4,2, 0,
1,1, 12,7,1,1, 5, 6, 5,2, 3, 4, 0,1, 5,3,1,3, 4, 6,2, 2, 4, 10  6;

R and R / are found on the next page.

B1  w 1, w 2, w 4; B2  w 2, w 3, w 5; B3  w 1, w 2, w 6; B4  w 4, w 5, w 6.

Note/Hint: Determining whether B4 is independent or not might require a minute of
computation.
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R 

1 0 7 4 0 2
0 1 5 3 0 5
0 0 0 0 1 8
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

; R / 

1 0 0 1 1/2 2
0 1 0 1/2 1/2 1
0 0 1 1 1/2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

.

For Exercises 19 to 27: Each problem refers to an m  n matrix A from Section 1.8, where
you will also find the rref of A (you will not need the rref of A. Let c1, c2, , cn be the
columns of A. Use the Two-For-One Theorem to decide which of the given sets form a basis for
colspaceA. Begin by reviewing the basis for colspaceA that you obtained in Section 1.8 using
the Minimizing Theorem. These can be found in the Answer Key.

19. Exercise 47.
a. c1, c3 b. c1, c3, c4 c. c2, c3, c4
d. c1, c2, c3 e. c3, c4

20. Exercise 49.
a. c1, c2, c5 b. c2, c3, c5 c. c3, c4, c5
d. c2, c4, c5 e. c1, c2, c3

21. Exercise 50.
a. c1, c2, c5 b. c1, c3, c4 c. c2, c4, c5
d. c1, c2, c3 e. c2, c3, c5

22. Exercise 51.
a. c1, c3, c4 b. c2, c3, c5 c. c1, c2, c3
d. c3, c4, c5 e. c2, c3, c4

23. Exercise 52.
a. c1, c2, c3, c4 b. c1, c2, c3, c5 c. c1, c3, c4, c5
d. c2, c3, c4, c5 e. c1, c4, c5

24. Exercise 53.
a. c1, c2, c4 b. c1, c3, c5 c. c1, c3, c4
d. c3, c4, c5 e. c2, c3, c4

25. Exercise 54.
a. c1, c3, c4, c5 b. c1, c2, c3, c4 c. c1, c2, c3, c5
d. c2, c3, c4, c5 e. c3, c4, c5

26. Exercise 55.
a. c1, c3, c4, c5 b. c2, c3, c4, c5 c. c3, c4, c5, c6
d. c1, c3, c5, c6 e. c1, c2, c3, c6

27. Exercise 56.
a. c1, c2, c4, c5 b. c2, c3, c4, c5 c. c2, c3, c5, c6
d. c1, c2, c5, c7 e. c3, c4, c5, c7
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28. Prove that if W  Spanw 1, w 2, . . . , w k  n, then:

W  v  n |v  w i  0 forall i  1k .
Hint: start by writing the complete (original) definition of W for any subspace W of n.

29. Prove that in any n: (a) 0n

 n, and (b) n  0n .

Hint: for (a) write the definition of 0n


and explain why every vector in n satisfies this
definition, and for (b) use the previous Exercise and the fact that n is Spanned by e1 through en.

30. Prove The Dimension Theorem for Orthogonal Complements: If W is a subspace of n with
orthogonal complement W, then: dimW  dimW   n. Hint: Assemble a basis for W in the
rows of a matrix and apply The Dimension Theorem for Matrices.

31. Let W  n. Prove that W W  0n . Hint: Suppose w  W and w  W. What can you
say about the dot product of w with itself?

32. Use the idea behind the previous Exercise to give another proof that n  0n .

33. Let W  n. Our goal in this Exercise is to prove that W   W.
a. Explain why Exercise 29 takes care of the cases when W is one of the trivial subspaces.

For the rest of this Exercise, we can therefore assume that W is a non-trivial subspace.
b. Let us use the symbol U for W. Prove that W  U. Hint: write down the definition of U

(which is W as well as U. Stare at these two definitions until you can clearly explain in
writing why every vector in W also satisfies the definition of U.

c. In Exercise 39 of Section 1.7, we discussed the concept of nested subspaces. Part (b) tells
us that W  U  n is a nesting of subspaces. Use The Dimension Theorem for
Orthogonal Complements as well as Exercise 39 of Section 1.7 to show that in fact,
W  U. This completes the proof that for all subspaces W of n: W   W.

34. Let W  n, and suppose dimW  2, and B  w 1, w 2  W. Use the Two-for-One
Theorem to prove that B is a basis for W if and only if w 1 and w 2 are not parallel to each other.

35. Let A be an m  n matrix. Prove that nullspaceA  is the orthogonal complement of
colspaceA.

36. So You Think You Know the Zero Vector? In the course of this Chapter, we made several
statements involving 0n. Decide whether each of the following statements is True or False. Cite a
Definition, Theorem or counterexample in your explanation.

a. 0n is parallel to all vectors v  n.
b. 0n is orthogonal to all vectors v  n.
c. All zero vectors are the same, so for example, 04  07.
d. If 3  v  0n, then v  0n.
e. For all v  n and k  : If k  v  0n, then v  0n.
f. 0n is always a member of SpanS, where S is a non-empty subset of n.
g. For all v  n: 0  v  0n.
h. For all v  n and k  : if k  v  0n, and v  0n, then k  0.
i. If 0n  S, a set of vectors from n, then SpanS is undefined.
j. The matrix equation Ax  0n is called a homogeneous equation.

Section 1.9 Orthogonal Complements 153



k. The solution x  0n to the matrix equation Ax  0n is called a non-trivial solution.
l. If 0n  S, then S is automatically linearly dependent.
m. If 0n  S, then S is automatically linearly independent.
n. If S does not contain 0n, then S is automatically linearly independent.
o. 0n is a member of every subspace W of n.
p. If 0n  S, then S cannot be a basis for any subspace W of n.
q. The set 0n is a basis for the trivial subspace W  0n .

r. The trivial subspace 0n is 1-dimensional.

s. The trivial subspace 0n does not have a basis.

t. 0n is the only vector in n which is orthogonal to itself.
u. For any subspace W of n: W W  0n .

37. More True or False: Determine whether each statement is true or false, and briefly explain your
answer by citing a Theorem, providing a counterexample, or a convincing argument.

a. All subspaces of n have a basis.
b. All nontrivial subspaces of n have a basis.
c. If Spanv1, v2, v3  Spanw 1, w 2  W, then W is 2-dimensional.
d. If Spanv1, v2, v3  Spanw 1, w 2  W, then W is at least 3-dimensional.
e. If Spanv1, v2, v3  Spanw 1, w 2  W, then W is at most 2-dimensional.
f. If W  Spanw 1, w 2, w 3, w 4, then W is 4-dimensional.
g. If W  Spanw 1, w 2, w 3, w 4, then W is at least 4-dimensional.
h. If W  Spanw 1, w 2, w 3, w 4, then W is at most 4-dimensional.
i. If w 1, w 2, w 3  W is a linearly independent set, then W is 3-dimensional.
j. If w 1, w 2, w 3  W is a linearly independent set, then W is at least 3-dimensional.
k. If w 1, w 2, w 3  W is a linearly independent set, then W is at most 3-dimensional.
l. If dimW  3 and S  w 1, w 2, w 3, w 4  W, then S is dependent.
m. If dimW  5 and S  w 1, w 2, w 3  W, then S must be independent.
n. If dimW  5 and S  w 1, w 2, w 3  W, then S cannot Span W.
o. If dimW  5 and S  w 1, w 2, w 3, w 4, w 5, w 6  W, then S must Span W.
p. If dimW  5 and S  w 1, w 2, w 3, w 4, w 5  W, and no two vectors in S are parallel to

each other, then S must be a basis for W.
q. If S  w 1, w 2, w 3, w 4, w 5, w 6, w 7, w 8  5, and W  SpanS, then W could be

7-dimensional.
r. If S  w 1, w 2, w 3, w 4, w 5, w 6, w 7, w 8  5, and W  SpanS, then W could be

5-dimensional.
s. If S is a basis for W, then S cannot contain the zero vector.
t. In order to apply the Dimension Theorem to a matrix A, we need to know how many rows

A has. (Note that only A is involved in the first equation of the Dimension Theorem).
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A Summary of Chapter 1

Linear Algebra is the study of vector spaces, which are generalizations of numbers, and functions
with special properties called linear transformations that map one vector space to another. We will
introduce linear transformations in Chapter 2.
The main examples of vector spaces are the Euclidean n-spaces, denoted n, which consist of all
n-tuples or vectors u  u1, u2, . . . , un . These vectors can be viewed also as column matrices or row
matrices. Operations on vectors include vector addition, scalar multiplication, and linear
combinations. These operations enjoy many properties analogous to those of real numbers.
The Span of a set of vectors S  v1, v2, . . . , vn from m is the set of all possible linear
combinations of the vectors in S: SpanS  x1v1  x2v2   xnvn | x1, x2, . . . , xn   .
In 2, the Span of a set of vectors is either 02 , a line through the origin, or all of 2. In 3, the
Span of a set of vectors is either 03 , a line through the origin, a plane through the origin, or all of
3. The Span of a set of vectors is the fundamental example of a subspace of n (defined below), and
so these geometric objects describe all the subspaces of 2 and 3.
If u  u1, u2, . . . , un  and v  v1, v2, . . . , vn   n, define u  v  u1v1  u2v2   unvn, their
dot product. The length of u is u  u  u  u1

2  u2
2   un

2 . We say u is a unit vector if
u  1. Two vectors u and v are orthogonal if u  v  0.
The Cauchy-Schwarz Inequality says that for all u, v  n: |u  v|  uv , and
The Triangle Inequality says that u  v  u  v.
An m  n matrix is a rectangular array organized into m rows and n columns.

We can test if b  m is a member of Spanv1, v2, . . . , vn by solving a linear system of m
equations in the n unknowns x1, x2, . . . , xn. The Gauss-Jordan Algorithm does this efficiently: We
assemble A  v1 v2  vn | b and transform it into its reduced row echelon form or rref, using
a sequence of elementary row operations. From the rref, we can read off all the solutions, if any exist.
A set of vectors S  v1, v2, . . . , vn  m is linearly independent if the only solution to the
dependence test equation x1v1  x2v2   xnvn  0m is the trivial solution: x1  0, x2  0,  ,
xn  0. An equation of this form with at least one non-zero coefficient is called a dependence
equation, and we say that S is linearly dependent.
The Equality of Spans Theorem: Let S  v1, v2,  , vn  k and S /  w 1, w 2, , wm  k.
Then: SpanS  SpanS /  if and only if every vi can be written as a linear combination of the w 1
through wm, and every w j can also be written as a linear combination of the v1 through vn.
The Elimination Theorem: Suppose that S  v1, v2,  , vn is a linearly dependent set of vectors
from m, and c1v1  c2v2   cnvn  0m, where none of the coefficients c i is 0, then
SpanS  SpanS  vi , for all i  1. . n.
The Minimizing Theorem: Let S  v1, v2,  , vn  m, and let A  v1 v2 . . . vn . Suppose
that R is the rref of A, and i1, i2, . . . ik are the columns of R that contain the leading 1’s. Then the set
S /  vi1 , vi2 , . . . , vik , that is, the subset of vectors of S consisting of the corresponding columns of
A, is a linearly independent set, and SpanS  SpanS / . Furthermore, every vi  S  S /, that is,
the vectors of S corresponding to the free variables of R, can be expressed as linear combinations of
the vectors of S /, using the coefficients found in the corresponding column of R.
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The In/dependent Sets from Spanning Sets Theorem: Suppose S  w 1, w 2, , w n  k, and
we form SpanS. Suppose now we form a new set L  u1, u2,  , um consisting of m randomly
chosen vectors from SpanS. We can then conclude that if m  n, then L is automatically linearly
dependent. Consequently, if L is linearly independent, then m  n.
The Extension Theorem: Let S  v1, v2,  , vn be a linearly independent set of vectors from m,
and suppose vn1  SpanS. Then: S /  v1, v2,  , vn, vn1 is still linearly independent.
A subspace W of n, written as W  n, is a non-empty subset of vectors of n (the ambient space
of W) which is closed under vector addition and scalar multiplication: if u, v  W, and k  , then
u  v  W, and k  v  W. The Span of a set of vectors is the fundamental example of a subspace.
A basis for a non-zero subspace W of n is a linearly independent set of vectors
w 1, w 2, . . . , wm  W which Spans W. Any two bases for W contain the same number of vectors,
called the dimension of W, and we write dim(W)k. Any non-zero subspace W  n has a basis
consisting of k vectors, where k  n. By convention, W  0n has no basis, and dim 0n  0.

The Four Fundamental Matrix Spaces: Let A be an m  n matrix. We define the subspaces:
rowspace(A)  Span r1, r2,  , rm  n, colspace(A)  Spanc1, c2,  , cn  m,

nullspace(A)  x  n | Ax  0m  n, and nullspace(A)  y  m | Ay  0n  m.

where the ri are the rows of A, and the cj are the columns of A. The transpose of A, A, is the n  m
matrix obtained by writing row 1 of A as column 1 of A, row 2 of A as column 2 of A, and so on.
The rref R of A can be used to find a basis for the nullspace of A, by expressing each member of the
nullspace as a linear combination of vectors, one for each free variable. The non-zero rows of R form a
basis for the rowspace of A. The columns of A corresponding to the leading columns of R form a basis
for the columnspace of A. The dimensions of these spaces are known as:

rank(A)  dimrowspaceA  dimcolspaceA  rank(A),
nullity(A)  dimnullspaceA, and nullity(A)  dimnullspaceA .

The Dimension Theorem for Matrices: For any m  n matrix A:
rankA  nullityA  n, and rankA   nullityA   m.

The Columnspace Test for Consistency: The matrix equation Ax  b is consistent if and only if b
is a member of colspaceA. Furthermore, if Ax  b is consistent, suppose xp is a fixed solution (also
called a particular solution) of this system. Then, a vector x is a solution of this system if and only if
it can be written as: x  xp  xh, where xh is a member of the nullspace(A).
If W  n, we define: W  v  n | v  w  0 forall w  W , the orthogonal complement of W,
which is also a subspace of n. If W  Spanw 1, w 2, . . . , w k  n, then:

W  v  n |v  w i  0 forall i  1k .

If we form the matrix A with rows w 1, w 2,  , w k, then: W  rowspaceA and W  nullspaceA.
Thus, nullspaceA and rowspaceA are orthogonal complements of each other.
For any subspace W  n: (a) W W  0n , and (b) W   W.
The Dimension Theorem for Orthogonal Complements: If W is a subspace of n with orthogonal
complement W, then: dimW  dimW   n.
The “Two-for-One” Theorem: If dimW  k, and B  w 1, w 2,  , w k is a subset of vectors from
W, then B is a basis for W if and only if either B is linearly independent or B Spans W.
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Chapter 2
Adding Movement and Colors:

Linear Transformations on
Euclidean Spaces

We defined Linear Algebra as the study of objects called vector spaces, which are generalizations of
numbers, their structure, and functions with special properties called linear transformations that map
one space to another. In this Chapter, we will begin the study of linear transformations from one
Euclidean space to another.
We will first see that these linear transformations are encoded by matrices, that is, they can be
computed by performing a matrix product. In 2 and 3, we will see that linear transformations have a
geometric interpretation:
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T ( ij )T ( j )

We will study the properties of these linear transformations, and construct important subspaces that are
related to them, namely the kernel and the range. We will see that unlike functions that we see in
Calculus, where plotting a finite number of points often does not show us the whole picture, linear
transformations can be completely described by knowing how they behave on a basis.

We will see how to combine linear transformations using addition, scalar multiplication, and
compositions. These will lead us to a similar set of arithmetic operations on matrices, with
compositions in particular corresponding to a general matrix product.

We will study special kinds of linear transformations which are one-to-one or onto, and give some
easy conditions under which a transformation can be tested for these properties. Most importantly, we
will see how to construct the inverse of a linear operator, when it is both one-to-one and onto, in the
same manner that we create the cube root function, y  3 x from y  x3.

Analogously, we will see how to use the Gauss-Jordan Algorithm to find the inverse of a square
matrix, when it exists, and see that an invertible square matrix can be factored into simple matrices
called elementary matrices.

Finally, we will look at some special families of linear operators, called diagonal, triangular, and
symmetric operators, and study their properties.
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2.1 Mapping Spaces: Introduction to Linear Transformations

In basic Calculus, we study functions with real values that are defined on an interval I. Let us begin by
generalizing this idea.

Definition: Let X and Y be any two sets. A function f : X  Y is a rule (or a recipe, or a
formula) that receives as its input an element x of X, and assigns to x as its output a unique
element y of Y.

We write y  f x, as usual, and also call y the image of x under f.
We call X the domain of f, and call Y the codomain of f. We can also call f a map (because it
tells us where to go), and say that f maps x to y, and more generally, f maps X into Y.

Example: Let us consider the two sets:

X  all human beings , and

Y  all366 days betweenJanuary1 andDecember31 (includingFebruary29) .

For every person x  X we can define the function:

b : X  Y, where
bx  the birthday of the person x.

Then, b is a function from X into Y because every human being has a unique birthday.

Linear Transformations

Now, let us focus our attention on a special kind of function that maps vector spaces into each other:

Definition: A linear transformation T : n  m is a function that satisfies:
for all u, v  n, and for all k  :

The Additivity Property: Tu  v  Tu  Tv

The Homogeneity Property: Tk  u  k  Tu

In the special case when T : n  n, that is, the domain is the same space as the
codomain, we call T a linear operator.
If the codomain is   1, we call T a linear functional.

Notice that the domain of a linear transformation is always all of n. Furthermore, most functions that
we see in Calculus do not possess either of these two properties. For example, in general:

sinu  v  sinu  sinv,
sin2u  2 sinu,
x  y2  x2  y2.
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The Additivity Property essentially says that triangles are preserved, and the Homogeneity Property
says that proportionalities and parallel vectors are preserved. These two linearity properties can be
visualized as follows:
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The Additivity Property The Homogeneity Property

Example: Let T : 2  3 be defined by:

Tx, y  2x  3y, x  2y,x  y.

As a warm-up, let us compute T5, 7:
T5, 7  25  37,5  27,5  7  31, 9, 12.

Notice that we input a vector from 2 into T, which then outputs a vector from 3.
Next, let us show that the two properties in the Definition are satisfied. Suppose x1, y1  and
x2, y2   2. Then:

Tx1, y1   x2, y2 

 Tx1  x2, y1  y2 

 2x1  x2   3y1  y2 , x1  x2   2y1  y2 ,x1  x2   y1  y2 

 2x1  2x2  3y1  3y2, x1  x2  2y1  2y2,x1  x2  y1  y2 

 2x1  3y1, x1  2y1,x1  y1   2x2  3y2, x2  2y2,x2  y2 

 Tx1, y1   Tx2, y2 ,

and similarly:

Tkx, y  Tkx, ky

 2kx  3ky, kx  2ky,kx  ky

 k2x  3y, x  2y,x  y

 kTx, y.
Thus, T is a linear transformation.

Now, if we identify the vector x, y and Tx, y  2x  3y, x  2y,x  y with their corresponding
column matrices, as usual, we can rewrite the action of T above as:
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where in the last step, we recall that a linear combination of column matrices can be written as a
matrix product. Let us show in general that every linear transformation is indeed equivalent to a
matrix product in a natural way:

Theorem: A function T : n  m is a linear transformation if and only if we can find
an m  n matrix A so that the action of T can be performed by matrix multiplication:

Tx  Ax,

where, on the right side, we view x  n as an n  1 matrix, and Tx  m as an m  1
matrix. We refer to A as the standard matrix of T, and we write:

T   A  Te1  | Te2  | . . . | Ten  .

Consequently, the standard matrix of T is unique: if B is another matrix such that Tx  Bx
for all x  n, then A  B  T .
We also say that A represents T, or A is a representation of T. In particular, if T : n  n

is an operator, T  is an n  n or square matrix, and if T : n   is a linear functional,
then T  is an 1  n or row matrix.

Proof:  Suppose that the matrix A exists so that Tx  Ax.
Then for all x, y  n and k  : Tx  y  Ax  y  Ax  Ay, and Tkx  Akx  kAx, by
the properties of matrix multiplication that we saw in Chapter 1. Thus, T is both additive and
homogeneous, and so T is a linear transformation.
 Now, suppose that T satisfies the two conditions of a linear transformation.
If x  x1, x2, . . . , xn   n, then:

Tx  Tx1, x2, . . . , xn 

 Tx1e1  x2e2   xnen 

 Tx1e1   Tx2e2    Txnen  by Additivity

 x1Te1   x2Te2    xnTen  by Homogeneity.

Now for the magic: if we assemble the Tei  into the columns of a matrix A:

A  T   Te1  | Te2  | . . . | Ten  ,

then we can view the last line for Tx above as the matrix product:
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Tx  Te1  | Te2  | . . . | Ten 

x1

x2



xn

 Ax.

The uniqueness of T will be proven in the Exercises.

Example: If T : 4  3 is a linear transformation and we are told that:

Te1   3, 7,2,
Te2   4, 0, 9,
Te3   1, 1, 5, and
Te4   2,1,7.

Then:

T   A 

3 4 1 2
7 0 1 1
2 9 5 7

.

If we wanted to compute, say, T5,3, 4, 8, we multiply:

T5,3, 4, 8 
3 4 1 2
7 0 1 1
2 9 5 7

5
3

4
8



39
31
73

,

and thus T5,3, 4, 8  39, 31,73. 

Some Basic Examples

Let us take a look at some easy yet important linear transformations. The function:
Zn,m : n  m, given by

Zn,mx  0m for all x  n,

is a linear transformation, called the zero transformation of n into m.

Since Zn,mei   0m for all i, the matrix of Zn,m is the m  n matrix with 0 in all the entries, and it is
called the zero m  n matrix, denoted by:

Zn,m   0mn 

0 0 . . . 0
   

0 0 . . . 0

.
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By construction, for all x  n: 0mnx  0m, so the zero matrices behave like the number 0 under
multiplication of real numbers.
For any n, we have the identity operator on n:

In : n  n defined by
Inx  x for all x  n.

Since Inei   ei, for all i  1. . n, we get as its matrix the identity matrix In:

In   In  e1 e2  en 

1 0  0
0 1  0
   

0 0  1

.

By performing a matrix product, we get:

1 0  0
0 1  0
   

0 0  1

x1

x2



xn



x1

x2



xn

, in other words:

In x  x.

Thus, In behaves like the number 1 under multiplication of real numbers. More generally, for any n

and any k  , we have the scaling operator:

Sk : n  n, given by
Skx  kx for all x  n.

As an Exercise, you will find the matrix of the scaling operators, but we give an Example below as a
hint. For obvious reasons, they are also called scalar product operators.

Examples: The zero transformation Z3,2 : 3  2 has matrix:

Z3,2   023 
0 0 0
0 0 0

.

The identity operator I4 : 4  4 and the scaling operator S5 : 3  3 have matrices:

I4   I4 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

and S5  

5 0 0
0 5 0
0 0 5

. 
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Elementary Matrices

Let us review elementary row operations and construct special matrices using them:

Definition: An n  n matrix E is called an elementary matrix if it is obtained by performing
a single elementary row operation on the identity matrix In.

Recall that there are three types of elementary row operations:

Type: Notation:

1. Multiply row i by a nonzero scalar c R i  cR i

2. Exchange row i and row j R i  R j

3. Add c times row j to row i R i  R i  cR j

Examples: The following are elementary matrices of Type 1, 2 and 3, respectively:

E1 

1 0 0
0 3 0
0 0 1

, E2 

0 0 1
0 1 0
1 0 0

, E3 

1 0 0
0 1 0
0 5 1

.

Each is obtained from I3, respectively, by multiplying row 2 by 3, exchanging row 1 and row 3, and
adding 5 times row 2 to row 3. However, the following are not elementary matrices:

F1 

2 0 0
0 1 0
0 0 1

, F2 

0 0 1
1 0 0
0 1 0

, F3 

1 0 5
0 1 7
0 0 1

.

F1 is not elementary because two rows (1 and 3) have been multiplied by a non-zero constant. F2 is not
elementary because two pairs of rows (row 1 and row 2, followed by row 2 and row 3) of I3 have been
exchanged. F3 is not elementary because a multiple of row 3 was added to row 1 and row 2.

The linear operators that correspond to these matrices have geometric properties. For now, we will
focus on 2  2 elementary matrices of Type 1 and 3. We will see how these operators transform 2 by
looking at their effects on the three vectors i, j, i j , that form what we call the basic box:

 

x
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1
j

i

 ij

.

.

The Basic Box
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Horizontal and Vertical Dilations and Contractions

A 2  2 Type 1 elementary matrix has the form:

c 0
0 1

or
1 0
0 c

.

In the first case, the effect is on the horizontal or x-axis, and in the second case, the effect is on the
vertical or y-axis. If |c|  1, this operator corresponds to a dilation operator, and if |c|  1, to a
contraction operator. Furthermore, if c  0, the operator also produces a reflection across the y-axis
in the first case, and across the x-axis in the second case.

Example: Let T be the operator with standard matrix: T 
2 0
0 1

.

Recalling that T i is in column 1, and T j is in column 2, we get:

T i  2, 0  2i, T j  0, 1  j, and T i j  2i j  2, 1,

by applying the Additivity Property. The effect on the basic box is shown below:
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The Action of A Horizontal Dilation

Notice that the box has been dilated or “stretched” horizontally by a factor of 2. The vertical unit
vector j is not affected by T.

Example: Similarly, suppose T is the Type 1 operator with T  
1 0
0 2/3

.

This time, T i  i, T j   2
3 j, and the basic box is contracted or “shrunk” vertically by a factor

of 2/3 and reflected across the x axis:
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The Action of A Vertical Contraction Combined with a Reflection. 
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Shear Operators

A 2  2 Type 3 elementary matrix has the form:
1 c
0 1

or
1 0
c 1

.

In the first case, the unit vector i is not affected, but T j  ci j, so the image of j is now leaning to
the right or left, depending on whether c is positive or negative. Because of this, the first kind is called
a horizontal shear operator. In the second case, j is not affected, but the image of i is now tilting up or
down, so the second kind is called a vertical shear operator.

Example: Let T be the operator with T  
1 3/4
0 1

.

Again, we see that T i  i, T j  3/4, 1, and T i j  1, 0  3/4, 1  1/4, 1. The
effect on the basic box is shown below:
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The Action of A Horizontal Shear Transformation. 

Example: The action of any operator on 2 can be visualized by its action on the basic box.

Suppose T is the operator with: T  
5/2 3/2
3/2 1/2

.

As in the previous Example, we get:

T i  5/2, 3/2, T j  3/2, 1/2, and T i j  T i  T j  1, 2.

The effect on the basic box is shown below, with its effect on the letter “R” inside the box shown for
dramatic effect.

The Action of An Arbitrary Operator on 2. 
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2.1 Section Summary

Let X and Y be any two sets. A function f : X  Y is a rule (or a recipe, or a formula) that receives as
input an element x of X, and assigns to x as its output a unique element y of Y. We call X the domain
of f, and call Y the codomain of f. We can also call f a map, and say that f maps X into Y.
A linear transformation T : n  m is a function that satisfies, for all u, v  n, and for all k  :

The Additivity Property: Tu  v  Tu  Tv.
The Homogeneity Property: Tku  kTu.

In the special case when T : n  n, we call T a linear operator. If the codomain is   1, we
call T a linear functional.
A function T : n  m is a linear transformation if and only if we can find an m  n matrix A so
that the action of T can be performed by matrix multiplication, that is, Tx  Ax, where we view
x  n as an n  1 matrix. We refer to A as the standard matrix of T, and we write
T   A  Te1  | Te2  | . . . | Ten  .

Some basic transformations include (where x  n):
 The zero transformations Zn,m : n  m, given by Zn,mx  0m.
 The identity operators In : n  n defined by Inx  x.
 The scaling operators Sk : n  n, given by Skx  kx.

An n  n matrix E is called an elementary matrix if it is obtained by performing a single elementary
row operation on the identity matrix In.

A 2  2 Type 1 elementary matrix has the form:
c 0
0 1

or
1 0
0 c

.

In the first case, the effect is on the horizontal or x-axis, and in the second case, the effect is on the
vertical or y-axis. If |c|  1, this operator corresponds to a dilation operator, and if |c|  1, to a
contraction operator. Furthermore, if c  0, the operator also produces a reflection across the y axis
in the first case, and across the x axis in the second case.

A 2  2 Type 3 elementary matrix has the form:
1 c
0 1

or
1 0
c 1

.

In the first case, the unit vector i is not affected, but T j  ci j, so the image of j is now leaning to
the right or left, depending on whether c is positive or negative. In the second case, j is not affected, but
the image of i is now tilting up or down. Both are examples of shear operators.
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A Horizontal Shear Operator and A Vertical Shear Operator
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2.1 Exercises

1. Suppose that we have the two sets:

X  the set of all parents, dead or alive , and

Y  the set of all people, dead or alive .

Decide which of the following are functions, and explain your decision briefly:

a. f : X  Y, where f x  the oldest child of x.
b. g : X  Y, where g x  the oldest daughter of x.
c. h : Y  X, where h y  the mother of y.
d. k : Y  Y, where k y  the youngest brother of y.
e. p : X  Y, where px  the oldest grandchild of x.
f. q : Y  X, where qy  the paternal grandmother of y.

2. Let T : 2  3 be the function given by:

Tx, y  2x  3y, x  5y, 4x  y.

a. Compute T3,7.
b. Show explicitly, using the two properties in the definition, that T is a linear transformation.
c. Find T .
d. Verify that your answer to (c) is correct by recomputing T3,7 as a matrix product.

3. Let T : 4  3 be the function given by:

Tx1, x2, x3, x4   2x1  5x3, 3x2  x3  2x4, 3x1  8x2 .

a. Compute T5,3, 7, 2.
b. Show explicitly, using the two properties in the definition, that T is a linear transformation.
c. Find T .
d. Verify that your answer to (c) is correct by recomputing T5,3, 7, 2 as a matrix product.

4. Let T : 3  4 be the function given by:

Tx, y, z  3x  2y  5z, x  4z, 2y  7z, 4x  9y.

a. Compute T3, 8,6.
b. Show explicitly, using the two properties in the definition, that T is a linear transformation.
c. Find T .
d. Verify that your answer to (c) is correct by recomputing T3, 8,6 as a matrix product.

5. Let T : 3  3 be the function given by:

Tx, y, z  5x  3y  2z, 4x  6y  3z, 2x  2y.

a. Compute T2,7, 4.
b. Show explicitly, using the two properties in the definition, that T is a linear transformation

(in this case, T is an operator).
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c. Find T .
d. Verify that your answer to (c) is correct by recomputing T2,7, 4 as a matrix product.

6. Is T : 2  2, given by Tx, y  y  3, x  5 a linear transformation? Why or why not?

7. Is T : 2  2, given by Tx, y  x  2y, 5xy a linear transformation? Why or why not?

8. Suppose that T : 2  3 is a linear transformation given by:

T i  0,5, 3 and T j  2, 4,7.

a. Find T .
b. Give a general formula for Tx, y
c. Use T  to compute T7,2.

9. Suppose that T : 3  2 is a linear transformation given by:

T i  3, 5, T j  2, 7, and T k  0, 4.

a. Find T .
b. Give a general formula for Tx, y, z
c. Use T  to compute T5,2, 6.

10. Suppose that T : 5  5 is an operator given by:
Te1   e3, Te2   e5, Te3   e2, Te4   e4, and Te5   e1.

a. Find T .
b. Give a general formula for Tx1, x2, x3, x4, x5 
c. Use T  to compute T3, 0,5, 2, 9.
d. Write a sentence explaining exactly what T does to any vector from 5.

11. Suppose we know that T is a linear transformation with codomain 3, and:

T3v1  v2   5,2, 7, and
T5v1  2v2   4, 0,3,

for some vectors v1 and v2 from the domain. Find Tv1  and Tv2 .

For Exercise 12 to 23: Show the effect on the basic box of the following operators T, where
T  is the indicated matrix. Note that 12 to 19 are elementary matrices, but 20 to 23 are
not.

12.
5/2 0
0 1

13.
3/5 0

0 1
14.

1 0
0 5/3

15.
1 0
0 4/5

16.
1 3/4
0 1

17.
1 2/3
0 1

18.
1 0
7/4 1

19.
1 0

4/3 1

20.
3 2
5 1

21.
3 1

2 4
22.

5 3
4 1

23.
3 2
6 4

Explain what happened to the basic box in Exercise 23, and why this happened.
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For Exercises 24 and 25: We can also visualize the action of an operator on 2 by its action on any
two vectors u and v that form a basis for 2, that is, two non-parallel vectors. For the following
Exercises, compute Tu, Tv and Tu  v, then sketch u, v and u  v in one coordinate system and
Tu, Tv and Tu  v in another. What do you notice about the vectors?

24. T  
5/13 12/13

12/13 5/13
, u  3, 2, v  2, 3.

25. T  
2 0
3 2

, u  2, 1, v  1,2.

26. Decide which of the following matrices are elementary, and which are not. If the matrix is
elementary, decide if it is of Type 1, 2 or 3.

a.
1 0 0
0 1 0
0 3 1

b.
1 2 0
0 1 5
0 0 1

c.
1 0 0
0 3 1
0 0 1

d.
0 0 1
0 1 0
1 0 0

e.
1 0 5
0 1 0
1 0 1

f.
0 0 3
0 1 0
1 0 0

g.
1 0 0
0 1 0

0 0 2

h.
0 1 0
0 0 1
1 0 0

i.

1 0 0 4
0 1 0 0
0 0 1 0
0 2 0 1

j.

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

k.

3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

l.

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

27. Prove directly that the standard matrix A  T   Te1  | Te2  | . . . | Ten  is unique: if
B is another matrix such that Tx  Ax  Bx for all x  n, then A  B  T . Hint: rewrite
Ax  Bx into A  Bx  0m. If any of the entries of A  B is non-zero, think of a specific x  n

which would make A  Bx a non-zero vector.
28. Show that the matrix of T from Exercise 10 can be obtained from the identity matrix I5 by a

sequence of Type 2 row operations. For this reason, this is an example of what is called a
permutation matrix, because it is a rearrangement of the columns of In.

29. Find the standard matrix of the scaling operator Sk on n, where k  , given by Skx  kx.
30. Starting with the two properties of a linear transformation T, we found from our only Theorem in

this Section that T can be computed using a matrix product: Tx  Ax. Use this to prove that for
any linear transformation T : n  m, we must have: T 0n  0m.

31. Now, using the Additivity Property and the property of the zero vector, prove directly that for any
linear transformation T : n  m, we must have T 0n  0m.

Hint: compute T 0n  0n in two different ways.

32. Now, using the Homogeneity Property and the multiplicative property of the scalar zero, prove
directly that for any linear transformation T : n  m, we must have T 0n  0m. How
should the Hint from the previous Exercise be modified?
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2.2 Rotations, Projections and Reflections

We saw in the previous Section that linear operators corresponding to Type 1 and 3 elementary
matrices have geometric interpretations, namely as contraction, dilation and shear operators. We will
see in this Section other geometric operators, namely rotations in 2, reflections in 2 and 3 (of
which Type 2 elementary matrices are examples), and projections in 2 and 3. First, let’s go out for
a spin:

Rotations in 2

We can use the idea of polar coordinates to write a vector v  x, y in 2 as:

v  x, y   r cos, r sin,
for some non-negative number r  v and some angle   0, 2, where vmakes an angle of  with
respect to the positive x-axis when drawn in standard position.

 
v


r

r sin ()

r cos ()

.

.

A Vector in Polar Coordinates

If we rotate v counterclockwise by an angle  about the origin and call this new vector rotv, then the
length of rotv will still be r, but it will now make an angle of    with respect to the positive
x-axis, as seen in the diagram below:

 

v




r
r

rot ( v )

 

r

.

.

x x

y y

rot

A Vector v and rotv, its Counterclockwise Rotation by 

Instead of directly verifying that rot satisfies the two linearity properties, we will find a matrix for
rot, thus showing that it is indeed a linear transformation.
The coordinates of the rotated vector rotv are:

rotv  r cos  , r sin   .

But by using addition formulas from trigonometry, we have:
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r cos  
r sin  


rcoscos  sin sin
rsincos  cos sin


cos  r cos  sin  r sin
sin  r cos  cos  r sin


cos  sin
sin cos

r cos
r sin


cos  sin
sin cos

x
y

,

expressed as a matrix product. Thus, we see that indeed:

Theorem: The rotation transformation rot : 2  2 that takes a vector v in standard
position and rotates v counterclockwise by an angle of   0 about the origin is a linear
transformation, with:

rot  
cos  sin
sin cos

.

Example: Let us find the matrix of the counterclockwise rotation by the angle   cos13/5  530

about the origin. We have:

cos  3/5 and sin  4/5, thus:

rot  
3/5 4/5
4/5 3/5

.

To demonstrate its action, let us find rot2, 7:

rot2, 7 
3/5 4/5
4/5 3/5

2
7


4. 4
5. 8

.

We graph 2, 7 and rot2, 7  4. 4, 5. 8 below, and observe that their lengths are the same but
rot2, 7 is rotated counterclockwise from 2, 7 by about 530:

 

v = < 2, 7 >   rot ( v )
= <  >

.

.

The Vector v  2, 7 and its Rotation rotv by   cos13/5. 
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Basic Projections and Reflections in 2

We can perform a variety of projection and reflection operators on a vector x, y  2. These
operators, and their counterparts in 3 which we will see later, have important applications in
computer graphics.
The projection of v  x, y onto the x-axis, denoted projxv, is the vector x, 0:

projxx, y  x, 0,

and similarly, the projection of v onto the y-axis is the vector 0, y:

projyx, y  0, y.
We see their geometric interpretation below:

 

v

projx ( v )

projy (  v ) v

.

projx ( v ) = < x, 0 >

projy ( v ) = < 0, y >

y

x

The Relationships Among v, projxv, and projyv

The key relationship among these vectors is seen in the right triangle that they form:

v  x, y  x, 0  0, y  projxv  projyv,

where projxv is orthogonal to projyv. This is an example of what is called an orthogonal
decomposition, and the rest of our examples will involve this concept as well.

As with rotations, we will show that these are indeed linear transformations by finding their standard
matrices. But since their actions are very simple, it is easy to check by direct multiplication that:

projxv 
x
0


1 0
0 0

x
y

and

projyv 
0
y


0 0
0 1

x
y

.

Thus projx and projy are linear transformations, with:

projx  
1 0
0 0

, and projy  
0 0
0 1

.

Similarly, we can take v and reflect it across the x-axis, the y-axis, or the origin (in the same way that
we reflect graphs of functions):
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v

reflx ( v )

refly ( v )

refl    ( v ) 

x

y
.

A Vector v and its Three Basic Reflections in 2.

We compute these operators, and see their standard matrices, via:

reflx
x
y


x
y


1 0
0 1

x
y

,

refly
x
y


x
y


1 0
0 1

x
y

, and

refl02

x
y


x
y


1 0
0 1

x
y

.

Notice that reflx  and refly  are both 2  2 Type 1 elementary matrices, with c  1, and
refl02

 S1, which represents scalar multiplication by 1. The reflection operators across the x-
and y-axes can be related to the projection operators through the following diagrams:

 
projx ( v )

projy ( v )

.

y

x
x

y

projx ( v )

projy ( v )

 projy ( v )

v

reflx ( v )

v

 projx ( v )

refly ( v )

.

The Geometric Relationships Among v, projxv, projyv, reflxv and reflyv

From these, we see that:
reflxv  projxv  projyv, and

reflyv  projyv  projxv.
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General Projections and Reflections in 2

The x-axis and y-axis are two orthogonal lines that pass through the origin. More generally, if L is any
line through the origin in 2, there is a unique line L, also passing through the origin, that is
orthogonal to L (recall from Chapter 1 that we call L the orthogonal complement of L). We can
define the projection operators onto L and L / and the reflection operator across L by the following
vector diagrams:

 

x

y

LL

v

projL  ( v )
proj    ( v )

reflL  ( v )

v

reflL  ( v )

projL ( v )

.

.

L

proj    ( v )L

 proj   ( v )L

The Projections of vOnto a Line L and its Orthogonal
Complement L, and the Reflection of vAcross L.

It was easy to find projxv and projyv if we knew v  x, y, but for a random line L and its
orthogonal complement L, these projections are not that obvious. However, our goal is to satisfy the
equation:

v  projLv  projLv,
where projLv is parallel to L, and projLv is parallel to L. Once we find these two projections, we
can find the reflection across L via:

reflLv  projLv  projLv,

as seen from the diagram. Let us demonstrate how to find these three vectors:

Example: Let L be the line in 2 with Cartesian equation y  2
3 x.

The vector 3, 2 is parallel to L, and since the vector 2, 3 is orthogonal to 3, 2 as we easily check
with the dot product, 2, 3 must be parallel to L. From the diagram, we want projLv to be parallel
to L, and projLv parallel to L. Thus:

projLv  a3, 2, and
projLv  b2, 3,

for some scalar multiples by a and b. However, we want:
v  projLv  projLv.

Using v  x, y, we get:
x, y  a3, 2  b2, 3.
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This vector equation is equivalent to the linear system:
3a  2b  x
2a  3b  y.

By eliminating b, we can solve for a:

9a  6b  3x
4a  6b  2y

 13a  3x  2y or a  3
13 x  2

13 y.

Similarly, by eliminating a, we get b   2
13 x  3

13 y. Thus, we get:

projLv  a3, 2  3
13 x  2

13 y 3, 2

 9
13 x  6

13 y, 6
13 x  4

13 y , and

projLv  b2, 3   2
13 x  3

13 y 2, 3

 4
13 x  6

13 y,  6
13 x  9

13 y .

From these, we can see that these projections are indeed operators, with matrices:

projL  
9

13
6

13
6

13
4

13
and projL  

4
13  6

13
 6

13
9

13
.

Finally, we can find the reflection across L via:
reflLv  projLv  projLv

 9
13 x  6

13 y, 6
13 x  4

13 y  4
13 x  6

13 y,  6
13 x  9

13 y

 5
13 x  12

13 y, 12
13 x  5

13 y ,

and thus reflection across L is indeed an operator, with:

reflL  
5

13
12
13

12
13  5

13

.

Let us demonstrate the result of these three operators on v  4, 1. We get:

projLv 
9

13
6

13
6

13
4

13

4
1


42
13
28
13


3. 23
2. 15

,

projLv 
4

13  6
13

 6
13

9
13

4
1


10
13
 15

13


0. 77
1. 15

, and

reflLv 
5

13
12
13

12
13  5

13

4
1


32
13
43
13


2. 46
3. 31

.
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Let us put these all together in the following diagram:

 

x

y

L

L
v

proj L ( v )

refl L ( v )  proj    ( v )
.

.

L

proj    ( v )L Projections and Reflections

with respect to L : y  2
3 x

Projections and Reflections in 3

We can also define basic projection and reflection operators in 3, but we now have more varieties.
Notice that in 2, the lines L through the origin are the non-trivial subspaces of 2. But for 3, the
non-trivial subspaces are lines L through the origin as well as planes  passing through the origin. The
simplest subspaces are thus the x-, y- and z-axes, and the xy-, yz-, and xz-planes, and so for
v  x, y, z, we can define their projection operators:

projxx, y, z  x, 0, 0,

projyx, y, z  0, y, 0,

projzx, y, z  0, 0, z,

projxyx, y, z  x, y, 0,

projxzx, y, z  x, 0, z, and

projyzx, y, z  0, y, z.

These projections are connected by the following relationships:

v  x, y, z  x, 0, 0  0, y, z  projxx, y, z  projyzx, y, z,

v  x, y, z  0, y, 0  x, 0, z  projyx, y, z  projxzx, y, z, and

v  x, y, z  0, 0, z  x, y, 0  projzx, y, z  projxyx, y, z.

It is important to note in the pairings, for example, that the z-axis is the orthogonal complement of the
xy-plane, and so on. Once again, we obtain an orthogonal decomposition, as we verify that
x, y, 0  0, 0, z  0, and so on. The relationships among v, projxyv and projzv can be
visualized by imagining the sun to be directly overhead at high noon: If v is an actual arrow anchored to
the origin, then projxyv would be the shadow that vmakes on the ground:

 

projxy ( v ) = < x, y, 0 >

projz ( v  ) = < 0, 0, z >

.

z

y
x

.

v = < x, y, z >

A Basic Orthogonal
Decomposition in 3
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Let us look next at the reflections across the coordinate planes. To do this, pretend, for instance, that
the xy-plane is a mirror. The reflection of x, y, z across the xy-plane is thus x, y,z. But notice that
we can write:

reflxyx, y, z
 x, y,z
 x, y, 0  0, 0, z
 projxyx, y, z  projzx, y, z.

Again, since the z-axis is the orthogonal complement of the xy-plane, this equation is analogous to the
equation from 2:

reflLv  projLv  projLv.

Now, by reversing the roles of the xy-plane and the z-axis, we can define the reflection across the
z-axis in 3 via:

reflzx, y, z
 projzx, y, z  projxyx, y, z
 0, 0, z  x, y, 0
 x,y, z.

We can now summarize the six basic reflection operators:

reflxx, y, z  x,y,z,
reflyx, y, z  x, y,z,
reflzx, y, z  x,y, z,

reflxyx, y, z  x, y,z,
reflxzx, y, z  x,y, z, and
reflyzx, y, z  x, y, z.

We note that the matrices of the reflections across the coordinate planes are 3  3 Type 1 matrices with
c  1, analogous to what we saw in 2. We will see in the Exercises that Type 2 elementary matrices
represent reflection operators in 2 and 3.
From our discussion above, it makes sense to investigate projections and reflections as they relate to an
arbitrary plane  together with its normal line L. If v  x, y, z  3, we want to produce the
projection operators onto  and L in order to express v as an orthogonal decomposition:

v  projv  projLv, where projv   and projLv  L.

We must show that this sum can be constructed in exactly one way. From this, we get the reflection
operators:

reflv  projv  projLv, and reflLv  projLv  projv.

Let us illustrate these computations:

Example: Let  be the plane in 3 with Cartesian equation:
3x  5y  2z  0.

 has normal vector n  3,5, 2, and normal line L  Spann. We will show that proj, projL
and refl, are all operators by finding their standard matrices (leaving reflL as an Exercise).
Let v  x, y, z be any vector in 3. We see below the vectors that we are looking for:
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v

refl ( v )

n



proj  ( v )

proj L ( v )

proj ( v )

proj L ( v )
v

 proj L ( v )

refl ( v )

 proj L ( v )

L

.

.

V
.

The Relationships Among v, projv, projLv and reflv

We will use a different strategy from that in our Example in 2. Let us begin with projLv. This
vector is parallel to n, so:

projLv  k3,5, 2  3k,5k, 2k,

for some scalar multiple k. For now, let us assume that projv actually exists, but we will verify
later on that this assumption is justified.
Since v  projv  projLv, we must have:

projv
 v  projLv
 x, y, z  3k,5k, 2k
 x  3k, y  5k, z  2k.

But since projv  , this vector must be orthogonal to n, so the correct value of k must satisfy the
equation:

0  n  projv
 3,5, 2  x  3k, y  5k, z  2k
 3x  3k  5y  5k  2z  2k
 3x  5y  2z  9  25  4k.

From this, we find:

k  3x  5y  2z
38

as the only possible solution. Thus, we get:

projLv
 3k,5k, 2k

 3 3x  5y  2z
38 ,5 3x  5y  2z

38 , 2 3x  5y  2z
38

 9x  15y  6z
38 , 15x  25y  10z

38 , 6x  10y  4z
38 .

Consequently, we also get:
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projv

 v  projLv

 x, y, z  9x  15y  6z
38 , 15x  25y  10z

38 , 6x  10y  4z
38

 29x  15y  6z
38 , 15x  13y  10z

38 , 6x  10y  34z
38 .

We will now check that we were justified in assuming that projv exists by checking that the final
vector above is on , that is:

n  projv

 3 29x  15y  6z
38  5 15x  13y  10z

38  2 6x  10y  34z
38

 1
38 87x  45y  18z  75x  65y  50z  12x  20y  68z  0,

for all x, y, and z. Thus, our solution is indeed correct. Next, we find the reflection operator across 
using our two projections:

reflv  projv  projLv

 29x  15y  6z
38 , 15x  13y  10z

38 , 6x  10y  34z
38 

9x  15y  6z
38 , 15x  25y  10z

38 , 6x  10y  4z
38

 10x  15y  6z
19 , 15x  6y  10z

19 , 6x  10y  15z
19 .

Finally, we can assemble the matrices of the three operators:

projL  proj  refl 



9
38  15

38
6

38
 15

38
25
38  10

38
6

38  10
38

4
38

; 

29
38

15
38  6

38
15
38

13
38

10
38

 6
38

10
38

34
38

; 

10
19

15
19  6

19
15
19  6

19
10
19

 6
19

10
19

15
19

.

Notice that these three matrices all share a very special property: certain entries in each matrix appear
in equal pairs. For example, within each matrix, the entry in row 1, column 2, and the entry in row 2,
column 1, are exactly the same, as well as the entries in row 2, column 3, and row 3, column 2. These
are all examples of a special family of matrices called symmetric matrices. They will play a very
important role in Chapters 8 and 9.
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2.2 Section Summary

The rotation transformation rot : 2  2 that takes a vector v in standard position and rotates v
counterclockwise by an angle of  is a linear transformation, with:

rot  
cos  sin
sin cos

.

In 2, we can define the projections of a vector v onto the x-axis and y-axis, its reflections across the
x-axis and y-axis, and its reflection across the origin, as:

projxx, y  x, 0, projyx, y  0, y,

reflxx, y  x,y, reflyx, y  x, y, and

refl02
x, y  x,y.

More generally, given any line L through the origin in 2 and its orthogonal complement L, it is
possible to take any vector v  2 and find its orthogonal decomposition v  projLv  projLv,
where projLv is parallel to L, and projLv is parallel to L. The reflection across L can be defined
using these projections as:

reflLv  projLv  projLv.

In 3, we can define the six basic projection operators:

projxx, y, z  x, 0, 0,

projyx, y, z  0, y, 0,

projzx, y, z  0, 0, z,

projxyx, y, z  x, y, 0,

projxzx, y, z  x, 0, z, and

projyzx, y, z  0, y, z.

Similarly, we can define the six basic reflection operators:

reflxx, y, z  x,y,z,
reflyx, y, z  x, y,z,
reflzx, y, z  x,y, z,

reflxyx, y, z  x, y,z,
reflxzx, y, z  x,y, z, and
reflyzx, y, z  x, y, z.

More generally, given a random plane  through the origin in 3 and its orthogonal complement L, it
is possible to take any vector v  3 and find its orthogonal decomposition:

v  projv  projLv, where projv   and projLv  L.

From this, we get the reflection operators:

reflv  projv  projLv, and reflLv  projLv  projv.
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2.2 Exercises

For Exercises 1 to 5: For the following angles : (a) Find the standard matrix of rot, the
counterclockwise rotation by  in 2; (b) Compute rotv for v  5, 3, providing both exact and
approximate answers; and (c) Sketch v and rotv and check with a ruler and protractor that rotv
has the same length as v but is rotated counterclockwise by .

1. /6

2. sin13/5
3. cos15/13
4. tan15/12
5. 5/8. Hint: Use the Half-Angle Formulas.

For Exercises 6 to 10: If   0, the formula for rot  is exactly the same, but the geometric
effect is a clockwise rotation by | |. For the following : (a) Find the matrix of rot; (b) Compute
rotv for v  5, 3, providing both exact and approximate answers, and (c) Sketch v and
rotv and check with a ruler and protractor that rotv has the same length as v but is rotated
clockwise by | |.

6. 2/3

7. sin120/29
8. tan14/3
9. sin115/17  

10. 2 cos120/29. Hint: Use the Double Angle Formulas.

For Exercises 11 to 15: (a) Find the matrices of projL, projL and reflL for the lines L in 2

given by the following Cartesian equations; (b) Compute the values of these three operators on
v  3, 2, providing both exact and approximate answers; and (c) Sketch the graphs of L, L, v
and the images of v under these three operators, as shown in the Example in this Section.

11. y  3
5 x

12. y  4
7 x

13. y   4
5 x

14. y   7
3 x

15. y  3x
For Exercises 16 to 20: Find the standard matrix of proj, projL and refl for the planes 
in 3 and corresponding normal line L, where  is given by the following Cartesian equations:

16. 4x  2y  3z  0

17. 2x  5y  6z  0

18. 7x  4y  5z  0

19. 3x  5z  0
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20. 2y  7z  0

21. Find the matrix of the counterclockwise rotation in 2 by   /2. Is this a 2  2 elementary
matrix? Why or why not?

22. Find the matrix of reflL, the reflection across L for the normal line to the plane  with Cartesian
equation 3x  5y  2z  0 as seen in the final Example of this Section. How is reflL  related to
refl ?

23. Find the matrix of reflL, the reflection across L for the normal line to the plane  with Cartesian
equation 2x  5y  6z  0 from Exercise 17.

24. Type 2 Elementary Matrices: We will see in this Exercise that Type 2 elementary matrices
indeed correspond to reflections in 2 or 3.

Let T be the operator with T 
0 1
1 0

.

Note that this is the only 2  2 Type 2 elementary matrix.

a. Find Tv and Tw for v  5, 2 and w  3, 4.

b. Sketch the four vectors involved in (a), and the line y  x. Convince yourself that Tv is a
mirror-image of v for each vector in (a).

c. Now, find the standard matrices of projL, projL and reflL for the line in 2:

y  x.

Which of these matrices correspond to T?

d. Consider the 3  3 Type 2 elementary matrix
0 1 0
1 0 0
0 0 1

.

Show that this is the matrix of the reflection in 3, refl, across the plane  with Cartesian
equation y  x, i.e. x  y  0.

e. There are exactly two other 3  3 Type 2 elementary matrices. Find them, and for each, find
the corresponding plane  such that the reflection across  has this matrix as its standard
matrix.

f. Consider the 4  4 Type 2 elementary matrix

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

.

If T is the corresponding operator, find an explicit formula for Tx1, x2, x3, x4 . Write a
sentence describing in words what T does to any vector v  4. (Since we cannot visualize
4, we cannot see the effect of T on 4, but we can still explain what T does to a vector.)
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25. Suppose that v  a, b is a unit vector in 2, L is the line Spanv, and L is the orthogonal
complement of L. Prove that the matrices of projL, projL and reflL are given by:

projL  
a2 ab
ab b2

,

projL  
b2 ab
ab a2

, and

reflL  
a2  b2 2ab

2ab b2  a2
.

26. Suppose that n  a, b, c is a unit vector in 3,  is the plane in 3 with equation
ax  by  cz  0, and L is the normal line Spann  to . Prove that the matrices of projL,
proj and refl are given by:

projL  

a2 ab ac
ab b2 bc
ac bc c2

,

proj  
1  a2 ab ac
ab 1  b2 bc
ac bc 1  c2



b2  c2 ab ac
ab a2  c2 bc
ac bc a2  b2

, and

refl  
1  2a2 2ab 2ac
2ab 1  2b2 2bc
2ac 2bc 1  2c2



b2  c2  a2 2ab 2ac
2ab a2  c2  b2 2bc
2ac 2bc a2  b2  c2

.

27. Let us go backwards. Suppose you were told that:

proj   1
109

73 18 48
18 100 24
48 24 45

,

for some plane . Find a Cartesian equation for .
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28. Application — Drawing Three-Dimensional Objects: We can use the idea of a projection in
order to precisely draw a 3-dimensional object from any perspective that we choose.
Traditionally, we draw the positive coordinate axes using three half lines that make an angle of
1200 with each other. Let us call this the standard perspective. Our instincts would tell us that we
would see the standard perspective if we look at the origin from the direction 1, 1, 1. Let us
illustrate this by drawing the tetrahedron with vertices 0, 0, 0, 3, 0, 0, 0, 4, 0 and
0, 0, 2:

 

.

.
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y

z

z

z

A Tetrahedron in Standard Perspective, and its Front, Side and Top Views

The front view is what we see from the i direction, the side view is what we see from the j
direction (so that the positive x-axis goes to the right instead of left), and the top view is what we
see from the k direction.
More generally, let n  a, b, c be a unit vector in 3, and let  be the plane ax  by  cz  0.
Imagine that you are standing in the direction of n and facing an object near the origin. To avoid
getting dizzy, orient your head in such a manner that the z-axis still looks like a vertical line from
our vantage point (this is possible as long as n  k. Let us call the projections of the edges of
the solid on , as seen from this perspective, the view of the solid from the direction n. However,
the edges of the object could now appear shorter than their true lengths, and two edges that are
supposed to be perpendicular to each other may no longer appear to be perpendicular.
The purpose of this Exercise is to perform the calculations to find the perceived lengths of i, j
and k and the perceived angles between any two of these unit vectors. With these calculations,
we can precisely draw on a plane (such as a computer screen or a page in a book) the view of the
solid from the direction n.
Let us use the final Example in the text for motivation. For the plane  with equation
3x  5y  2z  0:

proj  

29
38

15
38  6

38
15
38

13
38

10
38

 6
38

10
38

34
38

.

The normal vector 3,5, 2 is not a unit vector, though, so we normalize it to:

n  1
38

3,5, 2.

Now, recall that for any linear transformation T, the columns of T are Te1  through Ten ,
respectively. Thus:

184 Section 2.2 Rotations, Projections and Reflections



proj i  29
38 , 15

38 , 6
38 ,

proj j  15
38 , 13

38 , 10
38 , and

proj k   6
38 , 10

38 , 34
38 .

a. Find the lengths of these three vectors. Do you notice a pattern? Find decimal
approximations for them.

b. Find the dot products of all three pairs of these three vectors.
c. Find the angle  i,j between proj i and proj j (review Section 1.3).

Approximate  i,j to 2 decimal places, and express your answer in degrees.
d. Repeat (c) for the angle  j,k between proj j and proj k and similarly for  i,k.

e. Now, we draw our coordinate system based on the view from n. Draw a vertical line which
will be the z-axis. Use your protractor to measure the three angles you found in (b) and (c).
Use the three lengths that you found in (a) to measure off tick-marks on each of the
corresponding axes, using 1 unit  5 centimeters. Use these tick-marks to sketch the view of
the tetrahedron found in the introduction from the perspective of n.
Let us generalize the construction above. We saw in a previous Exercise that:

proj  
1  a2 ab ac
ab 1  b2 bc
ac bc 1  c2

where n  a, b, c is a unit normal vector to .
f. Show that proj i  1  a2 .

Hint: for (f) and (g), you will need the fact that a2  b2  c2  1.
State and prove analogous formulas for proj j and proj k .
Again, these are the perceived lengths of the three unit vectors, as seen from n.

g. Show that proj i  proj j  ab.

State and prove analogous formulas for proj i  proj k and
proj j  proj k .

h. Show that cos i,j  ab
1  a2 1  b2

.

State and prove analogous formulas for cos j,k  and cos i,k .
Again,  i,j,  i,k, and  j,k are the perceived angles between i and j, i and k, and j and k,
respectively, as seen from n.

i. Bonus: If a, b and c are all positive, that is, we are viewing the origin from the first octant,
prove that the three angles must satisfy:

cos1 ab
1  a2 1  b2

 cos1 ac
1  a2 1  c2

 cos1 bc
1  b2 1  c2

 2.

Hint: interpret this equation geometrically.
How are the three positive axes oriented in relation to each other?
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2.3 Operations on Linear Transformations and Matrices

In Algebra, we can take two functions, say f x and gx, and combine them using addition,
subtraction, multiplication and division. In Linear Algebra, though, the only arithmetic operations that
we can perform on vectors are addition and scalar multiplication, so we begin with the following:

Definitions: If T1 : n  m and T2 : n  m are linear transformations, and k  ,
then we can define the sum, difference and scalar product of these transformations as:

T1  T2 : n  m,

T1  T2 : n  m, and

kT1 : n  m,
the functions with actions given, respectively, by: for any v  n:

T1  T2 v  T1v  T2v,

T1  T2 v  T1v  T2v, and

kT1 v  kT1v.

We will prove later that these functions are actually linear transformations by finding their matrices
using T1  and T2 . We will combine these two matrices using arithmetic operations on matrices that
we will also be defining in this section, thus producing matrices for these new linear transformations.

Example: Suppose that:
T1, T2 : 3  2, given by:

T1x, y, z  3x  2y  5z, 2x  4y  3z, and

T2x, y, z  4x  7y  2z, x  y  4z.

Their matrices are:

T1  
3 2 5
2 1 3

and T2  
4 7 2
1 1 4

.

The sum of these two linear transformations is:

T1  T2 x, y, z
 3x  2y  5z, 2x  y  3z  4x  7y  2z, x  y  4z
 7x  5y  3z, 3x  z.

Notice that this can be written as a matrix product:

T1  T2 x, y, z 
7 5 3
3 0 1

x
y
z

.
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Thus, at least for this example, T1  T2 is indeed a linear transformation, and:

T1  T2  
7 5 3
3 0 1

.

Notice that the matrix that we obtained for T1  T2 has entries that are the sum of the corresponding
entries for the matrices for T1 and T2.
Similarly, let us look at a scalar product:

7T1x, y, z
 73x  2y  5z, 2x  y  3z
 21x  14y  35z, 14x  7y  21z.

Its matrix is thus:

7T1  
21 14 35
14 7 21

.

The entries of this matrix are 7 times each corresponding entry from the matrix for T1. These
observations are hardly coincidences, and it is therefore natural to define next the addition, subtraction,
and scalar multiplication of matrices.

The Arithmetic of Matrices

We will use the notation from Chapter 1, where we denote by A i,j the entry of the matrix A in row i,
column j. This allows us to make the following:

Definitions: If A and B are both m  n matrices, and k   is any scalar, then we can define
the sum, difference and scalar product of these matrices, denoted:

A  B, A  B, and kA.

These are also m  n matrices with entries given by:

A  B i,j  A i,j  B i,j,

A  B i,j  A i,j  B i,j, and

kA i,j  kA i,j.

In particular, we can define the negative of a matrix, A, to be:

 A  1A,
with the property that:

A  A  A  A  0mn.

Since we are adding or subtracting corresponding pairs of entries from A and B when we compute
A  B and A  B, the same is true if we partition A and B into columns or rows. Thus, we have the
following:
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Theorem: If A and B are both m  n matrices, and we partition A and B into columns as:

A  a1 a2 . . . an , and B  b1 b2 . . . b ,

then we have:
A  B  a1  b1 a2  b2 . . . an  bn ,

A  B  a1  b1 a2  b2 . . . an  bn , and

kA  ka1 ka2 . . . kan ,

for any scalar k  . Similarly, if we partition A and B into rows as:

A 

r1

r2



rm

, and B 

s1

s2



sm

,

then we have:

A  B 

r1  s1

r2  s2



rm  sm

, A  B 

r1  s1

r2  s2



rm  sm

, and kA 

kr1

kr2



krm

.

Now we are ready to construct the matrices for our combined linear transformations.

Theorem: If T1 : n  m and T2 : n  m are linear transformations, with matrices
T1  and T2  respectively, and k is any scalar, then for any v  n:

T1  T2 v  T1   T2 v,

T1  T2 v  T1   T2 v, and

kT1 v  kT1 v.

Consequently, T1  T2, T1  T2 and kT1 are linear transformations with matrices given by,
respectively:

T1  T2   T1   T2 ,

T1  T2   T1   T2 , and

kT1   kT1 .

Proof: We will prove the first property and leave the other two as Exercises. For convenience, suppose
that T1   A and T2   B. We want to show that T1  T2 v  A  Bv, and therefore T1  T2 is
indeed a linear transformation with T1  T2   A  B. By definition:
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T1  T2 v  T1v  T2v

 Av  Bv.
Now, as we did in the previous Theorem, let us partition A and B into columns:

A  a1 a2 . . . an , and B  b1 b2 . . . bn .

Thus we have:
T1  T2 v

 Av  Bv

 a1 a2 . . . an

v1

v2



vn

 b1 b2 . . . bn

v1

v2



vn

 v1a1  v2a2   vnan  v1b1  v2b2   vnbn

 v1a1  v1b1  v2a2  v2b2   vnan  vnbn

 v1 a1  b1  v2 a2  b2   vn an  bn

(by the “Right” Distributive Property from Section 1.1)

 a1  b1 a2  b2 . . . an  bn

v1

v2



vn

 A  Bv. 

Compositions of Linear Transformations

Now let us see a more sophisticated way to combine linear transformations. In Algebra, we can form
the composition of two functions f x and gx by:

 f  g x  f gx,

We must therefore be careful that the value of gx is a member of the domain of f x in order to
successfully perform this computation. We can compose linear transformations as well, but we
likewise have to be aware of the domains and codomains:

Definition/Theorem: If T1 : n  k and T2 : k  m are linear transformations, then
we can define their composition:

T2  T1 : n  m,
which is also a linear transformation, whose action is given as follows:
Suppose u  n, T1u  v  k, and T2v  w  m. Then:

T2  T1 u  T2T1u  T2v  w.
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The Composition of T1 with T2

Note that the domain of T2 must be the codomain of T1 in order for T2  T1 to be defined. This is
called a compatibility requirement. The fact that the composition of two linear transformations is also
a linear transformation will follow directly from the linearity properties that the two transformations
enjoy:

Proof of Linearity: We need to show Additivity and Homogeneity:

T2  T1 u1  u2   T2  T1 u1   T2  T1 u2  and

T2  T1 ku1   kT2  T1 u1 .

We will prove the first equation and leave the second as an Exercise:

T2  T1 u1  u2   T2T1u1  u2  by the definition of T2  T1,

 T2T1u1   T1u2  by the additivity of T1,

 T2T1u1   T2T1u2  by the additivity of T2,

 T2  T1 u1   T2  T1 u2  by the definition of T2  T1.

Example: Suppose that T1 : 3  2 and T2 : 2  4 are given by:

T1x, y, z  x  y  2z, 3x  y  z, and

T2u, v  u  2v, 5u  v, 3u, u  v.

Then T2  T1  : 3  4 is given by:

T2  T1 x, y, z

 T2T1x, y, z

 T2x  y  2z, 3x  y  z

 x  y  2z  23x  y  z, 5x  y  2z  3x  y  z,
3x  y  2z, x  y  2z  3x  y  z

 7x  y, 2x  6y  11z, 3x  3y  6z, 4x  z.

Thus T2  T1 is indeed a linear transformation, with matrix:
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T2  T1  

7 1 0
2 6 11
3 3 6
4 0 1

. 

Clearly, finding the matrix of the composition is not an obvious process. But now that we have seen the
addition, subtraction and scalar products of matrices, it would probably be no surprise that we need to
multiply T2  and T1  to get T2  T1 . Let us now see how to generalize the construction of a matrix
product.

General Matrix Products

In the previous Chapter, we defined the matrix product Ax , where A is an m  n matrix and x is an
n  1 column matrix, as the m  1 column matrix obtained by forming the linear combination of the
columns of A with corresponding coefficients from x. We will now extend this definition in a natural
manner:

Definition — Matrix Product: If A is an m  k matrix, and B is a k  n, then we can
construct the m  n matrix product AB, where:

column i of AB  A  column i of B.

In other words, if we partition B into columns, and write:

B  b1 | b2 | | bn ,

then:
AB  Ab1 | Ab2 | | Abn .

Notice that we require that the number of columns of A must equal the number of rows of B. This is
again known as a compatibility requirement. Also, notice that from the definition of AB, we can write
the individual entries of AB as:

AB i,j  a i,1b1,j  a i,2b2,j   a i,kbk,j.

But recall that a matrix product Ac is a column vector consisting of the dot product of the rows of A
with c, and in fact we can see that the formula above looks just like a dot product. If we partition A into
its rows r1, r2 . . . rm and B into its columns b1, b2 . . . bn, then, indeed:
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AB 

r1

r2



rm

b1 b2  bn 

r1  b1 r1  b2  r1  bn

r2  b1 r2  b2  r2  bn

   

rm  b1 rm  b2  rm  bn

.

Let us summarize this observation in the following:

Theorem: If A is an m  k matrix, and B is a k  n, then AB is an m  n matrix, and:

AB i, j  row i of A  column j of B.

Example: Let us continue with our previous Example, and study:
T1 : 3  2, given by:

T1x, y, z  x  y  2z, 3x  y  z, and
T2 : 2  4, given by:

T2u, v  u  2v, 5u  v, 3u, u  v.
Their matrices are:

T1   A 
1 1 2
3 1 1

, and T2   B 

1 2
5 1
3 0
1 1

.

Since B is a 4  2 matrix and A is a 2  3, the product BA is defined and should be a 4  3 matrix.
Multiplying these two matrices, we get:

BA 

1 2
5 1
3 0
1 1

1 1 2
3 1 1



1  1  2  3 1  1  2  1 1  2  2  1
5  1  1  3 5  1  1  1 5  2  1  1

3  1  0  3 3  1  0  1 3  2  0  1
1  1  1  3 1  1  1  1 1  2  1  1



7 1 0
2 6 11
3 3 6
4 0 1

. 

This shows that, at least for this example:

T2  T1   BA  T2 T1 .
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Before we can prove this property in general, though, we need to learn more about the properties of
matrix products, which we will see in the next Section. In the meantime, we can generalize a
construction from Chapter 1:

Linear Combinations of Linear Transformations and Matrices

If T1, T2, . . . , Tk are all linear transformations from n to m, and c1, c2, . . . , ck are any scalars, then
we can construct the linear combination of these linear transformations with the corresponding
coefficients in the natural manner, by:

c1T1  c2T2   ckTk v  c1T1v  c2T2v   ckTkv.

Analogously, if A1, A2, . . . , Ak are all m  n matrices, then we can also construct the linear
combination of these matrices with the corresponding coefficients by:

c1A1  c2A2   ckAk.
From our Theorem above concerning the matrices for T1  T2 and kT, we naturally see by Induction
(as you will prove in the Exercises) that:

c1T1  c2T2   ckTk   c1T1   c2T2    ckTk .

Example: Let T1, T2, T3 : 4  3, given by:

T1x1, x2, x3, x4   5x3  x1, 4x2  7x3  2x4, 8x3  5x1 ,

T2x1, x2, x3, x4   7x2  x4, x1  5x2  3x4, x2  x3  7x4 , and

T3x1, x2, x3, x4   x2  x3  5x4, x1  9x4, 2x3  3x4 .

Let us find the matrix of 4T1  5T2  7T3 in two ways: by using the definition of the linear
combination of linear transformations, and by computing the corresponding linear combination of the
matrices of the three linear transformations.
First, we have:

4T1  5T2  7T3 x1, x2, x3, x4 

 45x3  x1, 4x2  7x3  2x4, 8x3  5x1   57x2  x4, x1  5x2  3x4, x2  x3  7x4 

 7x2  x3  5x4, x1  9x4, 2x3  3x4 

 20x3  4x1, 16x2  28x3  8x4, 32x3  20x1 

 35x2  5x4,5x1  25x2  15x4,5x2  5x3  35x4 

 7x2  7x3  35x4, 7x1  63x4, 14x3  21x4 

 4x1  28x2  27x3  40x4, 2x1  9x2  28x3  40x4,20x1  5x2  51x3  56x4 .
Thus:

4T1  5T2  7T3  

4 28 27 40
2 9 28 40

20 5 51 56

.

Next, we find the linear combination of the matrices:
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4T1   5T2   7T3 

 4
1 0 5 0

0 4 7 2
5 0 8 0

 5
0 7 0 1
1 5 0 3
0 1 1 7

 7
0 1 1 5
1 0 0 9
0 0 2 3



4 0 20 0
0 16 28 8

20 0 32 0



0 35 0 5
5 25 0 15

0 5 5 35



0 7 7 35
7 0 0 63
0 0 14 21



4 28 27 40
2 9 28 40

20 5 51 56

.

This verifies our previous computation.

2.3 Section Summary

If T1, T2 : n  m are linear transformations, and k is any scalar, then we can define T1  T2,
T1  T2, and kT1 : n  m, as linear transformations, by:

T1  T2 v  T1v  T2v,
T1  T2 v  T1v  T2v, and

kT1 v  kT1v.

If A and B are both m  n matrices, and k is any scalar, then we can define: A  B, A  B, and kA as
m  n matrices with the entry in row i, column j, given by:

A  B i,j  A i,j  B i,j,

A  B i,j  A i,j  B i,j, and

kA i,j  kA i,j.

If T1, T2 : n  m are linear transformations, with matrices T1  and T2  respectively, and k is any
scalar, then:

T1  T2   T1   T2 ,
T1  T2   T1   T2 , and

kT1   kT1 .

If T1 : n  k and T2 : k  m are linear transformations, then we can define their composition:

T2  T1 : n  m,
as a linear transformation, with action given as follows: Suppose u  n, T1u  v  k, and
T2v  w  m. Then:
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T2  T1 u  T2T1u  T2v  w.

If A is an m  k matrix, and B is a k  n, then we can construct the m  n matrix product AB, where
column i of AB is A  column i of B. Thus, if we write B in terms of its columns as
B  b1 | b2 | | bn , then AB  Ab1 | Ab2 | | Abn .

We can also view the entries of AB as dot products, via:

AB i,j  row i of A  column j of B.

If T1, T2, . . . , Tk are all linear transformations from n to m, and c1, c2, . . . , ck are any scalars, then
we can construct the linear combination of these linear transformations with the corresponding
coefficients by:

c1T1  c2T2   ckTk v  c1T1v  c2T2v   ckTkv.

Analogously, if A1, A2, . . . , Ak are all m  n matrices, then we can also construct the linear
combination of these matrices with the corresponding coefficients by:

c1A1  c2A2   ckAk, and thus:

c1T1  c2T2   ckTk   c1T1   c2T2    ckTk .

2.3 Exercises

1. Let T1, T2 : 3  2 be given by:

T1x, y, z  3x  2y  5z, x  4y  7z , and

T2x, y, z  2x  9z, x  y  3z .

a. Use the definition of the sum of two linear transformations directly to compute
T1  T2 x, y, z.

b. Use your answer in (a) to find the matrix of T1  T2.

c. Find T1  and T2 , and use these to compute T1   T2 .

d. Verify that T1   T2   T1  T2 .

e. Similarly, use the definition to find 4T1 x, y, z directly, and find 4T1 . Show that
4T1   4T1 .

2. Let T1, T2 : 3  4 be given by:

T1x, y, z  x  2y  3z, x  4z, 2y, x  y  z , and
T2x, y, z  2x  z, x  y, x  3z,4x.

a. Use the definition of the sum of two linear transformations directly to compute
T1  T2 x, y, z.

b. Use your answer in (a) to find the matrix of T1  T2.

c. Find T1  and T2 , and use these to compute T1   T2 .

d. Verify that T1   T2   T1  T2 .

e. Similarly, use the definition to find 3T1 x, y, z directly, and find 3T1 . Show that
3T1   3T1 .
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3. Consider the following matrices:

A 
3 7 4
2 8 3

, B 

4 2
7 3
2 5

, C 
7 4
2 3

,

D 
5 3 7

4 1 2
, and E 

1 3
2 4
5 1

.

Compute, if possible, the following matrices, and state their dimensions:

a. A  D b. A  B c. 2B  5E d. 7C  4A e. BC

f. CB g. CC h. BE i. EA j. DB

k. DBC l. DBC m. ECA n. ECA o. CDB

You may use the answers to (e) and (j) for parts (k), (l) and (o). Compare the answers to parts (k)
and (l) together, and parts (m) and (n) together. What property does this remind you of?

4. Consider the following matrices:

A 

5 3 2 4
7 1 6 8
4 5 3 1

, B 

3 7 2 1 5
0 4 3 6 2
6 1 0 8 1

, C 

2 6 1
3 0 4
2 5 7
1 8 3

,

D 

6 0 3 1 7
3 5 2 6 3
8 4 7 3 1
0 2 5 4 6

, E 

4 6 7
3 0 2
5 1 8
3 4 6
1 3 0

, F 

7 1 9 6
4 0 4 3
3 2 7 0
0 5 2 1
8 6 4 1

.

Compute, if possible, the following matrix products, and state their dimensions:

a. AC b. CA c. AD d. DA e. DE

f. EA g. FC h. FA i. DF j. FB

k. CAD l. CAD m. DFC n. DFC o. ACAC

You may use previous computations to perform (k) through (o).

5. Let T1 : 2  4, and T2 : 4  3 be given by:

T1x, y  3x  2y, 5x  y,x  3y, 4y, and

T2x1, x2, x3, x4   3x1  5x4, 7x2  2x3  x4, 6x3  9x4 .

a. Explain why the composition T2  T1 is well defined. State the domain and the codomain of
T2  T1.
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b. Is the composition T1  T2 also well defined? Why or why not?
c. Use the definition of a composition directly to find T2  T1 x, y.
d. Use (c) to find T2  T1 .
e. Form T2  and T1  and compute the matrix product T2 T1 . Verify that it equals

T2  T1 .

6. Let T1 : 3  4, and T2 : 4  3 be given by:

T1x, y, z  3x  5y  z, 2x  y  4z, x  z, y  2z, and

T2x1, x2, x3, x4   3x1  5x4 , 7x2  2x3  x4, 6x3  9x4 .

Note that we are using the same T2 as the previous Exercise.

a. Explain why both compositions T2  T1 and T1  T2 are well defined. State the domain and
the codomain of each.

b. Use directly the definition of a composition to find T2  T1 x, y, z and
T1  T2 x1, x2, x3, x4 .

c. Use (b) to find T2  T1  and T1  T2 .
d. Form T2  and T1  and compute the matrix products T2 T1  and T1 T2 . Verify that

they equal T2  T1  and T1  T2  respectively.

7. Let T1 : 2  5, and T2 : 5  2 be given by:

T1x, y  x  2y, 3x  y, 5x  7y, 6y,2x , and

T2x1, x2, x3, x4, x5   3x1  7x2  6x3  5x4  8x5, 9x1  2x3  x4  x5 .

a. Explain why both compositions T2  T1 and T1  T2 are well defined. State the domain and
the codomain of each.

b. Use directly the definition of a composition to find T2  T1 x, y and
T1  T2 x1, x2, x3, x4, x5 .

c. Use (b) to find T2  T1  and T1  T2 .
d. Form T2  and T1  and compute the matrix products T2 T1  and T1 T2 . Verify that

they equal T2  T1  and T1  T2  respectively.

8. Let T1 : n  m and T2 : n  m be linear transformations, with m  n matrices T1  and
T2  respectively, k  , and v  n. Prove that:

T1  T2 v  T1   T2 v, and

kT1 v  kT1 v.

Consequently, prove that:

T1  T2   T1   T2 , and

kT1   kT1 .

9. Let T1 : n  k and T2 : k  m be linear transformations. Prove that for all k  , and
v  n: T2  T1 kv  kT2  T1 v, that is, T2  T1 satisfies the Homogeneity Property.

10. Use induction on k to prove that: if c1, c2, . . . , ck are scalars and T1, T2, . . . , Tk are linear
transformations from n to m, then the linear combination:
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c1T1  c2T2   ckTk

is also a linear transformation from n to m. Start with k  2 as your “basis step.” At the same
time, prove that:

c1T1  c2T2   ckTk   c1T1   c2T2    ckTk .

11. Show that if  is a plane in 3 through 03 with normal line L, then the reflection operator across
 can be written in terms of the projection onto L as the linear combination:

refl  I3  2projL.

Hint: I3v  v for all v  3.

12. Multiplication by Identity and Zero Matrices: Show that if A is an k  n matrix and B is an n  k
matrix, then AIn  A and InB  B. State and prove corresponding properties for A0n r and
0rnB.

13. What can you say about the dimensions of A and B if both products AB and BA are defined,
although not necessarily of the same size? Analogously, let T1 : n  k and T2 : k  m be
linear transformations. What can you say about n, k and m if both compositions T2  T1 and
T1  T2 are well defined?

14. Prove that if A is an m  k matrix and B is a k  n matrix, then we can define the matrix product
AB by partitioning A into rows as follows:

If A 

r1

r2



rm

then AB 

r1B
r2B


rmB

.

Hint: use the dot product formula for a matrix product. Compare this to the definition of AB using
the columns of B.

15. In Chapter 1, we showed that if A is an m  n matrix and b is an m  1 matrix, then the matrix
equation Ax  b is solvable for x if and only if b is in the columnspace of A. Analogously,
prove that if d is a 1  n matrix, then the matrix equation yA  d is solvable for y if and only if
d is in the rowspace of A.

16. Suppose that  is a plane in 3 passing through the origin with Cartesian equation
ax  by  cz  0, where n  a, b, c is a unit vector. Show that we can write proj  as the
matrix product:

proj  
a
b
c

a b c .

Hint: review the general formula for proj  at the end of the Exercises in Section 2.2.
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2.4 Properties of Operations on Linear

Transformations and Matrices

In this Section, we will see that linear transformations and their arithmetic, as well as the arithmetic of
matrix operations, enjoy some analogous properties that the arithmetic of vectors and real numbers
possesses. However, we will also point out that some properties are not always possessed by these
matrix operations.

Properties of Matrix Addition and Scalar Multiplication

Many of the properties of vector arithmetic are inherited by matrix addition and scalar multiplication:

Theorem — Properties of Matrix Addition and Scalar Multiplication:
If A, B and C are m  n matrices, and r and s are scalars, then the following properties hold:

1. The Commutative Property of Addition A  B  B  A
2. The Associative Property of Addition A  B  C  A  B  C

3. The “Left” Distributive Property r  sA  rA  sA

4. The “Right” Distributive Property rA  B  rA  rB

5. The Associative Property rsA  rsA  srA
of Scalar Multiplication

Proof: We will show that the first property is true, and leave the rest as Exercises. First of all, A and B
are both m  n matrices, so A  B and B  A are both m  n matrices. Let us use the notation A i,j
instead of a i,j, and similarly for A  B i,j and so on, to look at each entry:

A  B i,j  A i,j  B i,j

 B i,j  A i,j (since both are numbers)

 B  A i,j.

Since all corresponding pairs of entries are equal, A  B  B  A. 

The rest of the properties are proved similarly by examining the sizes and the entries of the matrices
and their combinations on both sides of each equation.

Basic Properties of Matrix Multiplication

Unlike matrix addition and scalar multiplication, matrix multiplication has fewer nice properties, even
when combined with the relatively simple operations of matrix addition and scalar multiplication:

Section 2.4 Properties of Operations on Linear Transformations and Matrices 199



Theorem: If A and B are m  k matrices, C and D are k  n matrices, and r is a scalar, then
the following properties hold:

1. The “Left” Distributive Property A  BC  AC  BC

2. The “Right” Distributive Property AC  D  AC  AD

3. The Associative Property of rBC  rBC  BrC
Mixed (Scalar and Matrix) Products

Proof: Again, we will prove the first property and leave the other two as Exercises. We will prove it
using the dot product formula for matrix products. First, since A and B are on the left side of the
product, we partition them into their rows:

A 

a1

a2



am

and B 

b1

b2



bm

.

We saw in the previous Section that with this partitioning:

A  B 

a1

a2



am



b1

b2



bm



a1  b1

a2  b2



am  bm

.

Next, since C is on the right side of the product, we partition C into columns:

C  c1 c2  cn .

We now have:

A  BC 

a1  b1

a2  b2



am  bm

c1 c2  cn



a1  b1  c1 a1  b1  c2  a1  b1  cn

a2  b2  c1 a2  b2  c2  a2  b2  cn

   

am  bm  c1 am  bm  c2  am  bm  cn

(by the dot product formula for the matrix product)
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a1  c1  b1  c1 a1  c2  b1  c2  a1  cn  b1  cn

a2  c1  b2  c1 a2  c2  b2  c2  a2  cn  b2  cn

   

am  c1  bm  c1 am  c2  bm  c2  am  cn  bm  cn

(by the Distributive Property of Dot Products)



a1  c1 a1  c2  a1  cn

a2  c1 a2  c2  a2  cn

   

am  c1 am  c2  am  cn



b1  c1 b1  c2  b1  cn

b2  c1 b2  c2  b2  cn

   

bm  c1 bm  c2  bm  cn

(by the definition of matrix addition)

 AC  BC (again, by the dot product formula for the matrix product).

The Associative Property of Matrix Multiplication

The most difficult property to prove regarding matrix multiplication is its associative nature, and thus
we now focus on it:

Theorem: If A is an m  p matrix, B is a p  q matrix, and C is a q  n matrix, then:

A BC  ABC.

Proof: First, let us check that both sides of the equation are well defined, and the resulting matrices are
of the same size. Since B is a p  q matrix, and C is a q  n matrix, the product BC is a p  n matrix.
Since A is an m  p matrix, the product ABC is an m  n matrix. Similarly, AB is m  q, and ABC
is m  n. Thus, both sides are m  n matrices.
Now, we have to show that both sides, pair-wise, have exactly the same entries. First, let us assume
that C  x, a q  1 matrix. Let us write the middle matrix B in terms of its column vectors:

B  b1 b2  bq .

From the definition of the matrix product:

AB  Ab1 Ab2  Abq .

Thus, when we multiply on the right by x, we get:

ABx  Ab1 Ab2  Abq

x1

x2



xq

 x1 Ab1  x2 Ab2   xq Abq

by the basic definition of the product of a matrix with a column vector. Now, let us work on ABx.
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First, we find Bx :

Bx  b1 b2  bq

x1

x2



xq

 x1b1  x2b2   xqbq.

Thus:

ABx  A x1b1  x2b2   xqbq

 A x1b1  A x2b2   A xqbq

by the “Right” Distributive Property)

 x1 Ab1  x2 Ab2   xq Abq

by the Associative Property of Mixed Products. Thus the two sides are the same.
Now, if C is an arbitrary q  n matrix, then we can write C in terms of its columns:

C  c1 c2 ... cn ,

and from the previous analysis:

ABci  ABci 

for every column ci. Thus, column i of ABC is exactly the same as that of ABC, and therefore
ABC  ABC. 

Example: Consider the matrices:

A 

5 3
4 0
2 6

, B 
7 2 3 1
4 8 0 5

, and C 

3 7
0 5
4 2
9 6

.

Note that A is 3  2, B is 2  4, and C is 4  2. Thus, AB is 3  4 and BC is 2  2. We compute these
matrix products below:

AB 

5 3
4 0
2 6

7 2 3 1
4 8 0 5



47 34 15 20
28 8 12 4
10 44 6 28

, and

BC 
7 2 3 1
4 8 0 5

3 7
0 5
4 2
9 6


42 59
57 38

.
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From these, we see that the product ABC is a 3  2 matrix, and ABC is also a 3  2 matrix. By the
Associative Property, these two products should be the same, and in fact we can verify this by directly
computing these products and checking that they are equal:

ABC 

47 34 15 20
28 8 12 4
10 44 6 28

3 7
0 5
4 2
9 6



381 409
168 236
258 110

, and

ABC 
5 3
4 0
2 6

42 59
57 38



381 409
168 236
258 110

. 

We note that it is almost a mathematical miracle that matrix multiplication is associative, considering
that this operation is defined in a rather strange way. This just goes to show that creative ideas often
lead to interesting consequences.

The Matrix of a Composition

Now we are ready to prove that in general:

Theorem: If T1 : n  k and T2 : k  m are linear transformations, then:

T2  T1   T2 T1 .

Proof: For convenience, as before, let T1   A and T2   B. We must show that T2  T1   BA.
By the uniqueness property of the standard matrix, we must show that for any v  n :

T2  T1 v  BAv.

Now, by definition:
T2  T1 v  T2T1v  T2Av  BAv  BAv,

where the last equation follows from the Associative Property of Matrix Multiplication.

k-fold Compositions

If T1, T2, . . . . , Tk1, Tk are all linear transformations with the property that the codomain of T i is the
domain of T i1, for all i  1. . k  1, then we can inductively construct the k-fold composition of these
linear transformations by:

Tk  Tk1   T2  T1 v  TkTk1   T2  T1 v.
The above formula says that we first compute the k  1-fold composition Tk1   T2  T1,
evaluated at the vector v, and use Tk to evaluate the final vector.
The matrix of the k-fold composition is the product of the matrices in the composition, and
conveniently, they are in the same order:
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Tk  Tk1   T2  T1   Tk Tk1 T2 T1 .

Since matrix multiplication is associative, it does not matter how the long product on the right is
computed, as long as the intermediate products are kept in the same order.

Example: Let T1, T2, T3 : 2  2 be given by:

T1  rotation counterclockwise by /3,

T2  projection onto the y-axis, and

T3  reflection across the x-axis.

Let us find the matrix of T3  T2  T1. First, the individual matrices are:

T1  
1/2  3 /2
3 /2 1/2

; T2  
0 0
0 1

; T3  
1 0
0 1

.

By the Associative Property of Matrix Multiplication, it doesn’t matter whether we compute
T3 T2 T1  or T3 T2 T1 . Just for fun, let’s do both:

T3 T2 T1  
1 0
0 1

0 0
0 1

1/2  3 /2
3 /2 1/2


0 0
0 1

1/2  3 /2
3 /2 1/2


0 0

 3 /2 1/2
, and similarly:

T3 T2 T1  
1 0
0 1

0 0
0 1

1/2  3 /2
3 /2 1/2


1 0
0 1

0 0
3 /2 1/2


0 0

 3 /2 1/2
.

As expected, we get the same answer.

Powers of Square Matrices and Linear Operators

Now that we understand better the operations of matrix multiplication and composition of
transformations, let us see when we can multiply a matrix A by itself. The compatibility requirements
of matrix multiplication and composition of linear transformations easily tell us the following:

Theorem: The matrix product AA can be formed if and only if A is an n  n or square
matrix. Analogously, the composition T  T can be formed if and only if the domain and
codomain of T are the same Euclidean space n, i.e., T is an operator.

It is more natural to write the product AA as A2 and the composition T  T as T 2.
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Furthermore, now that we know that matrix multiplication is associative, we have:

AAA  AAA

so the expression A3 is well defined. Similarly, by induction, we will write:

Ak  A  Ak1  A  A    A, and

T kv  TT k1v  TT. . . Tv

where there are k factors of A appearing in the product, and k evaluations of T appearing in the k-fold
composition.

Example: If A 
3 5
6 2

, then:

A2 
3 5
6 2

3 5
6 2


21 25
30 26

, and

A3  A  A2 
3 5
6 2

21 25
30 26


213 55
66 202

. 

We can combine the operations of computing the powers of a square matrix, scalar multiplication and
matrix addition into a familiar expression:

Definition: If px  c0  c1x  c2x2   ckxk is a polynomial with real coefficients, and
A is any n  n matrix, then we define the polynomial evaluation, pA, by:

pA  c0In  c1A  c2A2   ckAk.

Warning: Do not forget to multiply c0 by In, otherwise you will have a hard time adding a scalar to a
matrix. This is a reasonable convention, because in Algebra, x0  1, as long as x  0. It is therefore
natural to define A0 as In, as long as A is not a zero matrix.

Example: Let A be the same matrix as the previous Example, and suppose
px  3  5x  7x2  4x3. Using the powers of A computed above, we get:

pA  3I2  5A  7A2  4A3

 3
1 0
0 1

 5
3 5
6 2

 7
3 5
6 2

2

 4
3 5
6 2

3


3 0
0 3

 5
3 5
6 2

 7
21 25
30 26

 4
213 55
66 202


3 0
0 3


15 25
30 10


147 175
210 182


852 220
264 808


693 370
444 619

. 
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Multiplication by Identity and Zero Matrices

In Section 2.1, we saw the zero matrices 0mn and the n  n identity matrices In. Multiplication by
these special matrices are easily performed. The proof of the following properties were Exercises in
Section 2.3:

Theorem: If A is any m  n matrix, then:

AIn  A, ImA  A, A0np  0mp, and 0pmA  0pn.

T is Uniquely Determined by a Basis

If T : n  m is a linear transformation, we can assemble T using Te1  through Ten . However,
the standard basis is not that special. The next Theorem, whose proof we leave as an Exercise, says
that if we know how T behaves on any basis for n, we can still compute T for any v  n:

Theorem: If T : n  m is a linear transformation, and B  v1, v2, . . . , vn is any basis
for n, then the action of T is uniquely determined by the vectors Tv1 , Tv2 , . . . , Tvn .
More specifically, if v  n and v is expressed (uniquely) as:

v  c1v1  c2v2   cnvn, then: Tv  c1Tv1   c2Tv2    cnTvn .

Example: Suppose T : 3  4 is a linear transformation and we are given that:

T1, 2, 1  3, 5, 2,4,

T1, 1, 0  7, 4,3, 8, and

T1, 1, 1  2, 1, 5, 6.
Let us use this information to compute T3,5, 8. We are supposed to check first that the set
B   1, 2, 1, 1, 1, 0, 1, 1, 1 is a basis for 3. However, let us see if we can kill two birds
with one stone. If we try to determine if 3,5, 8 is a member of SpanB by assembling the vectors
in an augmented matrix as usual:

1 1 1 | 3
2 1 1 | 5
1 0 1 | 8

, we get the rref
1 0 0 | 18
0 1 0 | 5
0 0 1 | 26

.

We find 3 leading 1’s in the rref, and this proves that B is linearly independent and therefore a basis,
as we need 3 vectors to form a basis for 3. It also tells us that:

3,5, 8  181, 2, 1  51, 1, 0  261, 1, 1.

Thus, by the linearity properties:
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T3,5, 8  T18 1, 2, 1  5 1, 1, 0  26 1, 1, 1
 T18 1, 2, 1  T5 1, 1, 0  T26 1, 1, 1
 18 T1, 2, 1  5 T1, 1, 0  26 T1, 1, 1
 18 3, 5, 2,4  5 7, 4,3, 8  26 2, 1, 5, 6
 33,44, 79, 268. 

The Existence of Zero Divisors

Because the set of n  n matrices have an addition and multiplication operation with nice properties, it
possesses what is called a ring structure. In such a structure, the product of the zero element with any
other element is again the zero element. This is certainly true for matrices, as we stated above.
However, the converse is not always true, and we refer to these exceptions with a special term:

Definition: Suppose that A and B are two non-zero n  n matrices, with the property that
AB  0nn. Then, A and B are both called zero divisors.

Example: Let A 
1 0
0 0

, and B 
0 0
1 0

. We can easily check that:

AB 
1 0
0 0

0 0
1 0


0 0
0 0

,

and thus A and B are both zero divisors. Notice, however, that:

BA 
0 0
1 0

1 0
0 0


0 0
1 0

,

which is not the zero matrix! This does not disqualify A or B from being zero divisors, though.

Reversing the order of multiplication gave us a different answer. This is worth pointing out in general:

AB  BA Most of the Time!

Despite all the wonderful, natural properties of matrix arithmetic, there is an important exception. It is
analogous to the well-known property regarding the composition of functions that in general,
f  g  g  f:

Matrix multiplication, in general, is NOT commutative!

Example: Let A 
3 5
6 2

and B 
1 7
9 4

. Then:
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AB 
3 5
6 2

1 7
9 4


42 41

24 34
, but:

BA 
1 7
9 4

3 5
6 2


45 9

3 53
. 

There are, of course, exceptions to this rule. In other words, there do exist pairs of matrices A and B
where AB  BA. This will be explored further in the last Exercise of this Section.

2.4 Section Summary

Under compatible conditions (that is, when all operations in all the expression are well defined), matrix
arithmetic enjoys the following properties:

A  B  B  A A  BC  AC  BC

A  B  C  A  B  C AC  D  AC  AD

r  sA  rA  sA rBC  rBC  BrC

rA  B  rA  rB ABC  ABC

rsA  rsA  srA

AIn  A ImA  A

A0np  0mp 0pmA  0pn

However, matrix multiplication, in general, is not commutative.
If T1 : n  k and T2 : k  m are linear transformations, then: T2  T1   T2 T1 .
The matrix product AA can be formed if and only if A is an n  n matrix. Analogously, the
composition T  T can be formed if and only if the domain and codomain of T are the same Euclidean
space n, i.e., T is an operator. More generally, we can construct Ak for a positive integer k.
If px  c0  c1x  c2x2   ckxk is a polynomial with real coefficients, and A is any n  n matrix,
then we define the polynomial evaluation, pA, by: pA  c0In  c1A  c2A2   ckAk.
If T : n  m is a linear transformation, and B  v1, v2, . . . , vn is a basis for n, then the action
of T is uniquely determined by the vectors Tv1 , Tv2 , . . . , Tvn .
More specifically, if v  n and v is expressed (uniquely) as:

v  c1v1  c2v2   cnvn, then:
Tv  c1Tv1   c2Tv2    cnTvn .

Two n  n matrices A and B with the property that AB  0nn, but neither A nor B is 0nn are called
zero divisors.
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2.4 Exercises

1. Consider the matrices: A 

5 3 6 8
2 4 1 7
4 6 3 0

, and B 

6 4 7 3
8 0 1 6
3 7 5 4

.

C 

7 9
3 4
2 1
0 6

, and D 

5 3
0 6
2 7
8 1

. Compute the following:

a. A  B b. A  BC c. AC d. BC e. AC  BC

f. C  D g. BC  D h. BD i. BC  BD j. A  BC  D

Verify that (b) and (e) are equal, and that (g) and (i) are equal.

2. Let T1 : 3  4, T2 : 4  2 and T3 : 2  5 be given by:

T1x, y, z  2x  3y, 5y  7z, x  y  4z, 6x  y  z, and

T2x1, x2, x3, x4   5x1  2x3  x4, 2x1  8x2  6x3  7x4 

T3x, y  x  2y, x  y, 7x  3y, 4x  y, x  5y

a. Find T1 , T2  and T3  and state their dimensions.

b. Use the definition from Section 2.3 to directly get a formula for T2  T1 x, y, z.
c. Use (b) to get a formula for T2  T1 . State its dimension.

d. Compute the matrix product T2 T1 . Check that you get the same answer as c).

e. Repeat parts b), c) and d) for the composition T3  T2.

f. Find the matrix of T3  T2  T1 using any method. You may use some of your computations
above. State its dimension.

3. Let T1, T2, T3 : 2  2 be:

T1  reflection across the line y  3
5 x,

T2  rotation clockwise by tan1  4
3 , and

T3  projection onto the line y   7
3 x.

a. Use your answers from the Exercises of Section 2.2 to find the matrices of these three linear
transformations.

b. Find the matrix of the compositions T2  T1 and T1  T3.

c. Find the matrix of the compositions T3  T2  T1 and T1  T3  T2. You may use your
answers from (b). Do you get the same matrix?
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4. Let T1 : 3  2 and T2 : 2  3 be given by:

T1x, y, z  2x  3y  z, 4x  5y  7z, and

T2x, y  5x  4y, x  3y, 7x  2y.

Find the matrices of T1, T2, T1  T2 and T2  T1, and state their dimensions.

5. Let A 
3 7

5 2
, and let px  4  6x  5x2  2x3  7x4.

Compute A2, A3 and A4, and use these to compute pA.

6. Let A 

1 0 2
3 1 0
1 4 7

, and let px  3  7x  5x2  2x3.

Compute A2 and A3, and use these to compute pA.
7. Suppose that you are told that T : 2  3 is a linear transformation, and that:

T3, 10  3,7, 2, and

T2, 7  5, 3,8.

a. Explain why the set  3, 10, 2, 7 is a basis for 2.
b. Use the given information to find T5, 8.

8. Suppose that you are told that T : 3  5 is a linear transformation, and that:

T1, 0, 1  3,7, 5, 2,4,

T1, 1,1  2, 5, 4,3, 8, and

T1, 1, 1  6, 2, 1, 5, 3.

a. Show that  1, 0, 1, 1, 1,1, 1, 1, 1 form a basis for 3. Note that these are the
three vectors whose images in 5 are provided.

b. Use the given information to find T6, 5,2.

For Exercises 9 to 12: Prove the following properties of matrix addition and scalar
multiplication, where A, B, and C are all m  n matrices and r and s are scalars:

9. A  B  C  A  B  C
10. r  sA  rA  sA
11. rA  B  rA  rB
12. rsA  rsA  srA

For Exercises 13 and 14: Prove the following properties of matrix multiplication, where A
and B are m  k matrices, C and D are k  n matrices, and r is a scalar:

13. AC  D  AC  AD
14. rBC  rBC  BrC
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15. Prove in general that if T : n  m is a linear transformation, and B  v1, v2, . . . , vn is a
basis for n, then the action of T is uniquely determined by the vectors
Tv1 , Tv2 , . . . , Tvn  from m.
More specifically, if v  n and v is expressed (uniquely) as:

v  c1v1  c2v2   cnvn, then:
Tv  c1Tv1   c2Tv2    cnTvn .

16. In Section 2.2, we saw the rotation matrices:

rot  
cos  sin
sin cos

.

Express each matrix below as the product of a rotation matrix with a reflection matrix (across
either the x-axis or the y-axis), then describe in words the action of each matrix on 2. Be sure
that factors are in the correct order.

a.
cos sin
sin cos

b.
cos sin
sin cos

17. Find two zero divisors of the ring of 2  2 matrices where none of the entries are zero.

18. Find two zero divisors of the ring of 3  3 matrices, where each matrix has at least two non-zero
entries.

19. We know in general that AB and BA could be different matrices. However: prove that the rotation
matrices commute with each other. In other words:

rot   rot   rot   rot   rot .

Write a sentence or two explaining the meaning of these equations. Hint: you will need some
famous trigonometric identities.

20. The Center of Matn, n: In this Exercise, we will denote the set of all n  n matrices by the
symbol Matn, n. We have demonstrated that in general, matrix multiplication is not
commutative. However, we know that for the identity matrix In:

InA  A  AIn

for all n  n matrices A. Thus, we can say that In commutes with all n  n matrices A.

a. Warm-up: Show that 0nn also commutes with all n  n matrices A. Hint: Use a Property
that you proved in one of the previous Exercises.

b. For any k  , show that kIn also commutes with all n  n matrices A.
We will now define the Center of Matn, n to be:

CenterMatn, n  C  Matn, n |AC  CA foralln  n matrices A.

Thus, the matrices we found in (a) and (b) all belong to CenterMn, n. The goal of the
rest of this Exercise is to show that these are the only members of CenterMn, n, that is,
to prove that:
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CenterMn, n  kIn |k   .

Notice that this includes 0nn if we let k  0.

c. Consider the 3  3 matrix:

A1 

0 0 1
0 0 0
0 0 0

.

Let C be any 3  3 matrix. Write the entries of C in c i,j  notation as usual. Find the
products A1C and CA1.

d. If we want A1C and CA1 to be equal, which entries of C have to be zero?

e. Repeat parts (c) and (d) for the matrix:

A2 

0 0 0
0 0 0
1 0 0

.

f. Put the last three parts together to show that if we want C to commute with both A1 and A2,
then C has to be of the form:

C 

c11 0 0
0 c22 0
0 0 c33

.

Now, let A3 and A4 be the Type 2 elementary 3  3 matrices:

A3 

0 1 0
1 0 0
0 0 1

, and A4 

1 0 0
0 0 1
0 1 0

.

g. Show that if we want to force the equalities: A3C  CA3 and A4C  CA4, then we must
have c11  c22  c33. Explain why this proves that:

CenterMat3, 3  kI3 |k   .

h. Create analogous matrices A1, A2,  etc. for 4  4 matrices, and show that
CenterMat4, 4  kI4 |k  . What is the smallest number of these matrices A i that
will accomplish the proof?

i. Generalize the argument above to show that CenterMatn, n  kIn |k   for any n.
What is the smallest number of these matrices A i that will accomplish the proof? The
answer in general will depend on n.
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2.5 The Kernel and Range; One-to-One and Onto Transformations

In this Section, we will investigate two special subspaces associated to T, namely the kernel and the
range of T. This is probably the first time in your life that you are encountering the first word in a
technical way. It usually goes with the phrase “of corn,” or perhaps “of truth.” You have seen the
second word in Precalculus, though, where the range of a function y  f x is usually defined as:

range f   y   | y  f x for somex  domain f  .

An analogous definition will appear below in the context of Linear Algebra. The kernel and range of T
will allow us to decide if T has certain desirable properties, namely whether or not T is one-to-one or T
is onto.

The Kernel and Range of a Linear Transformation

Definition: If T : n  m is a linear transformation, we define the kernel of T as the set:

kerT  v  n |Tv   0m  n.

Similarly, we define the range of T as the set:

rangeT  w  m |w  Tv  for some v  n  m.

We emphasize that kerT is from n, and rangeT is from m

Now, since we want Tv  T v  0m in order for v to be in kerT, we can immediately see that
v  kerT if and only if v  nullspace T  . We already know that nullspaceT   n from
Chapter 1, and so kerT is a subspace of n. Notice also that we write kerT and not kerT , and
we emphasize that kerT is a subspace of the domain n of T.
Similarly, if any member w of rangeT must be of the form w  Tv  for some vector v  n.
Again, Tv   T v, and let us remind ourselves from Chapter 1 that T v is a linear combination of
the columns of T . In other words, w  rangeT if and only if w  colspaceT . We know
from Chapter 1 that colspaceT   m, and so rangeT is a subspace of m. We write rangeT
and not rangeT .
Let us summarize these results in the following:

Theorem: If T : n  m is a linear transformation, then:

kerT  nullspaceT   n, and
rangeT  colspaceT   m.

We call the dimension of kerT the nullity of T, written nullityT. Similarly, we call the
dimension of rangeT the rank of T, written rankT. Thus:

nullityT  dimnullspace T    nullity T  , and
rankT  dimcolspaceT   rankT .

We summarize the concepts of kernel and the range below:
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Example: Let T : 3  4 be given by:

T 

2 1 1
3 5 9
1 2 8

6 4 0

, with rref R 

1 0 2
0 1 3
0 0 0
0 0 0

The only free variable is x3, and we solve for the nullspace of this matrix, as before:

x1, x2, x3   2x3,3x3, x3   x32,3, 1, and thus:
kerT  Span2,3, 1  3, and nullityT  1.

The leading 1’s are in the first and second columns of R, and thus the first and second columns of T
form a basis for the columnspace of this matrix. Thus:

rangeT  Span 2,3,1, 6, 1, 5,2,4   4, and rankT  2.

Notice that kerT is a subspace of the domain 3 and rangeT is a subspace of the codomain 4, as
they should be.

The Dimension Theorem for Linear Transformations

Because the kernel and the range of a linear transformation T are the nullspace and columnspace of the
matrix T , we can rephrase the Dimension Theorem for Matrices as follows:

Theorem — The Dimension Theorem for Linear Transformations:
Suppose T : n  m is a linear transformation. Then:

rankT  nullityT  n  dimdomainT 

Example: Continuing with the previous Example, we saw that nullityT  1 and rankT  2. The
domain of T is 3, and thus we verify that:

rankT  nullityT  2  1  3. 
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One-to-One Transformations

We will now investigate linear transformations that possess a quality similar to that of some functions
that we see in ordinary Algebra:

Definition: We say that a linear transformation T : n  m is one-to-one or injective if the
image of two different vectors from the domain are different vectors of the codomain:

If v1  v2 then Tv1   Tv2 .
We also say that T is an injection or an embedding.

Since it is easier to solve an equation rather than an inequality, let us rephrase this definition in a better
way by using the contrapositive of the implication above, as we saw in Chapter Zero. An implication
is true if and only if its contrapositive is also true, and so we obtain the following:

Theorem: A linear transformation T : n  m is one-to-one if and only if the only way
two vectors from the domain have the same image in the codomain is for them to be the same
vector to begin with:

If Tv1   Tv2  then v1  v2.

In other words, the only solution to Tv1   Tv2  is v1  v2.

This condition, unfortunately, is still too awkward to verify. We will use it, though, to prove the
following Theorem, which will give us an easy way to determine whether or not a linear transformation
is one-to-one:

Theorem — The Kernel Test for Injectivity:
A linear transformation T : n  m is one-to-one if and only if:

kerT  0n .

Proof:  If T is one-to-one, we must show that kerT is only 0n .

Let v  kerT. This means that Tv  0m. However, we know from the final Exercises in Section
2.1 that T 0n  0m. Thus Tv  T 0n . But by the one-to-one property, the only solution to
Tv1   Tv2  is v1  v2, for any two vectors v1 and v2  n.

Thus v  0n, so the only possible member of kerT is 0n. Thus kerT  0n .

 Conversely, suppose that kerT is only 0n . We must prove that T is one-to-one, that is, the
only solution to an equation Tv1   Tv2  is v1  v2.
Let us use Proof by Contradiction. Suppose that we were lucky enough to find two vectors v1 and
v2 such that Tv1   Tv2 . Then Tv1   Tv2   0m, or Tv1  v2   0m by the linearity
properties. But this equation tells us that v1  v2  kerT. Thus v1  v2  0n, or v1  v2. Thus, T is
one-to-one and we weren’t so lucky after all. 

Section 2.5 The Kernel and Range; One-to-One and Onto Transformations 215



Example: Suppose T1 : 3  4 is given by:

T1  

1 3 4
2 6 9
5 15 4
3 9 7

, with rref R1 

1 3 0
0 0 1
0 0 0
0 0 0

.

Thus, kerT1   Span3, 1, 0, and thus T1 is not one-to-one.
However, let us change one entry on the top row ever so slightly.
Suppose T2 : 3  4 with matrix given by:

T2  

1 2 4
2 6 9
5 15 4
3 9 7

, with rref R2 

1 0 0
0 1 0
0 0 1
0 0 0

.

This time, kerT2   03 and thus T2 is one-to-one.

Knowledge of dimensions of the domain and codomain of T can sometimes tell us that T is
automatically not one-to-one.

Theorem: A linear transformation T : n  m is not one-to-one if n  m.

Proof: We know that T  is an m  n matrix. If n  m, the homogeneous system corresponding to this
matrix will be underdetermined, and thus it will have an infinite number of solutions. Thus
kerT  0n and T is not one-to-one.

Example: Any linear transformation T : 5  3 is automatically not one-to-one. However, a linear
transformation T : 3  5 could be either one-to-one or not one-to-one. For instance, the zero
transformation Z3,5 is not one-to-one.

Onto Linear Transformations

Now we come to another special type of linear transformation:

Definition: We say that a linear transformation T : n  m is onto or surjective if:

rangeT  m.
We also say that T is a surjection or a covering (because T hits all the vectors of m).

Since rankT  dimrangeT, the following Theorem follows directly:

Theorem: A linear transformation T : n  m is onto if and only if rankT  m.
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Example: Suppose T1 : 3  2 is given by:

T1  
2 8 6

1 4 3
, with rref R1 

1 4 3
0 0 0

.

There is only one leading 1 in R1, thus rankT1   1  2, and thus T1 is not onto. Again, let us
change one entry on the top row. Suppose T2 : 3  2 is given by:

T2  
2 8 7

1 4 3
, with rref R2 

1 4 0
0 0 1

.

This time, there are two leading 1’s in R2, and thus rankT2   2, and thus rangeT2  must be all of
2. Thus T2 is onto. Notice that neither T1 nor T2 is one-to-one, since 3  2. 

Like one-to-one linear transformations, knowledge of the dimensions of the domain and codomain can
tell us when T is definitely not onto:

Theorem: A linear transformation T : n  m is not onto if n  m.

Proof: Once again, T  is an m  n matrix. If n  m, there are more rows than columns, in other
words, any system with T  as coefficient matrix is overdetermined. Thus, the maximum number of
leading 1’s that can be found in the rref of T  is n, so, dimcolspaceT   n. But since n  m, the
dimension of the columnspace is strictly less than the dimension of the codomain m. Thus,
rankT  m, so the range of T cannot be all of m. 

Example: A linear transformation T1 : 4  7 cannot be onto, but it could be one-to-one. On the
other hand, a linear transformation T2 : 7  4 cannot be one-to-one, but it could be onto.

Notice that T : n  m cannot be one-to-one if n  m, and T cannot be onto if n  m. Therefore,
when n  m, that is, when T is an operator, we cannot tell in advance whether or not T will be
one-to-one, onto, both, or neither.

Example: Suppose that T1 : 3  3 is given by:

T1  

2 1 1
1 1 2
3 2 19

, with rref R1 

1 0 3
0 1 5
0 0 0

.

Since R1 has a free variable, namely z, we see that kerT1   Span3, 5, 1, a line through the
origin. Thus, T1 is not one-to-one. Also, since there are only two leading 1’s, rankT1   2  3, and
so T1 is not onto either. Since the leading 1’s are found in the 1st and 2nd columns, we can say that:

rangeT1   Span 2, 1,3, 1, 1, 2
Thus rangeT1  is a plane through the origin and not all of 3. Thus, T1 is neither one-to-one, nor
onto. However, we can take this opportunity to verify that the Dimension Theorem is still true:

rankT1   nullityT1   2  1  3.
Now, this time, let us change the bottom row of T1 by just a little bit. Let T2 : 3  3 be given by:
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T2  

2 1 1
1 1 2
3 2 18

, with rref R2 

1 0 0
0 1 0
0 0 1

.

Note that R2 is the identity matrix I3. There are no free variables, so kerT2   03 and T2 is
one-to-one. There are 3 leading 1’s in R, so rankT2   3, which means that rangeT2   3. Thus
T2 is also onto. Thus we conclude that T2 is both one-to-one and onto.

We have seen that just glancing at the rref of T immediately tells us whether or not T is one-to-one
and/or onto. It is worth summarizing these observations in the following:

Theorem: Suppose that T : n  m is a linear transformation, and R is the rref of T.
Then:
1. T is one-to-one if and only if R does not have any free variables.
2. T is onto if and only if R does not have any row consisting only of zeroes.

In Section 1.8, we encountered the concept of a full-rank m  n matrix A, that is, where
rankA  minm, n. We saw in that Section that full-rank matrices have special properties. We will
also call a linear transformation T full-rank if T is a full-rank matrix. Let us translate the properties
that we saw for full-rank matrices in Section 1.8 in the language of linear transformations. We leave the
Proof as an Exercise.

Theorem — Equivalent Properties for Full-Rank Linear Transformations:
Suppose that T : n  m is a linear transformation. Then:
1. if m  n: T is full-rank if only only if T is onto.
2. if m  n: T is full-rank if and only if T is both one-to-one and onto.
3. if m  n: T is full-rank if and only if T is one-to-one.

Example: Suppose that T1 : 4  3 is the linear transformation defined by:

T1  

3 7 2 7
2 1 3 6
5 4 7 3

with rref R1 

1 0 0 8
0 1 0 5
0 0 1 9

.

R1 does not have a row of zeroes, so T1 is onto. But note that rankT1   3  min3, 4, which
verifies that T1 is full-rank.
Now, suppose that T2 : 4  4 is the operator defined by:

T2  

3 7 2 7
2 1 3 6
5 4 7 3
2 6 9 1

with rref R2 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.
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Note that R2 is I4, which has no free variables nor rows of zeroes. Thus rankT2   4  min4, 4,
and we can conclude that T2 is full-rank and is both one-to-one and onto.
Finally, suppose that T3 : 3  4 is the linear transformation defined by:

T3  

3 7 2
2 1 3
5 4 7
2 6 9

with rref R3 

1 0 0
0 1 0
0 0 1
0 0 0

.

Notice that T3  contains the first three columns of T2 , and we know from R2 that all the columns of
T2  are linearly independent, and so the first three columns remain independent on their own in T3 .
Thus T3  has no free variables and so T3 is one-to-one.
Again, we see that rankT3   3  min3, 4, and so T3 is also full-rank.

A Recap of The One-to-One and Onto Properties

The two properties of being one-to-one or onto are of such fundamental importance in Linear Algebra
(and in many other areas in Mathematics) that we will now summarize the basic tests for these
properties.

A linear transformation T : n  m is one-to-one if and only if kerT  0n .

This means that if v  n such that Tv  0m, then v  0n. This also means that nullityT  0.

A linear transformation T : n  m is onto if and only if rangeT  m.

This means that for any vector w  m, we can find at least one vector v  n such that Tv  w
(although more than one such vector v could exist for a given w. This also means that rankT  m.
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T can be one-to-one but not onto, onto but not one-to-one, neither one-to-one nor onto, or both
one-to-one and onto.
However, if T : n  m with n  m, then T is automatically not one-to-one. In this case, T could be
onto, or neither onto nor one-to-one.
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2.5 Section Summary

If T : n  m is a linear transformation, we define the kernel of T as the subspace:

kerT  v  n | Tv  0m  nullspaceT   n.

We call the dimension of kerT the nullity of T, written nullityT.
The range of T is the subspace:

rangeT  w  m |w  Tv for some v  n  colspaceT   m.

We call the dimension of rangeT the rank of T, written rankT.
The Dimension Theorem for Linear Transformations states that:

rankT  nullityT  n  dim domain of T .

We say that a linear transformation T : n  m is one-to-one or injective if the image of different
vectors from the domain are different vectors from the codomain: If v1  v2 then Tv1   Tv2 .

A linear transformation T : n  m is one-to-one if and only if kerT  0n .

The same linear transformation T is onto or surjective if rangeT  m, which is true if and only if
rankT  m.
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A linear transformation T : n  m is automatically not one-to-one if n  m, and T is automatically
not onto if n  m.
Suppose that T : n  m is a linear transformation. Then:
1. if m  n: T is full-rank if only only if T is onto.
2. if m  n: T is full-rank if and only if T is both one-to-one and onto.
3. if m  n: T is full-rank if and only if T is one-to-one.

2.5 Exercises

1. Let T1 : 4  3 be given by:

T1x1, x2, x3, x4   3x1  x2  7x3  8x4, 2x1  2x2  2x3  4x4,2x1  x2  8x3  17x4 .
a. Find T1 .
b. Find the rref R1 of T1 
c. Use R1 to find a basis for the kernel of T1.
d. Find the nullity of T1.
e. Is T1 one-to-one?
f. Use R1 to find a basis for the range of T1.
g. Find the rank of T1.
h. Is T1 onto?
i. Verify The Dimension Theorem for T1.

2. Let T2 : 3  4 be given by:

T2x1, x2, x3   3x1  6x2  5x3, 2x1  4x2  7x3,5x1  10x2  3x3,x1  2x2  8x3 .
a. Find T2 .
b. Find the rref R2 of T2 .
c. Use R2 to find a basis for the kernel of T2.
d. Find the nullity of T2.
e. Is T2 one-to-one?
f. Use R2 to find a basis for the range of T2.
g. Find the rank of T2.
h. Is T2 onto?
i. Verify The Dimension Theorem for T2.

3. Let T3 : 3  3 be the operator given by:

T3x1, x2, x3   5x1  7x2  2x3,2x1  x2  16x3, 3x1  2x2  26x3 

a. Find T3 .
b. Find the rref R3 of T3 
c. Use R to find a basis for the kernel of T3.
d. Find the nullity of T3.
e. Is T3 one-to-one?
f. Use R3 to find a basis for the range of T3.
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g. Find the rank of T3.
h. Is T3 onto?
i. Verify The Dimension Theorem for T3.
j. Describe geometrically the kernel and the range of T3 as a subspace of 3. If the subspace

is a line, give a direction vector for it, and if it is a plane, give an equation for it in the
standard form ax  by  cz  0.

k. Is the range orthogonal to the kernel? Explain why this does not contradict anything we
have learned so far.

For Exercises 4 to 20: Given the following linear transformations T, their standard matrices
T , and the rref R of each matrix: (a) find a basis for the kernel of T (if possible), (b) state the
nullity of T, (c) decide if T is one-to-one or not, (d) find a basis for the range of T, (e) state the
rank of T, (f) decide if T is onto or not, (g) decide if T is full-rank, and (h) verify the Dimension
Theorem for T.

4. T : 3  5, T  

2 3 4
3 4 7
3 5 5
3 2 19
3 10 5

, R 

1 0 5
0 1 2
0 0 0
0 0 0
0 0 0

.

5. T : 3  5, T  

2 3 4
3 4 7
3 5 5
3 2 18
3 10 5

, R 

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

. (Compare to Exercise 4.)

6. T : 5  3, T  
3 2 6 9 8
5 3 7 16 13
8 5 13 25 21

, R 

1 0 4 5 2
0 1 9 3 1
0 0 0 0 0

7. T : 5  3, T  
3 2 6 9 8
5 3 7 16 13
8 5 13 25 20

, R 

1 0 4 5 0
0 1 9 3 0
0 0 0 0 1

8. T : 5  3, T  
3 2 2 2 3
5 3 9 10 34
8 5 4 5 2

, R 

1 0 0 2 1
0 1 0 3 2
0 0 1 1 5

(Compare Exercises 6 through 8 to each other.)
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9. T : 5  4, T  

3 2 6 2 15
5 3 7 9 6
8 5 13 10 14
6 3 3 8 2

, R 

1 0 4 0 3
0 1 9 0 8
0 0 0 1 5
0 0 0 0 0

10. T : 5  4, T  

3 9 6 9 2
5 15 7 0 9
2 6 3 1 7
2 6 5 11 8

, R 

1 3 0 7 0
0 0 1 5 0
0 0 0 0 1
0 0 0 0 0

11. T : 5  4, T  

3 6 2 1 11
5 7 3 4 14
2 3 4 3 26
2 5 7 2 10

, R 

1 0 0 0 2
0 1 0 0 1
0 0 1 0 3
0 0 0 1 5

12. T : 5  4, T  

3 6 3 2 1
5 7 11 3 4
2 3 4 4 3
2 5 0 7 2

, R 

1 0 5 0 0
0 1 2 0 0
0 0 0 1 0
0 0 0 0 1

13. T : 4  5, T  

15 72 16 44
30 63 13 25
10 27 31 29
5 54 22 38
15 0 24 12

, R 

1 0 8
5

4
5

0 1  5
9  7

9
0 0 0 0
0 0 0 0
0 0 0 0

14. T : 4  5, T  

1 2 6 4
3 6 3 5
1 7 3 2
5 4 2 3
5 0 4 1

, R 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

15. T : 4  5, T  

5 7 2 3
2 1 3 17
6 3 5 25
2 3 1 15
1 0 1 2

, R 

1 0 0 4
0 1 0 3
0 0 1 2
0 0 0 0
0 0 0 0
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16. T : 4  4, T  

2 6 3 2
3 9 1 10
2 6 5 2
5 15 4 12

, R 

1 3 0 4
0 0 1 2
0 0 0 0
0 0 0 0

17. T : 4  4, T  

4 2 1 6
5 9 2 14
6 7 1 1
5 6 3 17

, R 

1 0 0 5
0 1 0 3
0 0 1 8
0 0 0 0

18. T : 5  5, T  

3 15 5 8 12
2 10 1 25 4
5 25 2 31 0
0 0 3 21 25
4 20 7 13 37

, R 

1 5 0 9 0
0 0 1 7 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

19. T : 5  5, T  

3 5 4 2 5
2 1 9 4 1
4 6 2 5 2
0 1 5 5 3
3 4 1 3 7

, R 

1 0 7 0 0
0 1 5 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

20. T : 5  5, T  

3 5 2 5 4
2 1 4 4 5
4 2 5 9 4
0 3 5 9 1
3 7 3 2 12

, R 

1 0 0 7 5
0 1 0 2 3
0 0 1 3 2
0 0 0 0 0
0 0 0 0 0

21. If T : n  m is a linear transformation, prove using only the definitions that:

a. T is one-to-one if and only if every w  m can be expressed as w  Tv for at most
one vector v  n. Hint: for (a) and (b) you can use Proof by Contradiction.

b. T is onto if and only if every w  m can be expressed as w  Tv for at least one
vector v  n.

c. T is both one-to-one and onto if and only if every w  m can be expressed as w  Tv
for exactly one vector v  n.
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22. Suppose that  is a plane in 3 passing through the origin, and L  , its normal line. In
Section 2.2, we considered the operators projL, proj and refl. Find the following subspaces
(Hint: the answers are either 03 , L,  or 3. Explain your reasoning.

a. kerprojL  b. rangeprojL  c. kerproj 

d. rangeproj  e. kerrefl  f. rangerefl 

23. The Kernel and Range of a Composition: The purpose of this Exercise is to investigate the
kernel and range of the composition of two linear transformations. Suppose that:

T1 : n  k, and T2 : k  m

are linear transformations.

a. Write down the general definition of the kernel of any linear transformation T : a  b.
Use the symbol 0a or 0b, whichever is appropriate.

b. Adapt the definition in part (a) to write down the definition of kerT1 , kerT2  and
kerT2  T1  as set up above. There should be three separate definitions. Make sure that
you precisely use the symbols n, k, m, 0n, 0k and 0m, where appropriate.

c. Two out of the three subspaces that you defined in (b) are subspaces of the same Euclidean
space. Which of the two kernels live in which same Euclidean space?

d. Use your definitions to prove that kerT1  is a subset of kerT2  T1 , that is:

kerT1   kerT2  T1 .

Hint: This means that you must show that every vector v that satisfies the definition of
kerT1  also satisfies the definition of kerT2  T1 .

e. Use part (d) to prove that if T2  T1 is one-to-one, then T1 is also one-to-one.
f. Write down the contrapositive of the statement in (e).

Now, in a similar way, we will investigate the ranges:

g. Write down the general definition of the range of any linear transformation T : a  b.
h. Adapt the definition in part (g) to write down the definition of rangeT1 , rangeT2  and

rangeT2  T1  as set up above. There should be three separate definitions. Make sure that
you precisely use the symbols n, k and m, where appropriate.

i. Two out of the three subspaces that you defined in (h) are subspaces of the same Euclidean
space. Which of the two ranges live in which same Euclidean space?

j. Use your definitions to prove that rangeT2  T1  is a subset of rangeT2 , that is:

rangeT2  T1   rangeT2 .

Hint: This means that you must show that every member w of rangeT2  T1  is also a
member of rangeT2 .

k. Use part (j) to prove that if T2  T1 is onto, then T2 is also onto. Do you notice the difference
with part (e)?

l. Write down the contrapositive of the statement in (k).
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24. Prove that if T : n  m is a one-to-one linear transformation and S  v1, v2,  , vk  is a set
of linearly independent vectors from n, then Tv1 , Tv2 ,  , Tvk   is a set of linearly
independent vectors from m.
Hint: Begin the proof by considering the dependence test equation:

c1Tv1   c2Tv2    ckTvk   0m.

Rewrite the left side using the linearity properties of T and use the Kernel Test for Injectivity.

25. Use the previous Exercise to prove that if T : n  m is one-to-one and S  v1, v2,  , vn 
is any basis for n, then Tv1 , Tv2 , . . . , Tvn   is a basis for rangeT.

26. Let T1 : n  k and T2 : k  m.

a. What is the ambient space of rangeT1 ?

b. What is the ambient space of kerT2 ?

c. Prove that T2  T1  Zn,m if and only if rangeT1   kerT2 .

Recall that Zn,m : n  m is the zero transformation, where Zn,mv  0m for all v  n.
Notice that by (a) and (b), both subspaces rangeT1  and kerT2  are in k, so requiring
one to be a subset of the other is a possibility.

d. Suppose that m  n. State and prove an analogous statement for T1  T2.

27. We know that a linear transformation T : n  m is automatically not one-to-one if n  m.
Thus, suppose that n  m. Prove that T : n  m is one-to-one if and only if the rref of T 
has the form:

In

0mn,n
.

This means that we can divide T  into two parts: the first n rows will contain In, and the bottom
m  n rows will contain all zeroes. In the case that n  m, T will be one-to-one if and only if the
rref of T  is In.

28. We know that a linear transformation T : n  m is automatically not onto if n  m. Thus,
suppose that n  m. Prove that T : n  m is onto if and only if the rref of T does not
contain a row of zeroes.

29. Prove the last Theorem in this Section: Suppose that T : n  m is a linear transformation.
Then:

a. If m  n: prove that T is full-rank if only only if T is onto.

b. If m  n: prove that T is full-rank if and only if T is both one-to-one and onto.

c. If m  n: prove that T is full-rank if and only if T is one-to-one.

30. Suppose that T : n  m is a linear transformation. Prove the following statements:

a. If n  m, then: T is one-to-one if and only if for any basis v1, v2,  , vn  for n, the
image set Tv1 , Tv2 ,  , Tvn   is linearly independent. Hint: think of kerT.
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b. If n  m, then: T is onto if and only if there exists a linearly independent subset
v1, v2,  , vm  from n, such that the image set Tv1 , Tv2 ,  , Tvm   is linearly
independent. Note that there are only m vectors in these sets. Hint: T is onto if and only if
rankT  m.

c. Bonus: show that (a) is still true if the phrase “for any basis” is replaced with “for at least
one basis.”

31. Suppose that T : 3  5 is a linear transformation. Notice that we can automatically conclude
that T is not onto, but T could be one-to-one. However, suppose we were also told that:

T1,2, 1  2,3, 4,1, 7,

T0,1, 3  3, 2,1, 4, 2, and

T0,2, 5  5,6, 7,4, 10.

Show that T is not one-to-one. Hint: find a non-zero vector in kerT.
32. True or False: Determine whether each statement is true or false, and briefly explain your

answer by either applying a Theorem or providing a counterexample or a convincing argument.

a. A linear transformation T : 5  3 cannot be one-to-one

b. A linear transformation T : 5  3 cannot be onto.

c. A linear transformation T : 5  3 could be neither one-to-one nor onto.

d. A linear transformation T : 3  5 must be one-to-one.

e. A linear transformation T : 3  5 must be onto.

f. A linear transformation T : 3  5 could be neither one-to-one nor onto.

g. An operator T : 5  5 which is not one-to-one is also not onto.

h. An operator T : 5  5 which is not onto is also not one-to-one.

i. An operator T : 5  5 could be onto but not one-to-one.

j. If T : 3  5 is a full-rank linear transformation, then T is one-to-one.

k. If T : 5  3 is a full-rank linear transformation, then T is one-to-one.

l. If T : 3  5 is a full-rank linear transformation, then T is onto.

m. If T : 5  3 is a full-rank linear transformation, then T is onto.

n. If T : 5  5 is a full-rank operator, then T is both one-to-one and onto.

Section 2.5 The Kernel and Range; One-to-One and Onto Transformations 227



2.6 Invertible Operators and Matrices

A linear transformation T : n  m is a function, and so we can attack the problem of determining if
T can be inverted. In Algebra, we first require that a function:

f : D  R,

with domain D and range R, is one-to-one on D before we find its inverse. If this is indeed the case,
then we can construct: f 1 : R  D, where we reverse the roles of the domain and range, with the
property that:

f 1y  x if and only if f x  y.

We know that at least one such x exists because R is the range of f, and so f is onto R. However, we
also know that at most one such x exists, because f is one-to-one. Hence, there is exactly one such x
for every y. Thus, f 1 is a function. In this case, f 1 and f also possess the cancellation properties:

f 1 f x  f 1y  x for all x  D, and f  f 1y  f x  y for all y  R.

Going back to our linear transformation, it is therefore only natural that we first require that
T : n  m be one-to-one before we can even think of inverting T. For now, we also want the
inverse transformation T 1 to be defined on the entire codomain, and so we require T to be onto (we
will update this in Chapter 4). We will therefore agree on the following:

Definition: We say that a linear transformation T : n  m is invertible if T is both
one-to-one and onto.
We also say equivalently that T is bijective, T is a bijection or T is an isomorphism.

This definition consequently requires that the domain and codomain of an invertible transformation be
the same Euclidean space, that is, T must first be an operator:

Theorem: If T : n  m is invertible, then n  m.

Proof: This is another classic example of Proof by Contradiction. Suppose that T is invertible, that is, it
is both one-to-one and onto. Let us assume the opposite of the conclusion, that is, n  m. But if
n  m, then T cannot be one-to-one, and if n  m, then T cannot be onto, both yielding
contradictions. Thus, we must have n  m. 

Because of this Theorem, we only have to ask if T is invertible when T is an operator, that is:
T : n  n,

for some Euclidean space n. Let us rewrite our introduction above in the language and notation of
Linear Algebra: If T : n  n is both one-to-one and onto, then, we can define an inverse function:
T 1 : n  n, with the property that:

for every w  n: T 1w  v if and only if T v  w.

We know that at least one such v exists because T is onto, and at most one such v exists because T is
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one-to-one. Thus, there is exactly one such v that will satisfy the equation above, and so T 1 is indeed
a function.
Let us not forget, though, that T : n  n is not just any ordinary function, but is rather an operator.
In other words, it is also a linear transformation: it is additive and homogeneous. It would be very
nice if T 1 were also an operator. In fact, it turns out that not only is this true, it also gives us an
equivalent condition for an operator to be invertible:

Theorem: A linear operator T : n  n is invertible if and only if we can find another
unique linear operator, T 1 : n  n, the inverse operator for T, such that if v  n and
Tv  w, then we define:

T 1w  v,
and thus:

T 1  Tv  v and T  T 1 w  w.
In other words:

T 1  T  T  T 1  In ,
the identity operator on n.
Furthermore, if T is invertible, then T 1 is also invertible, and T 1 1  T. Thus, we can say
that T and T 1 are inverses of each other.

We can visualize these equations through the following diagrams:

 
Rn Rn RnRn

Rn
Rn

.w
v

T

T 

w

v

.

.

.
.

.
T  TI

T   TI°°

The Composition of T with T 1 T 1  T  In  T  T 1

Proof:  The forward direction is our introduction above: Suppose T is invertible, meaning, T is
both one-to-one and onto. Let us explicitly construct the inverse operator T 1. Let w  n. We want
to define T 1w. Since T is onto, there is at least one vector v  n such that Tv  w. But since T
is also one-to-one, there is at most one such v. In other words, there is exactly one v  n such that
Tv  w. Thus, let T 1w  v. We immediately get that:

TT 1w  Tv  w  Inw, and

T 1Tv  T 1w  v  Inv.
Thus, T  T 1 and T 1  T are both the identity operators on n. Notice from the construction above
that there was exactly one possible choice for T 1w in order to make both compositions the identity
operator, and therefore as a function, T 1 is unique.
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We also need to show that T 1 is itself a linear transformation, that is, it possesses the properties of
additivity and homogeneity:

T 1w 1  w 2   T 1w 1   T 1w 2 , and

T 1k  w 1   k  T 1w 1 ,

for all w 1, w 2  n and k  . By construction, we have T 1w 1   v1 and T 1w 2   v2, where
Tv1   w 1 and Tv2   w 2. Thus:

Tv1  v2   Tv1   Tv2   w 1  w 2, and so:
T 1w 1  w 2   v1  v2  T 1w 1   T 1w 2 .

Similarly, Tk  v1   k  Tv1   k  w 1, and so T 1k  w 1   k  v1  k  T 1w 1 .
 Conversely, suppose now we can construct another linear operator, T 1 : n  n, such that
T  T 1 and T 1  T are both the identity operators on n. We must show that T is invertible, in other
words, T is both one-to-one and onto.
Suppose that Tv1   Tv2 . Then T 1Tv1   T 1Tv2 , and since T 1  T is the identity
operator on n, we get v1  v2. Thus, T is one-to-one.
Now, suppose w  n. Let us find another vector v  n such that Tv  w. A natural choice (in
fact, the only choice), would be v  T 1w, because we shall be rewarded with:

Tv  TT 1w  T  T 1w  w,

since T  T 1 is the identity operator on n. Thus T is onto. Notice that we used the fact that both
compositions T  T 1 and T 1  T are the identity operators on n. This proves the converse.
Before we go to the last part of the Theorem, let us rewrite the first part of the Theorem using more
neutral notation:

Theorem: (restatement) A linear operator T1 : n  n is invertible if and only if we can
find another linear operator, T2 : n  n, the inverse operator for T1, such that if v  n

and w  T1v, then T2w  v, and thus:

T2  T1 v  v and T1  T2 w  w,
for all v, w  n, that is, T2  T1  In  T1  T2.

Now, suppose T is invertible with inverse T 1. We want to show that T 1 is also invertible. We
already know that these two operators satisfy the equation:

T 1  T  In  T  T 1.

But now, let us interpret this from the point of view of T 1. In the notation above, let:

T1  T 1 and T2  T.

Thus, the compositions can be written as:

T 1  T  T1  T2 and T  T 1  T2  T1.

But we know that both of these compositions are In , and so by the rewritten version of our Theorem,
T1  T 1 must be invertible, with inverse T2  T. This completes the proof.
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Invertible Matrices

We defined parallel operations of addition and subtraction for matrices and for linear transformations,
and related the composition of two linear transformations to the product of their matrices. In the same
way, we will now define the concept of an invertible matrix using the concept of invertible linear
operators. Since the minimum requirement for a linear transformation T : n  m to be invertible is
that n  m, by the same token, we will require a matrix to be square before we determine whether or
not it is invertible:

Definition: An n  n matrix A is invertible if the linear operator T : n  n corresponding
to A  T is an invertible operator. In other words, the operator defined by:

Tv  Av,

for all v  n, is an invertible operator on n.

Now, if we know that an operator T : n  n is invertible, then its composition with its inverse
operator T 1 must be the identity operator, that is:

T 1  T  In  T  T 1.

However, we know that when a composition T2  T1 is defined, then T2  T1   T2 T1 , that is the
product of the two individual matrices. Applying this idea above, we get:

T 1  T  In   T  T 1 , in other words:
T 1 T  In  TT 1 .

But recall that from our definition above, T  A. Since T 1 : n  n, its matrix T 1  is likewise
an n  n matrix. Let us simply call it B. Thus, we can rewrite the last equation as: AB  In  BA.
We will show below that this construction is reversible, and so we have the following:

Theorem/Definition: An n  n matrix A is invertible if and only if we can find another
n  n matrix B such that: AB  In  BA.
We call B the inverse matrix of A, and denote it by A1.
If A is invertible, then the inverse matrix A1 is likewise invertible, and: A1 1  A.
In other words, B1  A. Thus, we can say that A and A1 are inverses of each other.

Proof:  The forward direction is our discussion above: If A is invertible, then the operator
T : n  n defined by Tv  Av, for all v  n, is an invertible operator. Thus there exists an
inverse operator T 1 : n  n such that T 1  T  In  T  T 1. If we now call T 1  the matrix
B, then we get AB  In  BA as above.
 Now for the converse: Suppose we are given that we can find another n  n matrix B such that
AB  In  BA. We can define another linear operator T2 : n  n via:

T2v  Bv,

for all v  n. But then, we get:

T  T2 v  TT2v  TBv  ABv  ABv  Inv  v  Inv,
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for all v  n, and similarly:

T2  Tv  T2Tv  T2Av  BAv  BAv  Inv  v  Inv,

for all v  n. Notice that we used the Associative Property of Matrix Multiplication above. Thus,
both T  T2 and T2  T are the identity operator on n. Therefore, T is an invertible operator with
inverse operator T2. Thus, A is invertible.

Notice that in the statement of the Theorem above, we called B the inverse of A. This presumes that B,
that is, A1, is unique, and indeed it is:

Theorem — The Uniqueness of the Matrix Inverse:
If an n  n matrix A is invertible, then its inverse matrix B is unique. This means that if B
and C both satisfy the equations: AB  In  BA and AC  In  CA, then B  C.

Proof: If we multiply both sides of the given equation AC  In on the left by B, then we get:

BAC  BIn, and thus, BAC  B.
However, since we are also given that BA  In, then we get: InC  B, which gives us C  B. 

The general process of finding the inverse of an invertible matrix of any dimension will be seen in the
next Section, but for now, we can easily do it for invertible 2  2 matrices:

Theorem: Suppose that: A 
a b
c d

. Then: A is invertible if and only if

ad  bc  0, in which case: A1  1
ad  bc

d b
c a

.

Proof: First, let us prove that A is invertible if and only if ad  bc  0.
We know that if A is invertible, then the operator T : 2  2 with T  A must be invertible. In
other words, T is both one-to-one and onto. But this means that nullityT  0 and rankT  2. But
this last condition means that colspaceA  2. Thus the Span of the two columns a, c and b, d
must be all of 2. But we know from Chapter 1 that this is possible if and only if a, c and b, d
are not parallel, and consequently ad  bc  0 from Exercise 21 in Section 1.1.
For the converse, we just reverse this argument. If ad  bc  0, then a, c and b, d are not parallel
and thus their Span must be all of 2. Thus rankT  2, which means that T is onto. But by the
Dimension Theorem, nullityT  0. Thus, T is both one-to-one and onto, and thus T is invertible,
hence A is invertible.
Now, suppose we already know that ad  bc  0. Thus, this number has a reciprocal, and we can
assemble the matrix:

B  1
ad  bc

d b
c a

as prescribed in the Theorem. But we can check that:
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AB 
a b
c d

 1
ad  bc

d b
c a

 1
ad  bc

ad  bc bd  bd
ac  ac bc  ad

 I2, and

BA  1
ad  bc

d b
c a

a b
c d

 1
ad  bc

ad  bc bd  bd
ac  ac bc  ad

 I2.

By the Uniqueness of the Inverse, we must have B  A1. 

Example: Suppose A 
3 7
2 6

.

Then ad  bc  3  6  2  7  4, and thus A is invertible, and:

A1  1
4

6 7
2 3


3/2 7/4
1/2 3/4

.

We can verify that:

AA1 
3 7
2 6

3/2 7/4
1/2 3/4


9/2  7/2 21/4  21/4
6/2  6/2 7/2  9/2


1 0
0 1

,

and similarly, A1A  I2. 

Example: Consider the matrix: A 
3 7

12 28
.

This time, ad  bc  328  712  0, and thus A is not invertible. Notice that the rows of A are
scalar multiples of each other, and the columns of A are also scalar multiples of each other, and thus
both the row and column spaces of A are just lines through the origin in 2, and not all of 2.

The Matrix of T 1

Let us take a step back and see what we have so far: we began by defining an invertible operator
T : n  n to be an operator that is both one-to-one and onto. Our first Theorem said that T is
invertible if and only if we can find another operator T 1 : n  n, the inverse operator, such that
T 1  T  T  T 1  In . This inverse is unique, in that there is exactly one operator that satisfies
these two equations when composed with T. Next, we defined an n  n matrix A to be invertible if its
associated operator T : n  n is invertible as defined above, where Tv  Av. But we also
showed in the next Theorem that A is invertible if and only if we can find another n  n matrix B such
that AB  In  BA, and this inverse matrix B  A1 is likewise unique, in that it is the only matrix
that satisfies these two equations when multiplied by A.
It should therefore seem only logical that the matrix of T 1 is A1. But of course, this is true:

Theorem: A linear operator T : n  n is invertible if and only if A  T is an
invertible n  n matrix. If this is the case, then: T 1   A1  T1.
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Proof: The first sentence is the definition of an invertible matrix:
An n  n matrix A is invertible if the linear operator T : n  n corresponding to A  T is an
invertible operator. In other words, the operator defined by Tv  Av, for all v  n, is an invertible
operator on n. Thus, we only have to prove that if A and T are both invertible, then:

T 1   A1  T1.

We know that T 1 : n  n exists, such that T  T 1 and T 1  T are both the identity operators on
n. But then:

Inv  Inv  v  T 1  Tv  T 1T v  T 1 T v,

for all vectors v  n. By the Uniqueness of the Standard Matrix:

In   T 1 T , and so In  T 1 T .

Similarly, we can show that T T 1   In. These equations tell us that T   A is an invertible
matrix, and by the Uniqueness of the Inverse, T 1   A1  T1. 

Example: Let T : 2  2 be given by Tx, y  3x  7y, 2x  6y. Its matrix is:

T  
3 7
2 6

,

which is an invertible matrix as we saw in a previous Example, and thus T is an invertible operator. We
found the inverse of this matrix to be:

T 1 
3/2 7/4
1/2 3/4

 T 1 .

We can thus give an explicit formula for T 1:

T 1x, y  3x/2  7y/4,x/2  3y/4.
From this, we can verify that:

T 1  T x, y  T 13x  7y, 2x  6y
 3/23x  7y  7/42x  6y,1/23x  7y  3/42x  6y
 9x/2  21y/2  7x/2  21y/2,3x/2  7y/2  3x/2  9y/2  x, y,

and thus T 1  T is indeed the identity operator on 2. Similarly, T  T 1 is also the identity operator on
2.

Bonus Example: The Matrix of a Reflection Across a Plane in 3:
We do not know yet how to determine if a 3  3 matrix is invertible or not, much less how to find its
inverse, if this exists. But let’s think about the geometry of the operator in 3 that reflects a vector
across a plane  passing through the origin, as we saw in Section 2.2. If we take the reflection of any
vector v across  and reflect it again across , then we should get back our original vector v. Thus
we must have:

reflreflv  v  I3v,

or in other words refl refl   refl 2  I3.
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This tells us that refl  is an invertible matrix, and is its own inverse, that is:

refl 1  refl .

Let us verify this using refl for the plane  in 3 with Cartesian equation:

3x  5y  2z  0.
We found in the last Example of Section 2.2 that:

refl  

10
19

15
19  6

19
15
19  6

19
10
19

 6
19

10
19

15
19

 1
19

10 15 6
15 6 10
6 10 15

.

Thus we can check that:

refl refl   1
19

10 15 6
15 6 10
6 10 15

 1
19

10 15 6
15 6 10
6 10 15

 1
361

10 15 6
15 6 10
6 10 15

10 15 6
15 6 10
6 10 15

 1
361

361 0 0
0 361 0
0 0 361

 I3.

The same can be said for a reflection reflL across a line L. 

2.6 Section Summary

We say that a linear transformation T : n  m is invertible if and only if T is both one-to-one and
onto. We also say that T is bijective, T is a bijection or T is an isomorphism. This is only possible if
n  m, that is, T is an operator.
A linear operator T : n  n is invertible if and only if we can find another unique linear operator,
T 1 : n  n, the inverse operator for T, such that if v  n and Tv  w, then we define
T 1w  v, and thus T 1  Tv  v and T  T 1 w  w.
In other words, T 1  T  T  T 1  In , the identity operator on n. Furthermore, if T is invertible,
then T 1 is also invertible, and T 1 1  T. Thus, T and T 1 are inverses of each other.
We define an n  n matrix A to be invertible if the linear operator T : n  n corresponding to A is
an invertible operator. In other words, the operator defined by Tv  Av, for all v  n, is an
invertible operator on n. Note: by this definition, T   A.
An n  n matrix A is invertible if and only if we can find another n  n matrix B such that
AB  In  BA. We call B the inverse matrix of A, and denote it by A1. If A is invertible, then the
inverse matrix A1 is likewise invertible, and A1 1  A. In other words, B1  A. Thus, we can say
that A and A1 are inverses of each other.
The inverse of an invertible matrix is likewise unique. This means that if B and C are two n  n
matrices such that: AB  In  BA, and AC  In  CA, then B  C.
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Thus, we can speak of the inverse of A.

Suppose that A 
a b
c d

. Then: A is invertible if and only if ad  bc  0,

in which case: A1  1
ad  bc

d b
c a

.

A linear operator T : n  n is invertible if and only if A  T  is an invertible n  n matrix.
If this is the case, then: T 1   A1  T 1.

2.6 Exercises

For Exercises 1 to 19: Find the inverses of the following matrices, if possible:

1.
2 0

0 3
2.

5 7
0 4

3.
0 4
6 0

4.
7 9
3 4

5.
7 6
4 3

6.
2/3 0
0 8/3

7.
5 8

5 6
8.

20 36
15 27

9.
2/3 5/6
7 11/2

10.
4/3 11/6

8 9/2
11.

5/3 2/5
1/6 7/4

12.
6 15

30 3

13.
cos  sin
sin cos

, where   . Note: this is the matrix of rot.

Follow up: explain the geometric significance of its inverse.

14.
cos sin
sin cos

, where   .

15.
e3x e4x

2e2x 3ex
, where x  .

16.
6x 4x

15x 10x
, where x  .

17.
coshx sinhx
sinhx coshx

, where coshx  ex  ex

2 , sinhx  ex  ex

2 , and x  .

18.
a2 ab
ab b2

, where a, b   and a2  b2  1.

19.
a2  b2 2ab

2ab b2  a2
, where a, b   and a2  b2  1.
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20. The matrices in the last two Exercises were the standard matrices of the operators projL  and
reflL , respectively, where L is a line through the origin in 2 with unit direction vector a, b.
See Exercise 25 in Section 2.2. Give a geometric argument as to why one of these matrices is
invertible and the other matrix is not invertible. Explain also the geometric significance of the
inverse of the invertible matrix.

For Exercises 21 to 24: For the given linear transformation T : 2  2 : (a) find T ; (b)
find T 1 , if T is invertible, and if so: c) explicitly give a formula for T 1x, y, and finally,
(d) check that T 1Tx, y  x, y.

21. Tx, y  3x  7y,4x  9y
22. Tx, y  2x  5y, 6x  15y
23. Tx, y  3x  5y, 5x  9y

24. Tx, y  2
3 x  5

3 y, 4
3 x  1

3 y

25. Prove that an operator T is invertible if and only if either T is one-to-one or T is onto.

26. Let’s play:

a. Compute:
3
5

2 7 . Is the resulting matrix invertible?

b. Repeat part (a) by making your own 2  1 and 1  2 matrices and multiplying them
together. Is the resulting matrix invertible? Try a third pair.

c. Let’s think about bigger matrices. Suppose that we know that a 9  9 matrix A factors as a
product: A  BC, where B is a 9  5 matrix and C is a 5  9 matrix. Prove that A is not
invertible. Hint: show that the linear transformation corresponding to A cannot be
one-to-one. Which matrix is responsible for this, B or C?

d. Prove in general that if an n  n matrix A factors as A  BC, where B is an n  m matrix
and C is an m  n matrix, where n  m, then A is not invertible.

e. Compute:
5 2 1
0 3 7

4 3
8 9
5 6

. Is the resulting matrix invertible?

f. Compute:
5 2 1
15 6 3

4 16
8 32
5 20

. Is the resulting matrix invertible?

g. Based on the last two parts, can we determine immediately that A is invertible or not
invertible if A  BC, where B is an n  m matrix and C is an m  n matrix, and n  m?

27. Suppose that  is the plane in 3 with Cartesian equation 4x  2y  3z  0.
a. Verify that the matrix of refl, that you found in Exercise 13 of Section 2.2, also satisfies:

refl refl   I3.
b. Consider now the operator proj, the projection onto . Show that kerproj   L, the

normal line Span4, 2,3, that is the orthogonal complement of . Does this mean
that proj  is invertible or not invertible? Why?
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2.7 Finding the Inverse of a Matrix

Our goal in this Section is to be able to construct the inverse of an invertible square matrix that is 3  3
or bigger, when it is possible to do so. In so doing, we will also be able to find the matrix of the inverse
of an invertible operator T.

We begin by going back to the elementary matrices that we saw in Section 2.1:

Multiplicative Properties of Elementary Matrices

Elementary matrices essentially encode the elementary row operation that was used to produce the
matrix from In:

Theorem: If E is an elementary n  n matrix and A is any n  m matrix, then the matrix
product EA can be computed by performing the same elementary row operation on A that
was used to produce E from In.

The proof will be left as an Exercise. Notice that A and EA are both n  m matrices.

Example: Suppose that A 

5 7 2 3
4 1 8 5
2 3 9 6

,

and E1, E2 and E3 are the elementary matrices:

E1 

1 0 0
0 3 0
0 0 1

, E2 

0 0 1
0 1 0
1 0 0

, and E3 

1 0 0
0 1 0
0 5 1

,

that we saw in the Example in Section 2.1. Then:

E1A 

1 0 0
0 3 0
0 0 1

5 7 2 3
4 1 8 5
2 3 9 6



5 7 2 3
12 3 24 15
2 3 9 6

,

E2A 

0 0 1
0 1 0
1 0 0

5 7 2 3
4 1 8 5
2 3 9 6



2 3 9 6
4 1 8 5
5 7 2 3

, and

E3A 

1 0 0
0 1 0
0 5 1

5 7 2 3
4 1 8 5
2 3 9 6



5 7 2 3
4 1 8 5

22 2 49 19

.
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We can see that E1A is the same as A, except the second row is 3 times that of A, E2A is the same as
A, with the 1st and 3rd rows exchanged, and we get E3A by adding 5 times row 2 of A to row 3 of A
(with the first two rows staying the same).

Now let us see the primary reason why elementary matrices are important in studying invertible
matrices:

Theorem: Elementary matrices are invertible, and the inverse of an elementary matrix is
another elementary matrix of the same type.

Again, the proof is left as an Exercise, but the following examples will serve as hints.

Examples: We can easily check by direct multiplication that the corresponding inverses of our three
sample elementary matrices are as indicated below:

For E1 

1 0 0
0 3 0
0 0 1

, E1
1 

1 0 0
0 1/3 0
0 0 1

.

For E2 

0 0 1
0 1 0
1 0 0

, E2
1 

0 0 1
0 1 0
1 0 0

.

For E3 

1 0 0
0 1 0
0 5 1

, E3
1 

1 0 0
0 1 0
0 5 1

. 

A Preliminary Test for Invertibility

In the previous Section, we saw that the 2  2 matrix:

A 
a b
c d

is invertible if and only if ad  bc  0. We would like to have a similar test to know when a larger
square matrix is invertible. Our preliminary answer is given below, although we will incorporate it later
into the algorithm to find the inverse of our matrix:

Theorem: Let A be an n  n matrix. Then A is invertible if and only if the rref of A is In.

Proof:  Suppose that A is invertible. Then the operator T : n  n corresponding to A must be
an invertible operator. This means that T is both one-to-one and onto. However, in Chapter 1, we saw
that the rref of a square matrix is either In, or it contains at least one free variable and one row of
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zeroes. Since T is one-to-one and onto, the second case is impossible. Thus, the rref of A must be In.
 Now, suppose the rref of A is In.

This implies that nullspaceA  0n and colspaceA  n. Thus the operator T : n  n

corresponding to A is both one-to-one and onto, and so A is invertible.

Now we can accomplish the main objective of this section:

A Method to Find A1

The Gauss-Jordan Algorithm will help us find the inverse of an invertible square matrix:

Theorem: Let A be an n  n matrix. If we construct the n  2n augmented matrix:

A | In ,

then A is invertible if and only if the rref of this augmented matrix contains In in the first n
columns. If this is the case, then A1 will be found in the last n columns.

In other words, the rref of A | In is In | A1 .

Proof: We already saw from the previous Theorem that A is invertible if and only if the rref of A is
In. Thus, suppose we form the augmented matrix A | In as prescribed above, and find the rref of
this augmented matrix. Since the rref of A itself is In, the first half of the Gauss-Jordan algorithm stops
when we get the final leading 1 at row n, column n of this augmented matrix. Thus, we do not have to
worry about finding a leading 1 to the right of column n. The second half of the Gauss-Jordan
algorithm completes the process of producing In in the first n columns. Once this is done, the rref of

A | In will have the form: In | x1 | x2 |  | xn .

We will now show that: B  x1 | x2 |  | xn  A1.

Recall that our original augmented matrix is: A | In  A | e1 | e2 |  | en .

The key to completing the proof is to remember that the Gauss-Jordan algorithm also allows us to solve
multiple systems at the same time, as long as we are dealing with the same coefficient matrix A. The
rref above tells us that if we began only with A | e1 , the final rref will be In | x1 , and thus:

Ax1  e1.

Similarly, if we began only with A | e2 , the final rref will be In | x2 , and so on. By finding the
rref of A | In in one fell swoop, we solve n systems of equations, with right sides e1 through en.
Thus, we also get:

Ax2  e2, Ax3  e3,  , Axn  en.

Putting it all together, we get:

AB  A x1 | x2 |  | xn  Ax1 | Ax2 |  | Axn  e1 | e2 |  | en  In.

We will see in Section 2.8 that if AB  In, then BA  In as well, and thus B  A1. 
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Example: Suppose that A 

3 2 5
2 1 4
4 2 7

.

Let us see if we can find A1. For reasons we will see later, we will actually list out all the elementary
row operations that we will use to perform the reduction:

3 2 5 | 1 0 0
2 1 4 | 0 1 0
4 2 7 | 0 0 1

R1  R1  R2

1 1 1 | 1 1 0
2 1 4 | 0 1 0
4 2 7 | 0 0 1

R2  R2  2R1

1 1 1 | 1 1 0
0 1 2 | 2 3 0
4 2 7 | 0 0 1

R3  R3  4R1

1 1 1 | 1 1 0
0 1 2 | 2 3 0
0 2 3 | 4 4 1

R2  R2

1 1 1 | 1 1 0
0 1 2 | 2 3 0
0 2 3 | 4 4 1

R3  R3  2R2

1 1 1 | 1 1 0
0 1 2 | 2 3 0
0 0 1 | 0 2 1

R3  R3

1 1 1 | 1 1 0
0 1 2 | 2 3 0
0 0 1 | 0 2 1

R2  R2  2R3

1 1 1 | 1 1 0
0 1 0 | 2 1 2
0 0 1 | 0 2 1

R1  R1  R3

1 1 0 | 1 3 1
0 1 0 | 2 1 2
0 0 1 | 0 2 1

R1  R1  R2

1 0 0 | 1 4 3
0 1 0 | 2 1 2
0 0 1 | 0 2 1

.

Thus A is invertible, and A1 

1 4 3
2 1 2
0 2 1

. 

Factoring Invertible Matrices

In the same way that complex molecules can be broken down into constituent atoms, invertible
matrices can be factored into elementary matrices:

Theorem: An n  n matrix A is invertible if and only if it can be expressed as a product of
elementary matrices. If this is the case, then more precisely, we can factor A as:

A  E1
1E2

1Ek1
1 Ek

1,
where E1, E2, . . . , Ek are the elementary matrices corresponding to a sequence of elementary
row operations in the Gauss-Jordan Algorithm that transforms A into In.
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Note: The factorization of A into elementary matrices is not unique, since a different sequence of
elementary row operations will result in a different sequence of elementary matrices.

Proof of the Theorem:  If A is invertible, then the rref of A is In. This means, by the
Gauss-Jordan Algorithm, that we can find a finite sequence of elementary row operations that will
transform A into In. But every elementary row operation corresponds to a left multiplication with an
elementary matrix. Thus we can find a finite sequence of elementary matrices E1, E2, . . . , Ek such that:

EkEk1E2E1A  In.

But since each elementary matrix is invertible, we have:
Ek
1EkEk1E2E1A  Ek

1In, or simplifying:
Ek1E2E1A  Ek

1.
Notice that we multiplied both sides of the equation on the left side by Ek

1, because Ek is the leftmost
factor of the matrix product. Continuing thus, we get:

Ek1
1 Ek1Ek2E2E1A  Ek1

1 Ek
1, or

Ek2E2E1A  Ek1
1 Ek

1, and keep going until
A  E1

1E2
1Ek1

1 Ek
1.

Since the inverse of every elementary matrix is also an elementary matrix, the product on the right is
also made up of elementary matrices.
 Conversely, if A  G1G2Gk, where every G i is an (invertible) elementary matrix, then
Gk
1Gk1

1 G2
1G1

1A  In. This equation tells us that there is a sequence of elementary row operations
that will transform A into In, and thus the rref of A is In. Hence, A is invertible.

We can see from this proof that a different sequence of elementary row operations that reduces A to In
will indeed result in a different factorization, so the factorization into elementary matrices is hardly
unique.

Example: We saw that A 

3 2 5
2 1 4
4 2 7

is invertible.

In order to express A as a product of elementary matrices, we need to list down the sequence of
elementary row operations that produced A1, find the inverse matrix corresponding to each of these
operations, and form the product of these matrices, going left to right. For easy reference, we list down,
in chronological order, the sequence of 9 row operations that we performed:

R1  R1  R2, R2  R2  2R1, R3  R3  4R1,
R2  R2, R3  R3  2R2, R3  R3,
R2  R2  2R3, R1  R1  R3 R1  R1  R2.

From the proof of the Theorem, we must invert each corresponding elementary matrix and multiply
them in the same order. Thus, the first three operations will turn into:

R1  R1  R2, R2  R2  2R1, R3  R3  4R1.
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Since the product has 9 factors, we write our factorization on two lines:

A 

1 1 0
0 1 0
0 0 1

1 0 0
2 1 0
0 0 1

1 0 0
0 1 0
4 0 1

1 0 0
0 1 0
0 0 1



1 0 0
0 1 0
0 2 1

1 0 0
0 1 0
0 0 1

1 0 0
0 1 2
0 0 1

1 0 1
0 1 0
0 0 1

1 1 0
0 1 0
0 0 1

.

Since matrix multiplication is associative, we can actually perform the tedious task of checking that this
is correct by multiplying consecutive pairs together, collapsing the product (leaving the last matrix on
the right alone) to 5 matrices, and proceeding in this way multiplying consecutive pairs:

3 1 0
2 1 0
0 0 1

1 0 0
0 1 0
4 0 1

1 0 0
0 1 0
0 2 1

1 0 1
0 1 2
0 0 1

1 1 0
0 1 0
0 0 1



3 1 0
2 1 0
4 0 1

1 0 1
0 1 2
0 2 3

1 1 0
0 1 0
0 0 1



3 1 5
2 1 4
4 2 7

1 1 0
0 1 0
0 0 1



3 2 5
2 1 4
4 2 7

 A. 

Solving Invertible Square Equations

We already know how to solve a system of equations using the Gauss-Jordan algorithm. However, if
we have a square system, and the coefficient matrix is invertible, and we know its inverse, then we
have another way to solve the system:

Theorem: If A is an invertible n  n matrix, then the system:

Ax  b

has exactly one solution for any n  1 matrix b, namely:

x  A1b.
More generally, if C is any n  m matrix, then the matrix equation:

AB  C
has exactly one solution for the n  m matrix B, namely:

B  A1C.
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Proof: If Ax  b, where A is invertible, then A1Ax  A1b. But by the Associative Property,
A1Ax  A1Ax  Inx  x, thus x  A1b. The generalization is proven in the same way.

Example: We saw that if A 

3 2 5
2 1 4
4 2 7

, then A1 

1 4 3
2 1 2
0 2 1

.

The system Ax 
5
8

3

therefore has the unique solution:

x  A1

5
8

3



1 4 3
2 1 2
0 2 1

5
8

3



36
4
19

.

Similarly, if we want to solve the matrix equation:

3 2 5
2 1 4
4 2 7

u v
w x
y z



5 4
3 6
7 3

, then:

u v
w x
y z

 A1

5 4
3 6
7 3



1 4 3
2 1 2
0 2 1

5 4
3 6
7 3



14 29
21 4
1 15

. 

2.7 Section Summary

If E is an elementary n  n matrix and A is any n  m matrix, then the matrix product EA can be
computed by performing the same elementary row operation on A that was used to produce E from In.
Elementary matrices are invertible, and the inverse of an elementary matrix is another elementary
matrix of the same type.
Let A be an n  n matrix. Then: A is invertible if and only if the rref of A is In. Furthermore, if we
construct the n  2n augmented matrix A | In , then A is invertible if and only if the rref of this
augmented matrix contains In in the first n columns, in which case A1 will be found in the last n
columns. In other words, the rref of A | In is In | A1 .

An n  n matrix A is invertible if and only if it can be expressed as a product of elementary matrices.
In this case, A  E1

1E2
1. . . Ek1

1 Ek
1, where E1, E2, . . . , Ek are the elementary matrices corresponding

to the elementary row operations that transformed A into In, in the same order.

If A is an invertible n  n matrix, then the system Ax  b has exactly one solution for any n  1 matrix
b, namely x  A1b. More generally, if C is any n  m matrix, then the matrix equation AB  C has
exactly one solution for B, namely B  A1C.
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2.7 Exercises

For Exercises 1 to 12: (a) Use the Gauss-Jordan Algorithm to find the inverse, if possible, of the
following matrices; (b) List explicitly each elementary transformation that you perform in the process;
(c) Express each invertible matrix as the product of elementary matrices.

1.
4 7
3 6

2.
1/2 3/4
5/2 7/4

3.
2 4 1
1 3 2

3 0 1

4.
3 1 7
2 4 5

4 6 19

5.
3 6 1
0 4 8
0 0 2

6.
1/2 0 0
1/4 2/3 0
3/2 1/3 3

7.
3 0 2
2 4 1
5 2 3

8.
2 1 3

5 4 1
3 0 2

9.
1/2 1/4 3/4
5/2 3/4 1/4
3/2 0 1/2

10.

1 3 5 1
0 2 4 7
0 0 1 2
0 0 0 3

11.

3 0 0 0
4 5 0 0
7 2 0 0
8 6 9 4

12.

3 3 0 1
0 1 1 2
2 1 1 2

3 0 2 1

13. Check explicitly that your factorization for Exercise 3 is correct.

For Exercises 14 to 18: Use your answers for Exercises 7 through 12 to solve the following
matrix equations using the inverse of the coefficient matrix:

14.
3 0 2
2 4 1
5 2 3

x
y
z



7
2
4

15.
2 1 3

5 4 1
3 0 2

x
y
z



3
2
8

16.
1/2 1/4 3/4
5/2 3/4 1/4
3/2 0 1/2

u x
v y
w z



3 0
5 4
2 7
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17.

1 3 5 1
0 2 4 7
0 0 1 2
0 0 0 3

w
x
y
z



5
0
3
1

18.

3 3 0 1
0 1 1 2
2 1 1 2

3 0 2 1

s w
t x
u y
v z



3 4
1 7

5 2
6 8

19. Suppose that A is a 3  n matrix. Write a sentence describing how to compute the following
matrix products:

a)
1 0 0
0 5 0
0 0 1

A b)
1 0 0
0 1 0
0 0 2/5

A c)
1 0 0
3 1 0
0 0 1

A

d)
1 0 0
0 1 0
0 7 1

A e)
0 0 1
0 1 0
1 0 0

A f)
1 0 4
0 1 0
0 0 1

A

20. Suppose that A is a 4  n matrix. Write a sentence describing how to compute the following
matrix products:

a)

1 0 0 0
0 1 0 3
0 0 1 0
0 0 0 1

A b)

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

A c)

1 0 0 0
0 1 0 0
0 0 3/2 0
0 0 0 1

A

d)

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 9

A e)

1 0 0 0
0 1 0 0
0 0 1 0
0 5 0 1

A f)

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

A

21. Prove that if E is an elementary n  n matrix and A is any n  m matrix, then the product EA can
be computed by performing the same elementary row operation on A that was used to produce E
from In. You will need to consider all three types of elementary row operations.

22. Prove that elementary matrices are invertible, and the inverse of an elementary matrix is another
elementary matrix of the same type. Again, you will need to consider all three types of elementary
row operations.
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23. Prove that in general, if A is an invertible n  n matrix, and C is a given n  m matrix, then there
is exactly one n  m matrix B such that AB  C, namely B  A1C.

24. Prove that if a square matrix A is invertible, then Ak is invertible for all positive integers k.
Express the inverse of Ak in terms of A1.

25. Permutation Matrices: An n  n matrix is called a permutation matrix if every entry is 0 except
for a single 1 that appears on each row and each column. We saw an Example of a permutation
matrix in Exercises 10 and 28 of Section 2.1.
a. Give an example of a 5  5 permutation matrix where 1 does not appear on the main

diagonal.
b. Prove that every product of Type 2 elementary matrices is a permutation matrix. Hint: prove

by induction. Begin by explaining why every Type 2 elementary matrix is a permutation
matrix.

c. Prove that every permutation matrix is invertible.
d. Prove that every permutation matrix can be expressed as the product of Type 2 elementary

matrices. Hint: one way to do it is by Induction.
26. Analogous to elementary row operations, an elementary column operation is any one of the

following actions on a matrix A (where C i represents column i of A):

Type: Notation:

1. Multiply column i by a nonzero scalar k C i  kC i

2. Exchange column i and column j C i  C j

3. Add k times column j to column i C i  C i  kC j

Similarly, an elementary column matrix is a matrix obtained from In using a single elementary
column operation.
a. Prove that multiplying a matrix A on the right by a compatible elementary column matrix

has the same effect as performing the corresponding elementary column operation on A. See
Exercise 21.

b. Show that every elementary matrix (as defined in the beginning of this section) is also an
elementary column matrix, and vice versa, and in fact they are of the same respective type.

27. Suppose that A is an m  4 matrix. Write a sentence describing how to compute the following
matrix products, using the ideas in the previous Exercise (compare your answers to those from
Exercise 20):

a) A

1 0 0 0
0 1 0 3
0 0 1 0
0 0 0 1

b) A

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

c) A

1 0 0 0
0 1 0 0
0 0 3/2 0
0 0 0 1

d) A

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 9

e) A

1 0 0 0
0 1 0 0
5 0 1 0
0 0 0 1

f) A

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0
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2.8 Conditions for Invertibility

It should be no surprise that the property of a matrix A being invertible is very special, and we will see
in this Section that we can test for the invertibility of a matrix A (and consequently, a linear operator T)
in a variety of ways. We begin by summarizing several conditions that are equivalent to the invertibility
of a linear transformation or matrix:

Theorem — The Really Big Theorem on Invertibility:
The following conditions are equivalent for a linear operator T : n  n,
with standard matrix T   A.

1. T is an invertible operator.
2. A is an invertible matrix.
3. The rref of A is In.
4. A is the product of elementary matrices.
5. T is one-to-one.
6. kerT  nullspaceA  0n .
7. nullityT  nullityA  0.
8. T is onto.
9. rangeT  n.

10. rankT  n.
11. colspaceA  n.
12. The columns of A form a basis for n.
13. The columns of A are linearly independent.
14. The columns of A Span n.
15. rowspaceA  n.
16. The rows of A form a basis for n.
17. The rows of A are linearly independent.
18. The rows of A Span n.
19. The homogeneous equation Ax  0n has only the trivial solution.
20. For every n  1 matrix b, the system Ax  b is consistent.
21. For every n  1 matrix b, the system Ax  b has exactly one solution.
22. There exists an n  1 matrix b, such that the system Ax  b

has exactly one solution.

Proof: We already know that conditions 1 and 2 are equivalent to each other, and that conditions
2, 3 and 4 are equivalent from the previous Section.
Similarly, our definitions and Theorems from Section 2.5 say that conditions 5 through 7 are
equivalent, and that conditions 8 through 11 are equivalent. The Dimension Theorem says that:

rankT  nullityT  n.

Thus rankT  n if and only if nullityT  0, so conditions 7 and 10 are equivalent. Thus,
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conditions 5 through 11 are equivalent.
Let us next show that condition 1 is equivalent to condition 5. If T is invertible, then automatically
T is one-to-one. Conversely, suppose that T is one-to-one. By the previous paragraph, T is also onto,
and thus T is invertible, so conditions 1 and 5 are equivalent. Thus, conditions 1 through 11 are
equivalent.
Since there are exactly n rows and n columns, conditions 11 through 14 are equivalent, and
conditions 15 through 18 are equivalent, using the Two-for-One Theorem in Section 1.9, and the
fact that a subspace W of n has dimension n if and only if W  n. But since rankT is the
common dimension of rowspaceA and colspaceA, we see that conditions 11 and 15 are
equivalent. Thus, conditions 1 through 18 are equivalent.
Notice that the last four conditions have to do with the solvability of a system of equations. However,
condition 19 is equivalent to condition 6. We will leave the equivalence of the last three conditions
with conditions 1 to 19 as Exercises. We must warn, though, that there are subtle differences
among them:

Condition 20 says that no matter which n  1 matrix b we choose, we can find at least one solution x
to the matrix equation Ax  b.

Condition 21 says that no matter which n  1 matrix b we choose, we can find exactly one solution x
to the matrix equation Ax  b.

Condition 22 says that we can find one n  1 matrix b, that yields exactly one solution x to the
matrix equation Ax  b. 

One Sided Inverses

To determine if a square matrix A is invertible, we must find another square matrix B of the same
dimensions such that:

AB  In and BA  In.

If B only satisfies the first equation, we could naturally call B a “right” inverse for A. Similarly we
could call B a “left” inverse for A if it only satisfies the second equation (in the same way we talk about
left limits or right limits in Calculus). However, it turns out we don’t need to worry about this at all:

Theorem — Left and Right Inverses:
An n  n matrix A is invertible if and only if we can find an n  n matrix B such that
AB  In or BA  In. Thus, a “right” inverse is also a “left” inverse, and vice versa.

Proof: We will show that if BA  In, then AB  In also. The proof of the opposite case is essentially
the same and will be left as an Exercise.
The idea is to think of the operators corresponding to A and B and view the product as the composition.
Let us denote T1, T2 : n  n, where T1   A and T2   B. Thus:

BA  T2   T1   T2  T1 ,

and so BA  In represents T2  T1. Thus, T2  T1  In , so T2  T1 is both one-to-one and onto. But
we saw in Exercise 23 of Section 2.5 that if T2  T1 is one-to-one, then T1 is also one-to-one. But since
T1 is an operator, by the Really Big Theorem, T1 is invertible, and thus T1   A is invertible. Since
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A1 exists, we can solve:

BA  In  BAA1  InA1  B  A1.

Thus: AB  AA1  In. 

The Inverse of a Composition and Matrix Product

It is not surprising that we get an invertible operator when we compose two invertible operators:

Theorem: If T1, T2 : n  n are both invertible operators, then T2  T1 is also invertible,
and furthermore:

T2  T1 1  T1 1T2 1.

Analogously, if A and B are invertible n  n matrices, then AB is also invertible, and
furthermore:

AB1  B1A1.

Proof: If T1 and T2 are both invertible operators, then we know that their matrices T1  and T2  are
both invertible matrices. But we also know that T2  T1   T2 T1 , and therefore to show that
T2  T1  is invertible, we must show that we can find some matrix, that when multiplied to T2 T1 ,
yields the identity matrix. Since we already know that T1 1 and T2 1 both exist, their product, in
this order, is the perfect candidate for the inverse. All we have to do is show that the product of
T2 T1  and T1 1T2 1 yields the identity matrix:

T2 T1   T1 1T2 1

 T2  T1   T1 1 T2 1 (by the Associative Property)

 T2 InT2 1  T2 T2 1  In.

Similarly, T1 1T2 1  T2 T1   In. In exactly the same way, we can show that
ABB1A1   In  B1A1 AB. 

Example: Consider the matrices:

A 
3 8
2 5

, and B 
8 9

7 8
.

We can check that both of these matrices are invertible, and their inverses are:

A1 
5 8

2 3
, and B1 

8 9
7 8

.

Let us examine AB:
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AB 
3 8
2 5

8 9
7 8


32 37
19 22

.

Again, this product is invertible, and:

AB1  1
3222  1937

22 37
19 32


22 37
19 32

.

We verify that we need to take the product B1A1 to get the same matrix:

B1A1 
8 9
7 8

5 8
2 3


22 37
19 32

.

Just for fun, let us look at the wrong order:

A1B1 
5 8

2 3
8 9
7 8


16 19

5 6
.

We note that although this answer is wrong, it is the inverse of:

BA 
6 19

5 16
. 

It turns out that the converse of the previous Theorem is also true, and you will prove it in the
Exercises:

Theorem: If T1, T2 : n  n are operators, and T2  T1 is invertible, then both T2 and T1
are also invertible. Analogously if A and B are two n  n matrices and the product AB is
invertible, then both A and B are invertible.

2.8 Section Summary

The Really Big Theorem on Invertibility on p. 248 gives us 22 conditions that are equivalent to an
operator T and its standard matrix A being invertible. A few more will be added in the future.
An n  n matrix A is invertible if and only if we can find an n  n matrix B such that:

AB  In or BA  In.

Thus, a “right” inverse is also a “left” inverse, and vice versa.
If T1, T2 : n  n are both invertible operators, then the composition T2  T1 is also invertible, and
furthermore:

T2  T1 1  T1 1T2 1.
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Analogously, if A and B are invertible n  n matrices, then AB is also invertible, and furthermore:

AB1  B1A1.

Conversely, if T2  T1 is invertible, then both T2 and T1 are also invertible. Analogously if A and B are
two n  n matrices and the product AB is invertible, then both A and B are invertible.

2.8 Exercises

1. Let A 
3 5
4 6

and B 
7 4
6 3

.

a. Show that A and B are both invertible by computing their inverses.

b. Compute the product B1A1.

c. Find AB.

d. Show directly that AB is invertible by computing its inverse.

e. Verify that AB1  B1A1.

For Exercises 2 to 4: Prove that an n  n matrix A is invertible if and only if it satisfies any
of the following conditions:

2. For every n  1 matrix b, the system Ax  b is consistent.

3. For every n  1 matrix b, the system Ax  b has exactly one solution.

4. There exists an n  1 matrix b, such that the system Ax  b has exactly one solution.

5. Prove that if A is an invertible n  n matrix, then the system yA  d has exactly one solution for
any 1  n matrix d, namely y  dA1.

6. Prove that if AB  In, then BA  In as well. Hint: study and mimic the proof of the 1st half of
the Theorem.

7. Prove that if A and B are n  n matrices and AB is invertible, then both A and B are invertible.
Warning: You cannot use the formula AB1  B1A1, because we are trying to prove in the
first place that A and B are invertible, so the inverse matrices on the right side of this equation are
not known to exist.
Instead, here’s a partial hint: Let us give AB a name, say, X. Then, we can find a matrix X1 with
the property that . . . . Stare at what you have and use the Associative Property of Matrix
Multiplication. Remember that a left inverse is also a right inverse, and vice-versa, so you only
need to show that one equation is true for A, and another one is true for B. In the process, you
should be able to provide a formula for A1 and for B1.

8. Use the ideas in our Theorem on Left and Right Inverses to prove that if T2  T1 is invertible,
then both T1 and T2 are invertible. Explain why this also shows that if A and B are n  n matrices
and AB is invertible, then A and B are also invertible.

9. Suppose that A is a 5  5 matrix, and B is the matrix obtained from A by exchanging rows 1 and
3, and exchanging rows 2 and 5. Describe in a sentence how B1 is related to A1. Hint: think of
this problem in terms of multiplying A by elementary matrices.
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10. Direct Sums and Matrices in Block Diagonal Form: Suppose that A1 is an n1  n1 matrix, and
A2 is an n2  n2 matrix. We define the direct sum of these matrices, denoted: A  A1  A2, as
the matrix of size n1  n2   n1  n2  where A1 appears in columns 1 to n1 and rows 1 to n1,
and A2 appears in columns n1  1 to n1  n2 and rows n1  1 to n1  n2, and all the other entries
of A are zeroes.

For example, if A1 
3 7
2 4

and A2 

5 2 1
4 0 7
3 9 8

, then:

A  A1  A2 

3 7 0 0 0
2 4 0 0 0
0 0 5 2 1
0 0 4 0 7
0 0 3 9 8

.

Notice that the diagonal entries of A1 and A2 also lie on the diagonal of A.

We also use the notation:

A  A1  A2 
A1 0
0 A2

where 0 represents a zero matrix of an appropriate size.

a. Warm-up: Write down the matrices: B  A2  A1 and C  A1  A1, where A1 and A2 are
the matrices in the example above.

b. Explain in general why A1  A2 and A2  A1 are not equal. In other words, the operation
of taking direct sums is not commutative.

c. Suppose that A3 
4 5

7 3
. Write down A1  A2   A3, A2  A3, and

A1  A2  A3 , where A1 and A2 are as above.

Notice that A1  A2   A3 and A1  A2  A3  are equal. It is not hard to see that in
general, the operation of taking direct sums is associative: for any three square matrices A1,
A2 and A3, not necessarily of the same size:

A1  A2   A3  A1  A2  A3  

A1 0 0
0 A2 0
0 0 A3

 A1  A2  A3.

Thus, we can generalize the process to direct sums of k square matrices: if A1, A2, , Ak
have sizes n1  n1, n2  n2, , nk  nk, then the direct sum:

A  A1  A2   Ak,
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is a square matrix of size m  m, where m  n1  n2   nk, each A i appears in the
given order along the diagonal of A, and all the other entries of A are zeroes.

Conversely, we say that A is in block diagonal form, and the A i are called the blocks
forming A, if we can find a sequence of two or more matrices A1, A2, , Ak whose direct
sum is A. We can also write A showing its blocks in the notation:

A  A1  A2   Ak 

A1 0 0 0
0 A2 0 0
0 0  0
0 0 0 Ak

,

where the zero matrices 0 have the appropriate sizes.

d. Suppose that B1 

8 2 1
4 6 7
3 5 9

, B2  5, and B3 
0 9
2 5

.

Find B  B1  B2  B3. What is the size of B?

e. Suppose that A 

3 0 0 0
2 4 8 0
0 0 3 3
0 1 0 5

and B 

3 7 0 0
2 4 0 0
0 0 8 1
0 0 0 5

.

Which of these matrices, if any, is in block diagonal form? If so, find the blocks, but if not,
explain why not.

f. Suppose that A1, A2, , Ak and B1, B2, , Bk are square matrices such that A i and B i
have the same size for all i, and A and B are the corresponding direct sums. Show that we
can also express A  B and AB as the direct sums:

A  B  A1  B1   A2  B2    Ak  Bk , and

AB  A1B1   A2B2    AkBk .

Hint: Use Induction on the number of blocks k.

g. Prove that A  A1  A2   Ak is invertible if and only if each A i is invertible. If so,
state and prove a formula for A1. Note: one direction is easy, but the other direction is not
obvious. Recall that the Gauss-Jordan Algorithm can be used to find the inverse. Use this in
your proof.

11. Elementary Number Theory: In this Chapter, we encountered invertible matrices such as:

A 
3 8
2 5

, where A1  1
53  82

5 8
2 3


5 8
2 3

.

Notice that A contains only integer entries, and since ad  bc  1, A1 also contains integer
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entries. The purpose of this Exercise is to create more matrices with this property.

The Chinese Remainder Theorem states that if a and b are relatively prime integers (that is, the
only common divisors are 1 and 1), then we can find two integers x and y such that:

ax  by  1.

For example, 7 and 12 are relatively prime, and: 75  123  1.

The interested student can search the Internet for the Euclidean Algorithm, which lets us
systematically find a solution for x and y. When a and b are small, though, we can easily find a
solution by trial and error, as we did above.

a. Use this example to create a 2  2 matrix A whose first row contains 7 and 12 so that A is
invertible and A1 also contains four integer entries. Compute A1 to check your answer.

b. Use The Chinese Remainder Theorem to show that if a and b are relatively prime, then we
can find a 2  2 matrix A whose first row contains a and b and second row contains
integers, such that A is invertible and A1 also contains four integer entries.

c. Find an invertible 2  2 matrix A whose first row contains 5 and 8 such that A1 contains
integer entries. Compute A1 to check that your answer is correct.

d. Find an invertible 2  2 invertible matrix whose second column contains 7 and 16 and
whose inverse only contains integer entries.
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2.9 Diagonal, Triangular, and Symmetric Matrices

In this Section, we will explore linear transformations whose matrices have special forms, and
consequently, have special properties and actions. The proofs of all of the Theorems in this Section are
straightforward, so they will all be left as Exercises.

Diagonal Matrices

We will start with the easiest, and arguably the most elegant kind of square matrix. Recall that the
main diagonal of an n  n matrix A are the entries a i,i, where i  1. . n:

Definition: An n  n matrix D  d i,j  is called diagonal if all the entries that are not on the
main diagonal are 0, that is, d i,j  0 if i  j. In other words, D has the form:

D 

d1 0  0
0 d2  0
   

0 0  dn

.

For the sake of saving space, we write in shorthand:

D  Diag d1, d2,  , dn .

Note that the definition only requires that the entries that are not on the main diagonal must be 0. The
entries on the main diagonal could still be 0. Thus, for example, the zero square matrices are diagonal
matrices. It is very easy to compute the action of a linear transformation whose matrix is diagonal:

Theorem: Suppose T : n  n is a linear transformation, and:

T   D  Diag d1, d2,  , dn 

is an n  n diagonal matrix. If v  v1, v2,  , vn  is any vector from n, then:

Tv  d1v1, d2v2, , dnvn .

In particular, the action of T on the basic unit vectors is given by:

Tek   dkek for all k  1. . n.

Example: Suppose T : 3  3 has a diagonal matrix:

T  
3 0 0
0 7 0
0 0 4

.

Then:
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T
2
6
5



3 0 0
0 7 0
0 0 4

2
6
5



3  2
7  6
4  5



6
42
20

,

so indeed T2, 6,5  3  2,7  6, 4  5  6,42,20. We can also see that:

Te2  

3 0 0
0 7 0
0 0 4

0
1
0



0
7

0

 7e2,

as expected.

The product of a diagonal matrix with an arbitrary matrix is also easily computed:

Theorem: Suppose D  Diag d1, d2,  , dn  is an n  n diagonal matrix, A is any n  m
matrix and B is any m  n matrix. If we write A and B, respectively, in terms of their rows
and columns as follows:

A 

r1

r2



rn

, and B  c1 c2  cn , then:

DA 

d1r1

d2r2



dnrn

, and BD  d1c1 d2c2  dncn .

In other words, we can obtain DA by multiplying each row of A by the corresponding
diagonal entry of D, and we can obtain BD by multiplying each column of B by the
corresponding diagonal entry of D.

Example: Suppose:

D 

3 0 0
0 7 0
0 0 4

,

A 

6 2 9 4
3 5 2 1
8 3 1 6

, and B 
4 8 7
3 2 6

.
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Then:

DA 

3 0 0
0 7 0
0 0 4

6 2 9 4
3 5 2 1
8 3 1 6



3  6 3  2 3  9 3  4
7  3 7  5 7  2 7  1
4  8 4  3 4  1 4  6



18 6 27 12
21 35 14 7
32 12 4 24

, and similarly:

BD 
4 8 7
3 2 6

3 0 0
0 7 0
0 0 4


4  3 8  7 7  4
3  3 2  7 6  4


12 56 28

9 14 24
. 

Recall that we say that a subspace of n is closed under vector addition and scalar multiplication. The
following Theorem says that the set of diagonal matrices of the same size also enjoy similar closure
properties.

Theorem — Closure Properties for Diagonal Matrices:
If A and B are n  n diagonal matrices and c is any scalar, then A  B, A  B, cA and AB are
also n  n diagonal matrices. In particular, the positive powers of a diagonal matrix are also
diagonal, and if D  Diag d1, d2,  , dn , then:

Dk  Diag d1
k, d2

k,  , dn
k 

for all positive integers k.

Lastly, the next Theorem says how to easily determine if a diagonal matrix is invertible, and if so, how
to find its inverse:

Theorem — Invertibility of Diagonal Matrices:
A diagonal matrix D  Diag d1, d2,  , dn  is invertible if and only if
d i  0 for all i  1. . n. In this case:

D1  Diag d1
1, d2

1,  , dn
1 .

Example: Let: D 

3 0 0
0 7 0

0 0 2
5

.

D is invertible because all the entries on the main diagonal are non-zero, and:
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D1 

1
3 0 0

0  1
7 0

0 0 5
2

.

Similarly, we can compute the 6 th power of D, as:

D6 

36 0 0
0 76 0

0 0 2
5

6


729 0 0
0 117, 649 0

0 0 64
15, 625

.

Since D is invertible, we can also compute any negative power, for instance:

D3  D1 3 

1
3 0 0

0  1
7 0

0 0 5
2

3



1
27 0 0

0  1
343 0

0 0 125
8

. 

Triangular Matrices

The next twin families of matrices that we will explore are second-best to the diagonal matrices in
terms of simplicity and elegance:

Definition: An n  n matrix U  u i,j  is called upper triangular if all the entries below the
main diagonal are 0, that is, u i,j  0 if i  j. Similarly, an n  n matrix L  l i,j  is called
lower triangular if all the entries above the main diagonal are 0, that is, l i,j  0 if i  j.
Thus, U and L have the form:

U 

u1,1 u1,2  u1,n

0 u2,2  u2,n

   

0 0  un,n

and L 

l1,1 0  0
l2,1 l2,2  0
   

ln,1 ln,2  ln,n

,

respectively. We also say the U is strictly upper triangular if its diagonal entries are also
zeroes, that is, u i,j  0 if i  j. Similarly L is strictly lower triangular when l i,j  0 if i  j.

To remember these definitions, notice that the interesting (that is, the non-zero) entries in an upper
triangular matrix are in the upper part of the matrix — the rest are zeroes.
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Example: The following matrices, L and U, are respectively lower and upper triangular:

L 

5 0 0 0
3 9 0 0

2 8 0 0
6 1 7 2

, U 

4 5 1
0 7 3
0 0 6

. 

Again, closure properties also hold for each kind of triangular matrix:

Theorem — Closure Properties for Triangular Matrices:
If A and B are n  n upper triangular matrices and c is any scalar, then A  B, A  B, cA and
AB are also n  n upper triangular matrices. In particular, the positive powers of an upper
triangular matrix are also upper triangular.
An analogous statement is true for lower triangular matrices.

Finally, like diagonal matrices, we can also tell immediately if a triangular matrix is invertible by
looking at the main diagonal, and if so, its inverse will have the same form:

Theorem — Invertibility of Triangular Matrices:
An upper triangular matrix is invertible if and only if all of its entries on the main diagonal
are non-zero. If so, its inverse is again an upper triangular matrix.
Analogous statements are also true for lower triangular matrices.

Example: The matrix:

A 

4 5 1
0 7 3
0 0 6

from our previous example is invertible because the diagonal entries are non-zero. We can compute its
inverse by the Gauss-Jordan method, as usual, and we get:

A1 

 1
4  5

28  1
21

0 1
7

1
14

0 0 1
6

.

Notice that the diagonal entries of A1 are the reciprocals of the corresponding diagonal entries of A.
On the other hand, the lower triangular matrix:

B 

6 0 0
2 0 0
5 4 2

is not invertible because the second diagonal entry of B is 0. 
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The Transpose of a Matrix

Recall that in Section 1.8, we defined the transpose of a matrix A as the matrix obtained from A by
writing row 1 of A as column 1 of A, and so on. Now that we are accustomed to matrix notation, let
us rewrite that definition using the individual entries of A:

Definition: Let A be an m  n matrix. The transpose of A, denoted A, is the n  m matrix
whose entries are given by:

A  i,j  a j,i.

In particular, the transpose of a row matrix is a column matrix, and the transpose of a column
matrix is a row matrix.

Example: If A 
3 7 4
0 9 2

, then A is a 3  2 matrix, and:

A 

3 0
7 9
4 2

. 

As before, we see that the transpose operation has the effect of turning the i th row of A into the i th

column of A, with the entries going top to bottom instead of left to right. Similarly, the j th column of A
become the j th row of A. The transpose operation has many interesting properties:

Theorem — Properties of the Transpose Operation:
Suppose that A and B are m  k matrices, C is a k  n matrix, and r is any scalar. Then:

A   A,
A  B  A  B,
rA  rA, and
BC  CB.

(Notice that B and C switch places in the last formula.) Furthermore, if A is a square matrix,
then A is invertible if and only if A is invertible, in which case: A 1  A1 .

Now we are ready to describe our final family of special matrices.

Symmetric Matrices

Definition: Let A be an n  n matrix. We say that A is symmetric if:

A  A.

Notice that a matrix which is not square cannot be symmetric.
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Example: The matrix A 

3 8 2 5
8 0 6 1
2 6 4 3

5 1 3 7

is symmetric.

Example: In Section 2.2, we found the matrix of the reflection operation across the plane
 : 3x  5y  2z  0 to be:

refl   1
19

10 15 6
15 6 10
6 10 15

.

We mentioned in that Section that this matrix is symmetric. In general, the matrix for any reflection
operator, whether across a line or a plane, is symmetric, as we can see from the Exercises in Section
2.2. We will generalize the concept of a projection onto a subspace W of n in Chapter 7, and we will
prove that their matrices are always symmetric.

It should not be surprising that the set of symmetric matrices of the same size enjoy closure properties.

Theorem — Closure Properties of Symmetric Matrices:
Suppose A and B are symmetric n  n matrices and c is any scalar. Then: A  B, A  B and
cA are also symmetric. If A is invertible, then A1 is also symmetric.

Notice that the closure properties above do not say that the product of two symmetric matrices is again
symmetric. This is because an additional condition is both necessary and sufficient:

Theorem: Suppose A and B are symmetric n  n matrices. Then: AB is also symmetric if
and only if A and B commute with each other, that is, AB  BA.

We will also see at the end of Chapter 7 (as later proven in Chapter 8) that symmetric matrices have a
certain magical “diagonalizability” property.

2.9 Section Summary

An n  n matrix D  d i,j  is called diagonal if all the entries that are not on the main diagonal are 0,
that is, d i,j  0 if i  j. We will write D in shorthand as: D  Diag d1, d2,  , dn , where
d1, d2,  , dn are the diagonal entries of D.
Let T : n  n be a linear transformation and T  D. If v  v1, v2,  , vn  is any vector from
n, then Tv  d1v1, d2v2,  , dnvn . In particular, the action of T on the basic unit vectors is given
by: Tek   dkek for all k  1. . n.
We can obtain DA by multiplying each row of A by the corresponding diagonal entry of D, and we can
obtain BD by multiplying each column of B by the corresponding diagonal entry of D.

262 Section 2.9 Diagonal, Triangular, and Symmetric Matrices



If A and B are n  n diagonal matrices and c is any scalar, then A  B, A  B, cA and AB are also n  n
diagonal matrices. In particular, the positive powers of a diagonal matrix are also diagonal, and if
D  Diag d1, d2,  , dn , then Dk  Diagd1

k, d2
k,  , dn

k  for all positive integers k.
A diagonal matrix D is invertible if and only if all the entries on the main diagonal are non-zero, and
in this case D1  Diagd1

1, d2
1,  , dn

1 .
An n  n matrix U is called upper triangular if all the entries below the main diagonal are 0, that is,
u i,j  0 if i  j. Similarly, an n  n matrix L is called lower triangular if all the entries above the main
diagonal are 0, that is, l i,j  0 if i  j.
If A and B are n  n upper triangular matrices and c is any scalar, then A  B, A  B, cA and AB are
also n  n upper triangular matrices. In particular, the positive powers of an upper triangular matrix
are also upper triangular. Similar closure properties hold for the set of lower triangular matrices.
An upper triangular matrix is invertible if and only if all of its entries on the main diagonal are
non-zero. If so, its inverse is again an upper triangular matrix. Analogous statements can be made for
the set of lower triangular matrices.
Let A be an m  n matrix. The transpose of A, denoted A, is the n  m matrix whose entries are given
by A  i,j  a j,i. In particular, the transpose of a row matrix is a column matrix, and the transpose of a
column matrix is a row matrix.
Suppose that A and B are m  k matrices, C is a k  n matrix, and r is any scalar. Then: A   A,
A  B  A  B, kA  kA, and BC  CB.
If A is a square matrix, then A is invertible if and only if A is invertible, in which case:
A 1  A1 .
Let A be an n  n matrix. We say that A is symmetric if A  A. Suppose A and B are symmetric
n  n matrices and c is any scalar. Then: A  B, A  B and cA are also symmetric. If A is invertible,
then A1 is also symmetric. The product AB is symmetric if and only if AB  BA.

2.9 Exercises

1. State all the words in the following list that correctly describe each matrix: diagonal, upper
triangular, lower triangular, symmetric, all of the above, and none of the above:

a.
0 0 0
3 4 0
5 2 7

b.
6 0 0
0 9 0
0 0 3

c.
2 5 8
5 3 2
8 2 3

d. The identity matrices In.

e. The square zero matrices 0nn.
2. An n  n matrix A is defined by the formula:

a i,j  i  j, for all i, j  1. . n.

a. Assemble the matrix A when n  4.
b. Which of the words in Exercise 1 above describe these matrices? Prove your answer in

general.
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3. Let D 

3 0 0
0 2 0
0 0 7

, A 

4 7 3 2 0
9 2 1 4 6
5 3 2 9 1

and B 
9 5 2
1 4 3

.

a. Compute DA.

b. Compute BD.

c. Prove in general that if D is an n  n diagonal matrix, and A is any n  m matrix, then we
can compute DA by multiplying each row of A by the corresponding diagonal entry of D.

d. Prove in general that if D is an n  n diagonal matrix, and B is any m  n matrix, then we
can compute BD by multiplying each column of B by the corresponding diagonal entry of
D.

4. Let A and B be n  n diagonal matrices and c is any scalar. Prove that the following are also
diagonal:
a. A  B b. A  B c. cA d. AB

5. Let D  Diagd1, d2, . . . , dn  be a diagonal matrix.
a. Prove by induction that Dk  Diagd1

k, d2
k, . . . , dn

k , for all positive integers k.
b. Prove that D is invertible if and only if all of the d i are non-zero. Hint: Use the fact that any

matrix A is invertible if and only if the reduced row echelon form of A is the identity matrix.
c. Prove that if D  Diagd1, d2, . . . , dn  is invertible, then:

D1  Diagd1
1, d2

1, . . . , dn
1 .

6. Prove that all diagonal matrices are symmetric.
7. Suppose T : n  n is a linear transformation with T  Diagd1, d2, . . . , dn , a diagonal

matrix. Show that Tek   dkek for k  1. . n.
8. Let A and B be n  n upper triangular matrices and c any scalar. Prove that the following are also

n  n upper triangular matrices:
a. A  B b. A  B c. cA d. AB

9. Let A 

3 5 4
0 2 1
0 0 7

and B 

8 4 1
0 3 6
0 0 4

.

a. Compute the matrix product AB step-by-step.

b. Use your observations in a) to prove in general that the product of two upper triangular
matrices is again upper triangular. Hint: use the dot product formula for the matrix product.
We remind you that you only need to show that AB i,j  0 if i  j. Look at the locations of
the zeroes.

10. Prove that the transpose of an upper triangular matrix is a lower triangular matrix, and vice versa.

11. Prove that an upper triangular matrix is invertible if and only if none of the entries in the main
diagonal is 0. Use the same hint as in Exercise 5 (b). State and prove a similar statement for
lower triangular matrices (Warning: the proof for upper triangular matrices is not exactly the
same idea for lower triangular matrices).
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12. Let T : 3  3, with T  A 

3 5 4
0 2 1
0 0 7

.

a. Compute Te1 , Te2 , and Te3 . Express your answers in terms of e1, e2, and e3.
b. Use your computations in (a) to find three vectors v1, v2, and v3, such that Tv1   e1,

Tv2   e2, and Tv3   e3. Hint: fully exploit the linearity properties of T.
c. Use your answers in (b) to write A1.

13. Prove that if an upper triangular matrix is invertible, then its inverse is also upper triangular.
Hints: Let T be the linear transformation corresponding to this matrix. Explicitly construct T1 by
defining it on the standard basis using The Principle of Mathematical Induction. Generalize the
ideas from the previous Exercise. Start by showing that you can define T 1e1 . Assume that you
can define T 1e1  through T 1ek . Finally, show that you can define T 1ek1 .

14. Let A and B be m  k matrices, let C be a k  n matrix, and let r  . Prove that:
a. A   A b. A  B  A  B c. rA  rA 
d. BC  CB (Hint: Use the dot product formula for the matrix product)

15. Prove that if A is an invertible n  n matrix, then A is also invertible, and A 1  A1 .
Hint: all you need to show is that AA1   In.
Part (d) from the previous Exercise will be useful.

16. Let A and B be symmetric n  n matrices and let c be any scalar. Prove that A, A  B, A  B and
cA are also symmetric.

17. Prove that if A is invertible and symmetric, then A1 is also symmetric.
18. Suppose A and B are symmetric n  n matrices. Prove that AB is also symmetric if and only if A

and B commute with each other, that is, AB  BA.
Hint: Exercise 14 (d) will again be very useful.

19. Prove the converse of Exercise 5 from Section 2.8: If the equation yA  d is solvable (for y) for
all 1  n matrices d, then A is invertible. Hint: use the transpose operation and Exercise 14 (d).

20. Suppose that A is a strictly upper triangular n  n matrix. Prove that An  0nn, the zero n  n
matrix. Hint: compute the powers of a strictly upper triangular 4  4 matrix and observe what
happens to each power, and why this happens.

For Exercises (21) to (32): (a) identify whether the matrix is diagonal, upper triangular (but not
diagonal), lower triangular (but not diagonal), or symmetric (but not diagonal); (b) show that each
matrix is invertible by finding its inverse, and (c) verify that the inverse of the matrix is of the
same type.

21.
5 3
3 4

22.
4/7 2/3

0 3/5

23.
3 0
7 8

24.
9 0
0 3/4
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25.
5 0 0
4 7 0
3 8 4/3

26.
5 3 2
3 4 0
2 0 1

27.
3/5 0 0
0 2/3 0
0 0 7/9

28.
3 6 2
0 4 8
0 0 7

29.

5 0 0 0
2 9 0 0
7 6 1 0
0 4 8 3

30.

3 2 1 4
2 0 5 1
1 5 2 3
4 1 3 7

31.

2 5 9 1
0 4 3 0
0 0 7 8
0 0 0 6

32.

4 0 0 0
0 3/2 0 0
0 0 7 0
0 0 0 8/5

33. Let A 

2 10 20
10 13 10
20 10 2

, B 

10 4 19
4 43 4

19 4 10

, and C 

1 0 9
0 3 4
9 4 2

.

Notice that all three matrices are obviously symmetric.
a. Compute AB and BA and verify that they are equal. Look at the resulting matrix, and check

that it is also symmetric.
b. On the other hand, compute AC and CA. Is either matrix symmetric? Are these two

products equal to each other?

34. Matrices in Block Diagonal Form: Suppose that A1, A2, , Ak are all square matrices, not
necessarily of the same size, with k  2. We defined the direct sum of these matrices:

A  A1  A2   Ak

in Exercises 10 of Section 2.8. Prove the following statements about certain kinds of special
direct sums:
a. A is diagonal if and only if every A i is also diagonal.
b. A is upper triangular if and only if every A i is also upper triangular.
c. A is lower triangular if and only if every A i is also lower triangular.
d. A  A1

  A2
   Ak

.
e. A is symmetric if and only if every A i is also symmetric.
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A Summary of Chapter 2

A linear transformation T : n  m is a function that satisfies, for all u, v  n and for all k  :
Tu  v  Tu  Tv and Tku  kTu.

In the special case when T : n  n, we call T a linear operator.
A function T : n  m is a linear transformation if and only if we can find an m  n matrix A so that
Tx  Ax for all x  n. We call A the standard matrix of T, and:

T  A  Te1  | Te2  |  | Ten  .

An n  n matrix E is called an elementary matrix if it is obtained by performing a single elementary
row operation on the identity matrix In.
In 2, linear operators have geometric effects, such as dilations, contractions, shear operators,
rotations by an angle , projections onto a line L through the origin, and reflections across a line L
through the origin. In 3, linear operators can geometrically represent a projection onto or reflection
across a plane  through the origin, or a line L through the origin.
If T1, T2 : n  m are linear transformations, and k  , then we T1  T2, T1  T2, and kT1 as
linear transformations, also from n to m, with actions given by: T1  T2 v  T1v  T2v,
T1  T2 v  T1v  T2v, and kT1 v  kT1v.
Analogously, if A and B are both m  n matrices, and k  , then we can define A  B, A  B, and kA
as m  n matrices with entries given by:

A  B i,j  A i,j  B i,j, A  B i,j  A i,j  B i,j, and kA i,j  kA i,j.

If T1 : n  k and T2 : k  m are linear transformations, the composition T2  T1 : n  m is
a linear transformation, with action given by T2  T1 v  T2T1v for all v  n.
If A is an m  k matrix, and B  c1 c2 . . . cn is a k  n, then we can construct the m  n matrix
product AB  Ac1 Ac2 . . . Acn .

Under compatible conditions, matrix arithmetic enjoys the following properties: A  B  B  A,
A  B  C  A  B  C, r  sA  rA  sA, rA  B  rA  rB, rsA  rsA  srA,
A  BC  AC  BC, AC  D  AC  AD, rBC  rBC  BrC, and ABC  ABC.
However, matrix multiplication, in general, is not commutative.
If T1 : n  k and T2 : k  m are linear transformations, then T2  T1   T2 T1 .
If T : n  m is a linear transformation, and B  v1, v2, . . . , vn is a basis for n, and if v  n

is written (uniquely) as v  c1v1  c2v2   cnvn, then:
Tv  c1Tv1   c2Tv2    cnTvn .

The kernel of T is: kerT  v  n | Tv  0m  nullspaceT  n.
The range of T is: rangeT  w  m |w  Tv for some v  n  colspaceT  m.
We call dimkerT the nullity of T, and dimrangeT the rank of T.
We say that T is full rank if rankT  minm, n.
The Dimension Theorem for Linear Transformations states that:

rankT  nullityT  n  dim domain of T .

A linear transformation T : n  m is one-to-one if Tv1   Tv2  whenever v1  v2.
T is one-to-one or injective if and only if kerT  0n .
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T is onto or surjective if and only if rangeT  m, or equivalently, rankT  m.
T cannot be one-to-one if n  m, and T cannot be onto if n  m.
Depending on m and n, the property of an m  n matrix being of full rank is equivalent to the property
of being one-to-one, onto, or both.
T is invertible or bijective if and only if T is both one-to-one and onto.
If T : n  m is invertible, then n  m. In other words, T must be an operator.
A linear operator T : n  n is invertible if and only if we can find another linear operator, denoted
by T 1 : n  n, the inverse of T, such that T 1 has the properties: T  T 1  T 1  T  In .
Analogously, an n  n matrix A is invertible if the corresponding operator T is invertible. This is true if
and only if we can find another n  n matrix B such that AB  In  BA. We call B the inverse of A,
and write B  A1. The inverse of A is unique.
A linear operator T : n  n is invertible if and only if A  T is an invertible n  n matrix. If this
is the case, then T 1   A1  T1.
An n  n matrix A is invertible if and only if the rref of A |In  contains In in the first n columns, in
which case, A1 will be found in the last n columns of the rref.
An n  n matrix A is invertible if and only if A can be expressed as a product of elementary matrices.

If A is an invertible n  n matrix, then the system Ax  b has exactly one solution for any n  1 matrix
b, namely x  A1b. More generally, if C is any n  m matrix, then the matrix equation AB  C has
exactly one solution for B, namely B  A1C.
The Really Big Theorem on Invertibility gives us 22 conditions that are equivalent to an operator T
and its matrix A being invertible.
If T1, T2 : n  n are both invertible operators, then T2  T1 is also invertible, and furthermore:
T2  T1 1  T1 1  T2 1. Analogously, if A and B are invertible n  n matrices, then AB is also
invertible, and furthermore: AB1  B1A1. Conversely, if T1, T2 : n  n are operators and
T2  T1 is invertible, then both T1 and T2 are also invertible.
An n  n matrix D  d i,j  is called diagonal if all the entries that are not on the main diagonal are 0,
that is, d i,j  0 if i  j. We write D in shorthand as D  Diagd1, d2, . . . , dn , where d1, d2, . . . , dn
are the diagonal entries of D.
An n  n matrix U is called upper triangular if all the entries below the main diagonal are 0, that is,
U i,j  0 if i  j. Similarly, an n  n matrix L is called lower triangular if all the entries above the
main diagonal are 0, that is, L i,j  0 if i  j. If A and B are n  n upper triangular matrices and c is
any scalar, then A  B, A  B, cA and AB are also n  n upper triangular matrices. Similar closure
properties hold for the set of lower triangular matrices.
Let A be an m  n matrix. The transpose of A, denoted A, is the n  m matrix whose entries are given
by A  i,j  a j,i. In particular, the transpose of a row matrix is a column matrix, and the transpose of a
column matrix is a row matrix.
Suppose that A and B are m  k matrices, C is a k  n matrix, and r is any scalar. Then: A   A,
A  B  A  B, kA  kA, and BC  CB. Furthermore, if A is a square matrix, then A
is invertible if and only if A is invertible, in which case: A 1  A1 .
Let A be an n  n matrix. We say that A is symmetric if A  A. Suppose A and B are symmetric n  n
matrices and c is any scalar. Then: A, A  B, A  B and cA are also symmetric. If A is invertible, then
A1 is also symmetric. The product AB is symmetric if and only if AB  BA.
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Chapter 3
From the Real to the Abstract:

General Vector Spaces
We began our study of Linear Algebra by constructing Euclidean Spaces and studying linear
combinations and the Span of a set of vectors. From this, we defined subspaces of a Euclidean space
and saw how each subspace can be described as the Span of a basis consisting of a finite set of vectors.
Aside from Spanning the subspace, a basis is also required to be linearly independent. We saw that
any two bases for the same subspace must contain exactly the same number of elements, called the
dimension of the subspace.
In Chapter 2, we saw how a linear transformation T : n  m maps one Euclidean Space into
another, and that such a transformation can be described using its m  n standard matrix T. We saw
how the nullspace of these matrices corresponds to the kernel of the linear transformation it
represents, and similarly that the columnspace corresponds to the range. We were able to determine if
such a linear transformation is one-to-one, onto, both or neither, and how to find the matrix of the
inverse transformation when T is invertible.
Now we begin the process of generalizing all these concepts.
We will see that many objects that we are already familiar with from Algebra and Calculus enjoy the
same properties as Euclidean spaces, and as such, we will refer to them as general or abstract vector
spaces. Analogously, we will define the concepts of linear combinations, Span, linear independence,
subspaces, basis and dimension, as we did in Chapter 1. One of the most useful examples of an
abstract vector space would be the space of all continuous functions on an interval I, denoted CI. In
this case, a vector is a continuous function, and so we can visualize them graphically:
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Four Vectors From C,

We will generalize the concept of a linear transformation that will map one vector space to another
vector space. We will see that many (but not all) operations from Algebra as well as Calculus are linear
transformations. We will also construct coordinates with respect to a basis for a finite-dimensional
vector space, and use these coordinates in order to construct matrices for linear transformations and
study their attributes and properties, as we did in Chapter 2.
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3.1 Axioms for a Vector Space

Although they are the most important example, Euclidean spaces are not the only kind of vector spaces.
We will now generalize the central subject of Linear Algebra:

Definition — The Ten Axioms of an Abstract Vector Space:
A vector space V,, is a non-empty set V, together with two operations:
 (vector addition), and  (scalar multiplication), such that:
for all u, v and w  V and all r, s  , V,, satisfies:

1. The Closure Property of Vector Addition:
u v  V.

2. The Closure Property of Scalar Multiplication:
r  u  V.

3. The Commutative Property of Vector Addition:
u v  v u.

4. The Associative Property of Vector Addition:
u v  w  u v w.

5. The Existence of a Zero Vector:

There exists 0V  V, such that: 0V  v  v  v 0V.

6. The Existence of Additive Inverses:

There exists  v  V, such that: v v  0V  v  v.

7. The Distributive Property of Ordinary Addition over Scalar Multiplication:

r  s  v  r  v  s  v.

8. The Distributive Property of Vector Addition over Scalar Multiplication:

r  u v  r  u  r  v.

9. The Associative Property of Scalar Multiplication:
r  s  v  rs  v  s  r  v.

10. The Unitary Property of Scalar Multiplication:
1  v  v.

Notice that we need three objects to define a vector space: 1 a non-empty set of vectors V, 2 a rule
for vector addition  that tells us how to add two vectors to get another vector, and 3 a rule for
scalar multiplication  that tells us how to multiply a real number with a vector to get another vector.
Also, note that the addition on the left side of Axiom 7 is the ordinary addition of real numbers, and
similarly the middle multiplication in Axiom 9 is ordinary multiplication of real numbers. We also
abbreviate the phrase “additive inverse” of a vector as its negative.
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Clearly, all Euclidean spaces n satisfy these Ten Axioms, as seen in our Theorem in Section 1.1.
Although we put a “circle” around the vector addition and scalar multiplication to distinguish them
from ordinary addition and multiplication of real numbers, with practice and further experience, we
will be shedding these circles and just write u  v and k  vwhen the context indicates which operation
we are using.
Let us look at some examples of Vector Spaces that you are already familiar with from your study of
Algebra and Calculus:

Polynomial Spaces

Consider the set of all polynomials in one variable with real coefficients and degree at most n. This set
is denoted by:

n   px  a0  a1x  a2x2   anxn | a0, a1, a2, . . . , an   .

We will define the vector addition of two polynomials in the usual way we add polynomials in ordinary
algebra, and similarly with scalar multiplication. Thus, for example, if px  3  5x  7x2 and
qx  4  3x2  2, then:

px  qx  3  5x  7x2   4  3x2   7  5x  4x2, and

3  px  33  5x  7x2   9  15x  21x2.

It is easy to see that these operations are closed, and that addition is both commutative and associative.
The zero vector for this space is:

0n  zx  0  0x   0xn

i.e., the zero polynomial. Consequently, the negative of a polynomial is:

 px  a0  a1x  a2x2   anxn

with the desired property in Axiom 6. The rest of the axioms are also obviously satisfied.

Functions Spaces

If I is a non-empty interval on the real number line, we denote the set of all functions that are defined
on I as:

FI  f x | f a is defined for all a  I .

For example, f x  x  2 and g x  lnx  F0,, but h x  1
x  1 is not, because it is

undefined at a  1. Notice also that all polynomials are members of FI for all intervals I, since
polynomials are defined for all real numbers. We will define vector addition and scalar multiplication in
the natural way, as sums of two functions and the product of a real constant with a function as we do in
algebra:
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 f  g x  f x  g x, and
k  f x  k  f x.

The zero vector is the function zx that outputs the value 0 for all a  I. We call this the zero
function, but note that its graph is exactly the same as the graph of the zero polynomial, and so we use
the same symbol zx for both. The negative of a function is the function that outputs as its value of
f a when we input x  a. Again, all the Axioms for a vector space are easily verified.

How Can We Visualize Vectors?

In Chapter 1, we saw that vectors in 2 can be visualized or represented as arrows on the Cartesian
plane, whereas vectors in 3 can be visualized as arrows in Cartesian space. Let us bring back the
diagrams from Chapter 1 that demonstrate these representations:
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Unfortunately, it is not possible to visualize vectors in 4 or in any other Euclidean space of higher
dimension, at least not in a simple way like our arrows above. The same can be said about vectors from
more general vector spaces. It is sometimes possible to visualize them, while sometimes it is not.
The vectors from n can certainly be visualized because we know how to graph polynomials, or at
least some simple ones. For example, in 3, let us consider the polynomials:
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px  x  2x  1x  3,
qx  3x2, and
rx  2x  5.

We show these three vectors below, along with the zero polynomial zx:
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Similarly, we can show the functions:

f x  ex/4  3, g x  2 sin 1
2 x , and

h x  1
10 x  5x  4x  1,

which are vectors from F,, in the graphs below, along with the zero function zx:
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Notice that hx is also a vector from 3. In the same way, zx is also the zero function in all function
spaces FI. This is a major advantage of abstract vector spaces, especially function spaces: there is no
restriction to the number of spaces that a particular function can belong to. This does not happen to
vectors from Euclidean spaces: the vector 3,7 is from 2, but it is not a vector from 3. On the
other hand, hx above is a member of 3 and 4 and any n with n  3. In general, all polynomials
px are members of all function spaces, such as F,, F, 3, where we restrict the
domain of px, and in fact any FI where I is any interval of any type, since px is defined for all real
numbers. To simplify our notation, we will use the symbol zx to denote the zero function in all these
function spaces, regardless of the domain.
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Matrix Spaces

Our old friends, the set of all matrices of the same size, also form their own vector spaces. We denote
them by the symbol:

Matm, n  A | A is an m  n matrix .

We add two matrices in the same way as in Section 2.2, and similarly multiply a matrix by a scalar in
the usual way. We can easily see that the zero matrix 0mn is the zero vector of this space, and we
know how to construct the negative of a matrix as before. We can verify that all the Axioms for a
vector space are satisfied, as we saw them proved in the properties in Section 2.4. As far as visualizing
these vectors is concerned, this would again not be easy for matrices with more than three entries. In
general, all we can do is stare at the entries, as illustrated below:

A 
3 5 2
1 4 7

A Single Vector A from Mat2, 3

The Smallest Example

The definition of a vector space requires that V is not empty, so it has at least one vector. Is it possible
for V to have exactly one member? Axiom 5 requires that this member be the zero vector 0V. Now,
vector addition and scalar multiplication have to be closed, so we are forced to define:

0V  0V  0V, and r  0V  0V for all r  ,

both of which make perfect sense from our experience with the zero vectors of n. We must also
impose that 0V  0V, which again makes perfect sense. We can now easily check that the rest of the
Axioms are also satisfied. Thus, we have a vector space V  0V with exactly one member.
On the other hand, you will see in the Exercises that if you have a vector space with at least two
vectors, then you will have an infinite number of vectors.

We’re Not in Kansas Anymore

Let us take a look at a vector space that will challenge your idea of the word “natural.” Consider the
set:

  x | x  , andx  0 ,

the set of all positive real numbers. We can thus visualize this entire space as an interval:
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The Vector Space  (opening right)
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To avoid confusion with scalars, we will put an arrow on top of our vectors, as is our usual notation.
We will define vector addition by: x y  xy (ordinary multiplication).

We will define scalar multiplication by: r  x  xr  er lnx (ordinary exponentiation).
We note that the second formula is often derived in a Calculus course, and is needed in case r is an
irrational number. Thus, for example:

3 5  3  5  15,

3  5  53  125, and

 1
3  8  81/3  1

2 .

Clearly, these are strange, and you might say, unnatural ways to define “vector addition” and “scalar
multiplication.” However, notice that both operations yield positive numbers, so they are certainly
closed. Also, “addition” is both commutative and associative, because ordinary multiplication satisfies
both properties. Now we have to scratch our heads a little and think about the zero vector. Notice that
the number 0 is not a member of . However, the correct question to ask is this: Can we find a
positive number, let us call it z, so that:

z y  zy  y

for all positive numbers y? This number is 1! Thus: 0  1.
How about the negative of a vector? Again, the negative real numbers are not in . However, the
correct question to ask is this: If x is a positive number, can find another positive number y such that:

x y  xy  1  0?

Solving this equation, we get y  1/x, which is again positive. Thus: x  1/x.

Axiom 6 is therefore satisfied. For example: 5  1
5 .

This might look like a completely ridiculous equation, but remember that these are no longer numbers

but vectors. This says that the additive inverse of the vector 5 is the vector 1
5 . We can check that:

5 1
5  5 1

5  1  0 .

Let us check the last four Axioms:

r  s  x  xrs  xrxs  xr  xs  r  x  s  x

r  x y  r  xy  xyr  xryr  xr  yr  r  x  r  y

rs  x  xrs  xs r  r  xs  r  s  x, and

1  x  x1  x.

Thus  is a vector space under multiplication and exponentiation. This example shows that
sometimes you have to be open minded to see things as they are, both in life as well as in mathematics.
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Additional Properties of Vector Spaces

The Ten Axioms for a vector space allow us to prove other general properties that are true for any
vector space. These properties might give one a sense of déjà vu, but we remind you that we proved
them only for the Euclidean Spaces. Let us begin with:

Theorem — The Uniqueness of the Zero Vector:
The zero vector 0V of any vector space V,, is unique. This means that if z  V is
another vector that satisfies: z v  v for all v  V, then we must have: z  0V.

Proof: We are allowed to use only the Ten Axioms for a vector space and we must completely forget
about Euclidean spaces as we prove this Theorem.
Suppose that z  V is a vector with the magical property given above. This property also holds if we
substitute v  0V in both sides of the equation. Thus, we get: z 0V  0V.

But since 0V is the zero vector, by Axiom 5, we also have: z 0V  z.

Thus we must have: z  z 0V  0V. Notice that we only used Axiom 5 in this proof.

Similarly, we will leave the proof of the following as an Exercise:

Theorem — The Uniqueness of Additive Inverses:
The additive inverse v of any vector v  V in a vector space V,, is unique. This
means that if n  V is another vector that satisfies: v n  0V, then we must have: n  v.
As a further consequence: v  1  v.

We have the usual bonus properties of the zero vector and multiplication by the scalar 0:

Theorem — The Multiplicative Properties of Zeroes:
Let V,, be a vector space, with zero vector 0V. Then we have the following properties:
1. The Multiplicative Property of the Scalar Zero:

0  v  0V for all v  V.

2. The Multiplicative Property of the Zero Vector:

r  0V  0V for all r  .

3. The Zero-Factors Theorem: For all v  V and r  :

r  v  0V if and only if either r  0 or v  0V.

Notice that this Zero-Factors Theorem generalizes that in Chapters Zero and 1. Also in Chapter 1, we
were able to define the notion of parallel vectors in n by generalizing the picture in 2 and 3: two
vectors are parallel to each other if one of them is a scalar multiple of the other. Consequently, the zero
vector 0n will be parallel to all vectors. This further motivates us to generalize this concept to any
vector space:
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Definition — Axiom for Parallel Vectors:
Let V,, be a vector space, and let u, v  V. We say that u and v are parallel to each
other if there exists either a   or b   such that:

u  a  v or v  b  u.

Consequently, this means that 0V is parallel to all vectors v  V, since 0V  0  v.

Example: Consider the polynomials px  2x2  4x  6 and qx  3x2  6x  9 from 2.
Note that we can factor them completely as:

px  2x  1x  3, and qx  3x  1x  3.

Thus, qx   3
2 px. We see the graphs of these quadratics below:
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Parallel Vectors px  2x2  4x  6, and qx  3x2  6x  9

We can see from these pictures that the meaning of “parallel vectors” in 2 (or in other function
spaces, for that matter), is not the same as it is in basic algebra. These two functions are not vertical (or
horizontal) shifts of each other. We do see, though, that one is a dilation or contraction of the other
(along with a reflection across the x axis). In particular, these quadratic polynomials have exactly the
same roots, and so they must be scalar multiples of each other.

Things Don’t Always Work Out

It is easy to get carried away and start believing that we can define vector addition and scalar
multiplication in almost any way possible and still satisfy the Ten Axioms of a vector space. Of course,
this is not true, otherwise vector spaces will not be special.

Example: Suppose V  Mat2, 3, with vector addition defined as matrix addition, as before.
However, we will define scalar multiplication by:

r  A  r 
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3


ra1,1 ra1,2 ra1,3

a2,1 a2,2 a2,3
,

for all r  , that is, we will only multiply the entries in the first row by r. Axioms 1 through 6 are
easily seen to be satisfied, since aside from Axiom 2 (which is clearly satisfied), these 6 Axioms only
have to do with matrix addition. Now, the last four Axioms are a bit trickier. Axiom 10 looks easy to
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check: 1  A  A, is clearly satisfied. Now let’s check Axiom 7: r  s  A  r  A  s  A for
all r, s   and all A  Mat2, 3.
The left side is:

r  s  A  r  s 
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3


r  sa1,1 r  sa1,2 r  sa1,3

a2,1 a2,2 a2,3
.

The right side is:

r  A  s  A 
ra1,1 ra1,2 ra1,3

a2,1 a2,2 a2,3


sa1,1 sa1,2 sa1,3

a2,1 a2,2 a2,3


r  sa1,1 r  sa1,2 r  sa1,3

2a2,1 2a2,2 2a2,3
.

Thus, Axiom 7 is not satisfied by all matrices. Therefore, this is not a vector space.

We also want to note that if V,, does not contain a zero vector 0V, then automatically, there is no
such thing as the additive inverse v of a vector, because the equation v  v  0V does not make
any sense.

Example: Suppose we let V  2, but with addition defined by:

x1, y1   x2, y2   2x1  2x2, y1  y2 ,

and scalar multiplication defined as usual. Let us see if this space contains a zero vector. We cannot
automatically assume that the only possible choice for the zero vector is 02  0, 0, since our addition
is now different. Thus, let us suppose that: 0V  a, b, for some a, b  .
If x, y is any vector in 2, we must satisfy the equations:

x, y  a, b  x, y  a, b  x, y.

But then: x, y  a, b  2x  2a, 2y  2b  a, b  x, y.
Thus, we need to satisfy the two equations:

2x  2a  x, and 2y  2b  y, so we get: a  x/2, and b  y/2.

This means that if we pick two different vectors x1, y1  and x2, y2 , then we will need two different
solutions to a, b. This means that there is no single vector a, b that can satisfy the equation
x, y  a, b  x, y for all x, y. We saw in the previous sub-section that the zero vector, if it
exists, has to be unique, and thus V does not contain a zero vector. Consequently, we cannot speak of
an additive inverse v for a vector v, either. 

Note: Sometimes, we try to construct new vectors spaces by changing only the vector addition or the
scalar multiplication of a known vector space V,,. If we only change the vector addition, then
Axioms 2, 9 and 10 are still valid, since these only involve scalar multiplication. Thus, for the previous
Example, we do not need to check these three Axioms. If we only change scalar multiplication, then
Axioms 1, 3, 4, 5 and 6 are still valid, since these only involve vector addition. Axioms 7 and 8 will
always have to be re-checked if either addition or scalar multiplication is changed.
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3.1 Section Summary

We say that V,, is a vector space if V is a non-empty set, and the operations  and  satisfy the
Ten Axioms for a vector space: for all u, v and w  V and all r, s  , V,, satisfies:
1. u v  V; 2. r  u  V; 3. u v  v u; 4. u v  w  u v w;
5. There exists 0V  V, such that: 0V  v  v  v 0V;
6. There exists v  V such that: v v  0V  v  v;
7. r  s  v  r  v  s  v; 8. r  u v  r  u  r  v;
9. r  s  v  s  r  v  rs  v; 10. 1  v  v.
Some examples of abstract vector spaces include:
 polynomials spaces, n, consisting of polynomials of degree at most n;
 function spaces, FI, consisting of functions defined on an interval I;
 the set of all m  n matrices Matm, n;

all under their naturally defined vector addition and scalar multiplication.

The zero vector 0V of any vector space V,, is unique. This means that if z  V is another vector
that satisfies z v  v for all v  V then we must have: z  0V.
The additive inverse v of any vector v  V in a vector space V,, is unique. This means that if
n  V is another vector that satisfies v n  0V, then we must have: n  v.

Furthermore, v  1  v.

Let V,, be a vector space, with zero vector 0V, let v  V, and let r  . Then:

1. 0  v  0V. 2. r  0V  0V. 3. r  v  0V if and only if either r  0 or v  0V.
Let V,, be a vector space, and let u, v  V. We say that u and v are parallel to each other if
there exists either a   or b   such that: u  a  v or v  b  u.

Consequently, this means that 0V is parallel to all vectors v  V, since 0V  0  v.

3.1 Exercises

1. Consider the set of all 2  2 diagonal matrices: D2 
d1 0
0 d2

d1, d2   ,

under ordinary matrix addition and scalar multiplication.
a. Prove that D2 is a vector space under these two operations.
b. Consider the set of all n  n diagonal matrices:

Dn 

d1 0  0
0 d2  0
   

0 0  dn

d1, d2, , dn   ,

under ordinary matrix addition and scalar multiplication. Generalize your proof and notation
in (a) to show that Dn is a vector space under these two operations for any n.
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2. Repeat Exercise 1 to show that the set of all 2  2 upper triangular matrices:

U2 
u11 u12

0 u22
u11, u12, u22   ,

is a vector space under ordinary matrix addition and scalar multiplication. Generalize your proof
and notation to show that the set of all n  n upper triangular matrices:

Un 

u11 u12  u1n

0 u22  u2n

   

0 0  unn

u ij  , i  1n, j  in ,

is a vector space under ordinary matrix addition and scalar multiplication.

3. Consider the set of all 2  2 symmetric matrices:

Sym2 
a11 a12

a12 a22
a11, a12, a22   ,

again under ordinary matrix addition and scalar multiplication. (Notice that the entries off the
diagonal are equal.)

a. Show that Sym2 is a vector space under these two operations.
b. Review the properties of the transpose operation and symmetric n  n matrices at the end of

Section 2.9.
c. Use these properties in order to prove that the set of all n  n symmetric matrices:

Symn  A  Matn, n |A  A

is a vector space under ordinary matrix addition and scalar multiplication. Denote the n  n
symmetric matrices by A, B, C etc. instead of explicitly writing the entries of each matrix
like you did in Exercise 1 and 2.

4. We saw that the set:   x | x  , andx  0 is a vector space under the operations:

x y  xy and r  x  xr  er lnx.

Let us construct a new vector space: 2
  x1, x2  | x1, x2  , andx1  0, x2  0 under

the operations: x1, x2   y1, y2   x1y1, x2y2 , and r  x1, x2   x1
r , x2

r .
Show that 2

 is a vector space under these two operations. In the course of checking the Ten
Axioms, you may use the fact that the analogous Axioms have been proven to be true for .

For Exercises 5 to 7: Explain why the following are not vector spaces:

5. The set of non-negative real numbers under ordinary addition and scalar multiplication.

6. The set of integers under ordinary addition and scalar multiplication.

7. The set of all n  n invertible matrices, under the usual matrix addition and scalar multiplication.
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For Exercises 8 to 19: For each of these problems, the vector space V  2 is modified, by
changing the vector addition and/or scalar multiplication. Decide whether or not V is still a vector
space. If it is not a vector space, specify all the Axioms that are violated. Review the Note on p.
278 to save some time if only one of the operations is changed. To make sure that you understand
the indicated vector addition and/or scalar multiplication, do the warm-up computations first and
check your answer before proceeding to check the Ten Axioms.

8. The usual vector addition, but with scalar multiplication changed to: k  x, y  kx, y.
Warm-up: compute 3  5,2.

9. The usual vector addition, but with scalar multiplication defined by: k  x, y  kx,ky.
Warm-up: compute 3  5,2.

10. Change the vector addition to: x1, y1   x2, y2   x1  x2  2, y1  y2  1, but keep the
usual scalar multiplication. Warm-up: compute 7,3  2, 6.

Hint/warning: To determine if 2 has a zero vector under this addition, suppose 0V  a, b, not
necessarily 0, 0. Solve for a and b in the equation that 0V is supposed to satisfy in Axiom 5.
Similarly, what should be the equation that v  x /, y /  should satisfy in Axiom 6?

11. Change the vector addition to: x1, y1   x2, y2   x1  x2, y1  y2 , but keep the usual scalar
multiplication. Warm-up: compute 7,3  2, 6.

12. Change the vector addition to: x1, y1   x2, y2   x1  x2,y1  y2 , but keep the usual
scalar multiplication. Warm-up: compute 7,3  2, 6.

13. Change the vector addition to: x1, y1   x2, y2   x1  y2, x2  y1 , but keep the usual scalar
multiplication. Warm-up: compute 7,3  2, 6.

14. Change both vector addition and scalar multiplication to:

x1, y1   x2, y2   x1  x2, 2y1  2y2 ; k  x, y  kx, 2ky.

Warm-up: compute 7,3  2, 6 and 3  5,2.

15. Change both vector addition and scalar multiplication to:

x1, y1   x2, y2   x1  x2, 2y1  2y2 ; k  x, y  2kx, ky.

Warm-up: compute 7,3  2, 6 and 3  5,2.
Compare this with the previous Exercise.

16. Change both vector addition and scalar multiplication to:

x1, y1   x2, y2   y1  y2, x1  x2 ; k  x, y  ky, kx.

Warm-up: compute 7,3  2, 6 and 3  5,2.

17. Change both vector addition and scalar multiplication to:

x1, y1   x2, y2   x1  x2, y1  y2 ; k  x, y  kx,ky.

Warm-up: compute 7,3  2, 6 and 3  5,2.

18. Change both vector addition and scalar multiplication to:

x1, y1   x2, y2   x1  x2, 0, and k  x, y  kx, 0.

Warm-up: compute 7,3  2, 6 and 3  5,2.
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19. Change both vector addition and scalar multiplication to:

x1, y1   x2, y2   x1  x2  2, y1  y2  3 , and k  x, y  kx  2, ky  3 .

Warm-up: compute 7,3  2, 6 and 3  5,2.

20. Let V be the set of all rational functions, that is, functions of the form: rx  px
qx

,

where px and qx are ordinary polynomials, with no common factor, under the usual addition
of functions and scalar multiplication by a real constant:

p1x
q1x

 p2x
q2x


p1x  q2x  p2x  q1x

q1xq2x
, and k  px

qx


k  px
qx

.

The final answer may be reduced by cancelling out common factors in the numerator and
denominator, as usual. Decide whether or not V is a vector space.

Warm-up: Compute 3
x  3 

2x  24
x2  9

and 3  2x  5
x  3 .

Further Properties of Vector Spaces: For Exercises 21 to 29: Prove the following
properties. You are only allowed to use the Ten Axioms for a Vector Space. You are not allowed
to rely on the coordinates that we have for vectors in n. You may only assume that V,, is
any abstract vector space, with zero vector 0V, r   and v  V, and all Ten Axioms are
satisfied by V,,.

21. Prove The Multiplicative Property of the Scalar Zero: 0  v  0V.
Hint: use the fact that 0  0  0.

22. Which of the Ten Axioms directly implies that 0V  0V  0V?
What does this equation say about 0V?

23. Use the previous Exercise to prove The Multiplicative Property of the Zero Vector:

r  0V  0V.

24. Prove that if r  v  0V, then either r  0 or v  0V.

Hint: Review the similar property from Chapter 1.

25. Use the previous Exercises to give a complete proof of The Zero Factors Theorem:

r  v  0V if and only if either r  0 or v  0V.

26. The Uniqueness of Additive Inverses: Prove that the additive inverse v of any vector v  V in a
vector space V,, is unique. This means that if n  V is another vector that satisfies:

v n  0V,

then we must have: n  v.

27. Use some of the Exercises above to prove that for any vector v  V in a vector space V,,:

 v  1  v.
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28. In the Axiom for Parallel Vectors, prove that if u and v are non-zero vectors from a vector space
V that are parallel to each other, then the a and the b in the definition must both exist and be
non-zero scalars, and furthermore, a  1/b.

29. Prove that if V has at least two distinct vectors, then it has an infinite number of vectors. Hint:
since there are two vectors, one of them, say v, must be non-zero. Use some of the Exercises
above (especially the Zero Factors Theorem) to show that if x  y are real numbers, then
x  v  y  v. Explain why this creates an infinite family of vectors.

30. The Direct Sum of Vector Spaces: Suppose that V,V ,V  and W,W ,W  are two vector
spaces. Note that we distinguish that addition of each space with the corresponding subscript, and
similarly with the scalar multiplication of each space. Let us define the direct sum of V and W as:

V, W  v, w | v  V and w  W .

In other words, V, W consists of all ordered pairs of vectors, where the first vector is from V,
and the second vector is from W. We will define addition and scalar multiplication in V, W by:

v1, w 1   v2, w 2   v1 V v2, w 1 W w 2  and k  v, w  k V v, k W w.

Prove that V, W under the vector addition and scalar multiplication as defined above is a vector
space. Think carefully about the zero vector and additive inverse in V, W.
By induction, if U1 through Um are vector spaces with their corresponding vector additions and
scalar multiplications, we can construct the vector space:

U1, U2,  , Um   u1, u2,  , um  | ui  U i for i  1m

under the corresponding vector addition and scalar multiplication.
In particular, if n is a positive integer, we can define:

V n  V, V,  , V ,

in the same way that we construct the Euclidean space n.

31. Vector Spaces of Linear Transformations: Consider the set of all linear transformations
T : n  m, denoted:

Hom n, m  T : n  m |T is a linear transformation .

This space denotes the set of all vector space homomorphisms from n to m.
Define vector addition as:

T1  T2 : n  m is the linear transformation with action:

T1  T2 v  T1v  T2v,

where the addition on the right is the addition in m (i.e. this is the definition of T1  T2 from
Chapter 2). Similarly, define scalar multiplication as:

k  T : n  m is the linear transformation with action:

k  Tv  k  Tv,

where the scalar multiplication on the right is the scalar multiplication in m (again, this is the
definition of k  T from Chapter 2). Prove that Hom n, m forms a vector space under these
two operations.
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3.2 Linearity Properties for Finite Sets of Vectors

Let us now proceed with generalizing our fundamental constructions from Chapter 1 to abstract vector
spaces. We begin with the two most important constructions:

Linear Combinations and Spans of Finite Sets

As with ordinary vectors from n-space, we can generalize the concept of a linear combination and the
Span of a set of vectors from any vector space. We begin by considering only finite sets of vectors:

Definition: Let S  v1, v2, . . . , vn be a set of vectors from a vector space V,,, and
let c1, c2, . . . , cn  . Then, a linear combination of the vectors v1, v2, . . . , vn with
coefficients c1, c2, . . . , cn is an expression of the form:

c1  v1   c2  v2    cn  vn .

Similarly, the Span of the set of vectors S  v1, v2, . . . , vn is the set of all possible linear
combinations of these vectors:

SpanS  Spanv1, v2, . . . , vn

  c1  v1   c2  v2    cn  vn  | c1, c2, . . . , cn  .

If it is clear that we understand the scalar multiplication and addition in V, we simply write:

c1v1  c2v2   cnvn

for the linear combination, and similarly use this expression when defining Spans.
Unfortunately, in general, the concept of a Span of even a small set of vectors is an abstract concept,
and often cannot be visualized. Let us see some easily grasped examples.

Example: The vector space n consists of all polynomials of degree at most n, and therefore every
member of n can be written as:

c0  c1x  c2x2   cnxn

 c0  1  c1  x  c2  x2   cn  xn.

Thus, every polynomial of degree at most n is a linear combination of the monomials 1, x, x2, . . . , xn.
Therefore, we can write:

n  Span1, x, x2, . . . , xn. 

We can extrapolate from this Example that many vector spaces can be described as the Span of a set of
vectors. We will be seeing more of this in the next two Sections.

Example: Consider 5  px  c0  c1x  c2x2   c5x5 |c0, c1, c2, . . . , c5  .
We can form:
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Span1, x2, x4  px  c0  c2x2  c4x4 |c0, c2, c4  ,

which we should recognize as the set of all even polynomials of 5, that is, those polynomials px of
5 that satisfy px  px. Similarly, we can construct:

Spanx, x3, x5  px  c1x  c3x3  c5x5 |c1, c3, c5  ,

as the set of all odd polynomials of 5, that is, those polynomials px that satisfy px  px. 

Membership in A Span

In Chapter 1, we determined whether or not a particular vector b is a member of SpanS for some set
of vectors S from some Euclidean space n. We can certainly ask a similar question if S is a set of
vectors from some abstract vector space V. Unfortunately, testing for membership in SpanS can be a
tricky question. Let us begin by looking at Spans from polynomial spaces n. We will first need the
following old and important Theorem:

Theorem — The Fundamental Theorem of Algebra:
Every non-constant polynomial px (that is, of degree n  1), with complex (or possibly
real) coefficients, has exactly n complex roots, counting multiplicities.

This should be familiar from Precalculus, where we see, for example, that a cubic polynomial has three
roots, counting multiplicities, and can thus be factored into three linear factors. For example, if:

px  2x3  13x2  22x  105
we have the factorization:

px  2x  5x  3x  7

(which one can check to be correct by expanding). Thus, the roots are x  5/2, 3 and 7. Of course,
some cubics have nasty irrational roots, imaginary roots, or repeated roots.

The Fundamental Theorem of Algebra has the following consequence:

Theorem — Equality of Polynomials: Suppose that:

px  c0  c1x  c2x2   cnxn and qx  d0  d1x  d2x2   dnxn.

Then, as functions, px  qx if and only if c0  d0, c1  d1, , cn  dn.
Consequently:

px  c0  c1x  c2x2   cnxn  zx,
the zero polynomial, if and only if c0  0, c1  0, , cn  0.

Note: We say that px  qx as functions if the values of the two functions agree for all real
numbers a  , that is:

pa  qa for all a  .

The Theorem above seems completely obvious, but this is far from the truth.
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Proof:  Only the converse is obvious. If px and qx have exactly the same coefficients as
polynomials, then if we input the number a into either polynomial, we get the same value, that is,
pa  qa for all a  .
 Suppose px and qx are as written in the statement of the Theorem, and pa  qa for all
real numbers a. We have to show that the coefficients of px and qx are exactly the same.
Subtracting the two equations, we get:

px  qx  c0  c1x  c2x2   cnxn   d0  d1x  d2x2   dnxn 

 c0  d0   c1  d1 x  c2  d2 x2   cn  dn xn

Suppose we call rx the polynomial rx  px  qx. Since pa  qa for all a  ,
ra  pa  qa  0 for all a  . Thus rx has an infinite number of roots. Let us now show
that all the coefficients c i must be the same as d i, starting with the highest degree. Suppose cn  dn.
Then rx has degree n, and by the Fundamental Theorem of Algebra, rx has exactly n roots. This
contradicts the fact that rx has an infinite number of roots. Thus cn  dn. Now that we know that
cn  dn  0, we can apply the same reasoning to cn1 and dn1: if these two coefficients were different,
rx will have degree n  1 and thus exactly n  1 roots, leading to the same contradiction. Continuing
thus, we can see that c1  d1, and finally, c0  d0. 

Now, we are ready to determine if a polynomial is a member of the Span of a set of polynomials. We
will be able to exploit the Gauss-Jordan Algorithm, as before, for this type of problem.

Example: Let S  3  x  2x3, 5  3x  4x2, 2  x  x3  3. Consider:

px  16  3x  8x2  x3  3.

Let us try to decide whether or not px is a member of SpanS. To do this, we have to find
coefficients c1, c2 and c3, if possible, such that:

c13  x  2x3   c25  3x  4x2   c32  x  x3   16  3x  8x2  x3.

Expanding the left side and collecting like terms, we get:

3c1  c1x  2c1x3  5c2  3c2x  4c2x2  2c3  c3x  c3x3

 3c1  5c2  2c3  c1x  3c2x  c3x  4c2x2  2c1x3  c3x3

 3c1  5c2  2c3  c1  3c2  c3 x  4c2x2  2c1  c3 x3.

According to the Equality of Polynomials Theorem, we have to satisfy the system of (linear!) equations:

3c1  5c2  2c3  16
c1  3c2  c3  3

4c2  8
2c1  c3  1

As in Chapter 1, we can form the corresponding augmented matrix:
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3 5 2 | 16
1 3 1 | 3

0 4 0 | 8
2 0 1 | 1

with rref:

1 0 0 | 4
0 1 0 | 2
0 0 1 | 7
0 0 0 | 0

.

Thus, there is exactly one solution:

c1  4, c2  2, and c3  7.
We can indeed check that:

43  x  2x3   25  3x  4x2   72  x  x3   16  3x  8x2  x3  px.

Thus, px is a member of SpanS. 

Linear Independence of a Finite Set of Vectors

The concept of the linear dependence or independence of a finite set of vectors is virtually identical to
the concept from Chapter 1, with only the notation needing modification:

Definition: Let S  v1, v2,  , vn be a set of vectors from a vector space V,,. We
say that S is linearly independent if the only solution to the equation:

c1  v1   c2  v2    cn  vn   0V

is the trivial solution c1  0, c2  0, . . . , cn  0. As before, we will refer to this equation
as a dependence test equation and sometimes just say “independent” to mean linearly
independent. The opposite of being linearly independent is being linearly dependent, which
means there is a non-trivial solution to the dependence test equation, that is, where at least
one c i is non-zero.
In particular, if S   f1x, f2x,  , fnx is a subset of FI for some interval I, then S is
linearly independent if the only solution to the dependence test equation:

c1 f1x  c2 f2x   cn fnx  zx, for all x  I,

is the trivial solution c1  0, c2  0, . . . , cn  0. We note that it may be possible to satisfy
the equation above for some x  I using non-zero coefficients c i, but the equation needs to
be satisfied for all x  I.

Since we are no longer dealing with Euclidean n-spaces, we do not have the luxury of using the
coordinates of a vector or a linear combination in order to solve for the coefficients c1 through cn.
However, as we shall see, there are often ideas from Algebra, Trigonometry or Calculus that will
enable us to show that only the trivial solution exists, especially in the case of sets of functions.

Example: Suppose that S   sinx, cosx, sin2x, a set of three vectors from F,.
Although we have the famous double angle formula:

sin2x  2 sinxcosx,

the right side is not a linear combination of sinx and cosx, and therefore this formula is irrelevant.
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Let us consider the dependence test equation:

c1 sinx  c2 cosx  c3 sin2x  zx.

Recall that zx, the function that is identically zero for any value of x, is the zero vector 0V for
V  F,. Let us see if there is a non-trivial solution to this dependence test equation. Since this
equation must be true for all values of x, our strategy to solve this equation is to substitute some
convenient values for x. For example, suppose x  0. Since sin0  0, and cos0  1, we get:
0  c2  0  0.
Thus, c2  0 is the only possible solution to c2. Now we are down to solving:

c1 sinx  c3 sin2x  zx.

This time, let us substitute x  /2. Since sin/2  1 and sin  0, we get: c1  0  0.
Thus, c1  0, and we are left with c3 sin2x  zx. Since sin2x is not the zero function, we have
c3  0 by the Zero-Factors Theorem. Thus, c1  c2  c3  0, so S is linearly independent.

The last step in our proof leads us to generalize a similar statement from Chapter 1:

Theorem: Let V,, be a vector space, and v  V. Then: S  v is linearly
independent if and only if v  0V.

Similarly, we have the following generalization regarding sets of two vectors:

Theorem: Let V,, be a vector space, and v1, v2  V. Then: S  v1, v2 is linearly
independent if and only if v1 and v2 are not parallel to each other.

We will leave the proof of both Theorems as Exercises. As before, once we have three or more vectors,
it becomes a tricky problem to determine whether or not a set of vectors is linearly independent. We
can generalize the last Theorem, though, in the following, whose proof we also leave as an Exercise:

Theorem: Let S  v1, v2, . . . , vn be a set of vectors from a vector space V,,. Then:
S is linearly dependent if and only if at least one vector in S (which, without loss of
generality, we can set to be v1 is a linear combination of the other vectors of S, that is:

v1  c2  v2   c3  v3    cn  vn ,
for some scalars c2, c3, , cn  .

The technique of substituting particular values of x from the common domain I of the functions in S, is
very useful in determining whether or not S is linearly independent. Let us look at another set
containing trigonometric functions and see a different strategy:

Example: Let us continue with the same space V  F,, and consider:

S   cos2x, sin2x, cos2x.

We know the Double Angle Formula: cos2x  cos2x  sin2x, and thus:
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1  cos2x  1  sin2x  1  cos2x  zx

is a true equation with non-zero coefficients. In fact, the Double Angle Formula itself tells us that
cos2x is a linear combination of sin2x and cos2x, and thus S is linearly dependent by the
Theorem above.

Let us turn now to an Example involving polynomials. Once again, the Fundamental Theorem of
Algebra will be useful:

Example: Let S  7x4  2x3  5x2  3x  2, 2x3  x2  3x  5, 2x  7, 3. A linear combination of
the vectors of S looks like:

c17x4  9x3  5x2  3x  2  c22x3  x2  3x  5  c32x  7  k43
 7c1x4  9c1x3  5c1x2  3c1x  2c1  2c2x3  c2x2  3c2x  5c2  2c3x  7c3  3c4

 7c1x4  9c1  2c2 x3  5c1  c2 x2  2c3  3c1  3c2 x  7c3  3c4  2c1  5c2

Like our earlier Example, this polynomial is zx if and only if all of the coefficients of the individual
monomials are 0. From the last line above where we collected common terms, we must have:

7c1  0
9c1  2c2  0
5c1  c2  0

3c1  3c2  2c3  0
2c1  5c2  7c3  3c4  0

From the first equation, we immediately see that c1  0. But since this is the case, we also get c2  0
using the second and third equations. But now that c1 and c2 are both 0, we next get c3  0 from the
fourth equation, and finally c4  0 from the fifth equation. Thus, all the coefficients must be 0, and S
is linearly independent.
Now that we know that we can only have the trivial linear combination in order to produce zx let us
see if we can show this without expanding the linear combination:

c17x4  9x3  5x2  3x  2  c22x3  x2  3x  5  c32x  7  c43.

The key observation here is that the polynomials are in the order of decreasing degrees. The only
polynomial that contributes x4 is the first polynomial, and thus to make the coefficient of x4 zero, we
must have c1  0. Now we are left with a shorter linear combination:

c22x3  x2  3x  5  c32x  7  c43

By the same reasoning as before, we must have c2  0, because the first polynomial above is the only
one that contributes x3. Proceeding thus, we also get c3  0, and finally c4  0. 

Clearly, this reasoning works as long as all the polynomials are of different degrees:

Theorem: Suppose S  p1x, p2x, . . . , pkx is a set of polynomials from n with
distinct degrees. Then S is linearly independent. In particular, the set 1, x, x2,  , xn is
linearly independent.

Section 3.2 Linearity Properties for Finite Sets of Vectors 289



Now let us see an Example where Calculus can be useful:

Example: Let us go back to the space V  F,, this time with S  ex, e3x, e7x. Let us see
whether or not this set is linearly independent. We set up the dependence test equation:

c1ex  c2e3x  c3e7x  zx

and determine if this has a non-trivial solution. Let us play a little trick: divide both sides of the
equation above by ex, which is allowable because ex is strictly positive for any real number x. We get:

c1  c2e2x  c3e6x  zx/ex  zx.

Now, we know that e2x and e6x both approach 0 as x approaches , that is:

lim
x  

e2x  0  lim
x  

e6x.

From this, we get:
lim

x 
c1  c2e2x  c3e6x   lim

x 
zx, and thus:

c1  0  0  0.
So we get c1  0. Similarly, by dividing both sides of the new equation:

c2e2x  c3e6x  zx

by e2x and taking the same limit, we get c2  0. Finally, since e6x is obviously not the zero vector, we
must have c3  0. Thus this set S is linearly independent.

It is easy to see that we can repeat this argument for any set of functions of the form ekx, so we leave
the proof of the following as an Exercise:

Theorem: Suppose S  ek1x, ek2x, . . . , eknx, where k1  k2    kn are n distinct real
numbers. Then S is linearly independent.

Example: We saw a set of exponential functions in the previous Example. Let us now take a look at a
set of logarithmic functions. Suppose:

S   log2x, log5x, log7x 

It is not obvious whether or not these functions are linearly independent. However, we do know the
change of base formula:

logax 
logbx
logba

for all bases a, b  0, a, b  1. Since this is valid for any of the three bases above, let us pick b  2
and convert the other two functions. Thus:

log5x 
log2x
log25

and log7x 
log2x
log27

Thus, both log5x and log7x are scalar multiples of log2x, and we can therefore conclude that S is
linearly dependent.
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So far, we have seen only examples where the functions have a natural domain which is an interval
such as , or 0,. However, we have to be careful when we are dealing with piecewise
defined functions, because the dependence test equation must be satisfied on the entire (common)
domain of all the functions involved, and not just one interval.

Example: Consider the two piecewise defined functions:

f x 
1
4 x  1 if x  0, 2

2  x if x  2, 3
, and g x 

1
2 x  2 if x  0, 2

x  2 if x  2, 3
.

Note that f x, g x  F0, 3. We easily notice that on the interval 0, 2:

g x  1
2 x  2  2 1

4 x  1  2f x,

so on 0, 2, g x is parallel to f x. However, on 2, 3:

g x  x  2  2  x  f x,
so on 2, 3, gx is also parallel to f x, but with a different proportionality constant. Since we cannot
find a single constant k such that:

gx  k  f x for all x  0, 3,
we conclude that S   f x, g x is an independent set from F0, 3. However, S is a dependent
set in F0, 2 and in F2, 3.

In Section 1.6, we showed the various connections and relationships between the concepts of the Span
of a set of vectors and whether or not a set of vectors is linearly independent. Obviously, the Theorems
we proved in that Section generalize to abstract vector spaces, so we will find similar ones in the
Exercises, such as The Equality of Spans Theorem, The Elimination Theorem, The Extension
Theorem, and The Dependent/Independent Sets from Spanning Sets Theorem. We will see a
general version of The Minimizing Theorem in Section 3.6.

3.2 Section Summary

Let V,, be a vector space, and v1, v2, . . . , vn  V. A linear combination of the vectors
v1, v2, . . . , vn with coefficients c1, c2, . . . , cn has the form:

c1  v1   c2  v2    cn  vn .

Similarly, the Span of the set of vectors S  v1, v2, . . . , vn is the set of all possible linear
combinations of these vectors:

SpanS  Spanv1, v2, . . . , vn

  c1  v1   c2  v2    cn  vn  | c1, c2, . . . , cn  .

We say that S is linearly independent if any linear combination of vectors from S results in the zero
vector if and only if all the coefficients of these vectors are 0. This means that the only solution to the
dependence test equation: c1  v1   c2  v2    cn  vn   0V, is the trivial solution:
c1  0, c2  0, . . . , cn  0.
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If we have a non-trivial solution, we say that S is linearly dependent, and an equation above with at
least one non-zero coefficient is called a dependence equation for S.

S  v is linearly independent if and only if v  0V.
S  v1, v2 is linearly independent if and only if v1 and v2 are not parallel to each other.
Suppose S   p1x, p2x, . . . , pnx is a set of polynomials of different degrees. Then S is
linearly independent.
Similarly, if S  ek1x, ek2x, . . . , eknx, where k1, k2, . . . , kn are distinct real numbers, then S is
linearly independent.
We may try to determine if S is linearly dependent or independent by substituting particular values for x
in the dependence equation for S and solving for the coefficients.

3.2 Exercises

For Exercises 1 to 6: Decide whether the given vector is a member of SpanS for each given set
S. If so, express it as a linear combination from S:
1. S  6  3x  4x2, 5  2x  7x2  2; px  7  19x  47x2.
2. S  2  4x  5x3, 7  3x2  2x3  3; px  105  28x  39x2  9x3.

3. S  1
x , 1

x2 , 1
x3  F0,; f x  2x2  7x  10

x3 .

4. S  2  3x  4x2, 5  7x  2x3, 4  6x  5x2  2x3  3; px  22  11x  39x2  13x3.

5. S  1
x  1 , 1

x  2  F3,; f x  4x  25
x  1x  2

6. S  1
x  1 , 1

x  3  F2,; f x  5x2  8x  3
x  1x  3

7. Show that: 1
x  1 , 1

x  1 , x
x2  1

 F1, 1 is linearly dependent.

Note that these three functions are all defined on 1, 1.

8. Show that  sinx, cosx, tanx  F/2,/2 is linearly independent.
9. Show that x1/2, x1/3, x1/4  F0, is linearly independent.

For Exercises 10 to 34: Decide if the set of functions is independent or dependent, and prove
your answer:

10. x2, x2  1, x2  3  F,.

11. x2, x  12, x  32  F,.

12.  cos2x, sin2x, 1  F,.

13.  cos2x, sin2x, sin2x  F,.

14.  cos2x, sin2x, cos2x  F,.

15.  cos1x, sin1x, 1  F1, 1.

16.  tan2x, sec2x, 1  F/2,/2.

17.  cot2x, csc2x, 3  F0,.
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18.  cos1x, sin1x, tan1x  F1, 1.

19. 1
x , 1

x  1 , 1
x  2  F2,.

20. 1
x , 1

x2 , 1
x3  F0,.

21. ex, xex, x2ex, x3ex  F,.

22. 1
x  5 , 1

x  4 , x  2
x  5x  4

 F4,.

23. ex, ex1, ex2, ex3  F,.

24. sinx, sin x  
6 , sin x  

3  F,.

25. x  1 , x  2 , x  3  F3,.

26.  log3x, log5x, log8x  F0,.

27. 1
x2 , 1

x  12 , 1
x  22  F2,.

28. x  x2, x2  x3, x  x3  F,.

29. 1  x, 1  x2, 1  x3, x  x2, x  x3, x2  x3  F,.

30. 1
x  2 , 1

x  1 , 1
x  1 , 6x2  19x  23

x  2x  1x  1
 F1,.

31. 1
x  1 , 1

x  1 , 1
x  2 , 9x  5

x  2x  1x  1
 F1,.

32. 1
x  1 , 1

x  12 , 1
x  2 , 9x2  7x  4

x  12x  2
 F2,.

33. 1
x  3 , 1

x  32 , 1
x  1 , 1

x  12 , 6x3  10x2  14x  82
x  32x  12  F1,.

34. 1
x  2 , 1

x  1 , 1
x  1 , 5x  2

x  2x  1x  1
 F2,.

35. Use the idea in one of the Examples to prove that the set:

S  ek1x, ek2x, . . . , eknx  F,

is linearly independent, for any set of distinct real numbers k1  k2  k3    kn.
36. Show that the set of functions 3x, 5x, 8x  F, is linearly independent. Hint: modify

slightly the idea behind the previous Exercise.
37. Generalize the previous Exercise: Show that if b1, b2, . . . , bn are n distinct positive numbers,

none of them equal to 1, (and you may assume that they are in ascending order), then:

b1
x , b2

x , . . . , bn
x 

is a linearly independent set of functions.

38. Prove that the set S  1
x  a , 1

x  b , cx  d
x  ax  b

 Fb, is dependent for any real

numbers a, b, c, d, where a  b.
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39. The Domain Matters: Consider the functions:
f x  x2 and g x  x|x|.

Both functions are defined over all , and so we can also consider them as functions defined on a
smaller interval.

a. Show that  f x, g x, restricted to 0,, is a dependent set.
b. Show that  f x, g x, restricted to , 0, is a dependent set.
c. Show that  f x, g x, defined over all , is an independent set.
d. Is  f x, g x, restricted to 3, 2, a dependent or independent set?

40. Prove that any set S from a vector space V, that contains 0V, is linearly dependent.
41. Let V,, be a vector space, and v  V. Prove that the set S  v is linearly independent

if and only if v  0V.
42. Let V,, be a vector space, and v1, v2  V. Prove that the set S  v1, v2 is linearly

independent if and only if v1 and v2 are not parallel to each other.
43. Let S  v1, v2, . . . , vn be a set of vectors from a vector space V,,. Prove that S is

linearly dependent if and only if at least one vector (which, without loss of generality, we can
set to be v1 is a linear combination of v2, v3, . . . , vn, that is:

v1  c2  v2   c3  v3    cn  vn ,

for some scalars c2, c3, , cn  .
44. Let S  v1, v2, . . . , vn be a linearly independent set of vectors from a vector space V,,.

Prove that any subset of S is also linearly independent.
For Exercises 45 to 48: Review the corresponding Theorem from Section 1.6 and rewrite
their proofs in the language and notation of a general vector space.

45. The Equality of Spans Theorem: Let S  v1, v2,  , vn and S /  w 1, w 2, , wm be two
sets of vectors from some vector space V. Prove that SpanS  SpanS /  if and only if every
vi can be written as a linear combination of the w 1 through wm, and every w j can also be written
as a linear combination of the v1 through vn.

46. The Elimination Theorem: Let S  v1, v2, . . . , vn be a linearly dependent set of vectors
from a vector space V,,, with dependence equation:

c1  v1   c2  v2    cn  vn   0V,

where we assume without loss of generality that cn  0. Prove that:

Spanv1, v2, . . . , vn  Spanv1, v2, . . . , vn1,

that is, we can eliminate one vector vn from S, and the smaller set still has the same Span as the
original set S.

47. The Extension Theorem: Let S  v1, v2, . . . , vn be a linearly independent set of vectors
from a vector space V,,, and let w  V be a vector which is not in SpanS. Prove that the
extended set S /  v1, v2, . . . , vn, w is still linearly independent.

48. The Dependent/Independent Sets from Spanning Sets Theorem: Let S  w 1, w 2, , w n be
any set of vectors from a vector space V, and we form SpanS. Suppose now we randomly
choose a set of m vectors from SpanS to form a new set: L  u1, u2,  , um.
Prove that if m  n, then L is automatically linearly dependent.
Consequently, if L is independent, then m  n.
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3.3 Linearity Properties for Infinite Sets of Vectors

Our next goal is to define the concepts of linear combinations, Spans and linear independence for
infinite sets of vectors. For example, we will study the infinite set of monomials:

S  1, x, x2, x3,  , xn,  .

These are nuanced concepts, and so we must first introduce key concepts from Set Theory, which is
the subject at the very core of Mathematics. We will only present the concepts that are relevant to
Linear Algebra. A more thorough treatment is usually found in an advanced course such as Logic or
Analysis.

A Primer on Infinite Sets

Definition: A non-empty set X is finite if the number of elements in the set is finite, that is, a
positive integer n. In other words, we can choose to list the elements of X in some particular
order, say:

X  x1, x2,  , xn ,
where the list eventually terminates. In this case, we call n the cardinality of our set, and we
use the notation: |X |  n, pronounced as “the cardinality of X is n. ”
We agree that the empty set has cardinality 0, and we also consider it to be a finite set.
A set that is not finite is called an infinite set.

Examples: Some of the best Examples of infinite sets are those sets of numbers that we saw in the
early part of Chapter Zero. We started with the most important infinite set: the natural numbers:

  0, 1, 2, 3, 4, . . . .

The next infinite set of numbers that we saw was the set of all integers, where we enlarge the set  to
include the negative integers:

  . . .3,2,1, 0, 1, 2, 3, . . . .

The letter  stands for Zahlen, which is German for “number.” These sets of numbers are easy to
grasp using the decimal or base 10 system to tell us what an integer represents. We know what the
number 537 means, and we know that 537 is not the same as 735, and neither is 537 the same as
537. The digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, the symbol  for negatives, and a knowledge of place
value (one’s digit, ten’s digit, hundred’s digit, and so on) are enough to define the decimal system.
By dividing pairs of integers, we further enlarge  to get the set of fractions or rational numbers:

  a
b | a and b are integers, with b  0 ,

where  stands for quotients. We agree that b is the lowest denominator possible.
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Finally, we make a big jump and end up with the set of real numbers , which contains not just the
rational numbers, but also irrational numbers such as e, , 2 , 3 , 3 2 , and so on. We can again use
the decimal system, this time with the use of a decimal point. A real number that has either a repeating
or terminating decimal representation, such as 0. 783 or 5. 21212121 is a rational number, but a real
number with a non-repeating, non-terminating decimal representation is an irrational number. As
before, we can visualize  using points on the real number line:

 
.

21 3 4 0
..

e .

The Real Number Line With Some Members of 

Notice that we have a nesting of our four sets of numbers:

      .
These are strict nestings, in the sense that there are members of  that are not members of , there are
members of  that are not members of , and there are members of  that are not members of ,
namely, the irrational numbers, denoted   .

In the same way that finite sets come in different cardinalities, infinite sets likewise come in different
cardinalities. Thus, our next step is to define the concept of the cardinality of an infinite set X, again
denoted |X |. The cardinality of X is basically a measure of the size of a set. We cannot say anymore that
the cardinality of an infinite set is “the number of elements” in the set, because infinity is not a
number. To avoid some technical issues, we will use the following Theorem as a definition that will let
us decide when two sets have the same cardinality:

Definition/Theorem — The Schroeder-Bernstein Theorem:
Suppose that X and Y are two sets (they can be finite or infinite).
Then: |X |  |Y |, that is, X and Y have equal cardinality, if and only if
there exists a function f : X  Y which is both one-to-one and onto.

This Theorem tells us that for two sets X and Y to have the same cardinality, the members of X must be
in a one-to-one correspondence with the members of Y: for every x  X, there corresponds exactly
one y  Y, and for every y  Y, there corresponds exactly one x  X. Thus, we have a pairing x, y,
where every x  X appears exactly once, and every y  Y appears exactly once.

 .

.. ..X

.

.  .  .x4x1 x2 x3

.. ..Y .  .  .
y4y1 y2 y3

.

Two Infinite Sets of Equal Cardinality
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Since the generic symbol  is no longer a good symbol for the cardinalities of infinite sets, we will
need a new symbol. We use the Hebrew letter  (Aleph), together with a subscript, to denote the
cardinalities of infinite sets. The smallest infinite cardinality is that of , which will be denoted 0
(pronounced “Aleph nought” or “Aleph zero”), that is:

| |  0.

Thus, any set for which we can find a one-to-one correspondence with  will also have cardinality 0.
Since the members of  are 0, 1, 2, 3, . . . and so on, to prove that a set X has cardinality 0, we
must be able to construct a function f :   X which is both one-to-one and onto. In other words, we
must be able to list the members of X in a sequence:

X  x0, x1, x2, x3,  , where x i  f i,
and every element x  X appears exactly once on this list in order for f to be both one-to-one and onto.
For this reason, we say that any set with cardinality 0 is countable. It turns out that two other sets in
our Examples above are also countable, but one of them is not.

Examples: As we saw above, we can list the set of integers  as:

  . . .3,2,1, 0, 1, 2, 3, . . . .
In this form, though, the set goes to infinity both to the right and the left. However, we can list the
members of  in the following order instead:

0, 1,1, 2,2, 3,3, , n,n,
Notice that this list goes off to infinity only to the right, so we have succeeded in writing the members
of  in a sequence, and it is clear that every integer appears on this list exactly once. Thus:

| |  0  | |.
We emphasize that this equality is not saying that  and  are the same sets. This equation says that
the sets  and  have equal cardinality. Again, this means that the members of  are in a one-to-one
correspondence with the members of .
It turns out that the cardinality of the set of rational numbers  is also 0, but this time it is not so
obvious how to write the rational numbers as a sequence. We will see this in the Exercises.
We will now show that the set of real numbers  is not countable, in other words, it is impossible to
list all the real numbers in a sequence. To accomplish this, we will represent any real number in the
usual decimal notation, just as we saw above. We must be careful, though, because a repeating 9 could
be rounded up at the digit immediately to the left of the first repeated 9. For example:

0. 7829  0. 78299999 0. 783.
We will therefore agree to write this number as 0. 783, which makes more sense. Now, suppose, for
the sake of argument that we have a sequence of real numbers, and the first five numbers in our
sequence are:

5. 7 38257 , 3. 0 4 2963 ,  8. 21 5 732 , 15. 732 9 46 ,  9. 3285 2 4 .

We must show that this sequence is missing at least one number x. We will construct this missing
number x digit by digit: to determine the nth digit of x, look at the nth digit to the right of the decimal
point of the nth real number (which we have boxed in the numbers above) and add one to this digit
(make this 0 if the nth digit is 9). Thus, according to our sequence above, the first few digits of x are:
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x  0. 85603
By construction, x is not the first term, nor the second, nor the third, and so on, because the nth digit of
x doesn’t match the corresponding nth digit of the nth term! Thus, our sequence is missing this real
number x. This reasoning can be used to construct a missing number from any sequence of real
numbers, in general, and so it is impossible to list all the members of  in a sequence.

This last Example is extremely important. It tells us that the set of natural numbers cannot be put in a
one-to-one correspondence with the set of real numbers. Thus these sets have different cardinalities
even though both sets are infinite. Since  is a subset of , it is reasonable to say that the cardinality of
 is strictly bigger than 0. We can use this Example to motivate the following:

Definitions — Comparing Cardinalities:
Suppose that X and Y are two sets (they can be finite or infinite). Then we say that |X |  |Y |,
that is, the cardinality of X is strictly smaller than the cardinality of Y, if there exists a
function f : X  Y which is one-to-one, but there is no such function which is both
one-to-one and onto. In this case, we can also write: |Y |  |X | and say that the cardinality of
Y is strictly bigger than the cardinality of X.
We can also say that |X |  |Y |, that is, the cardinality of X is at most the cardinality of Y, if
there exists a function f : X  Y which is one-to-one. Such a function may or may not be
onto. In this case, we can also write: |Y |  |X | and say that the cardinality of Y is at least the
cardinality of X.

We denote the cardinality of  by1, pronounced “Aleph one,” that is:

| |  1  0  | |.
Any infinite set such as  whose cardinality is strictly bigger than 0 is called uncountable. This
means that we cannot list all of the elements of an uncountable set in a sequence like we have above
for the members of  or . This distinction will become important in the next sub-section. We also note
that it is possible to construct sets which have cardinality that are strictly larger than 1. For example,
by constructing the set of all possible subsets of , which is denoted by  and pronounced the
power set of , we produce a set of cardinality 2. This process can be continued indefinitely,
producing set of strictly larger and larger cardinalities. Thus begins an infinite chain:

| |  0  | |  1  | |  2  

We summarize below our discussion of infinite sets of numbers, as well as other results that are found
in the Exercises:

Theorem — Countable and Uncountable Sets of Numbers:
The set of natural numbers, integers, and rational numbers are all countable:

| |  | |  | |  0.
However, the set of real numbers, the set of irrational numbers, and all intervals of the real
number line that contain at least two points are all uncountable and have cardinality1:

| |  |   |  |a, b |  |a, b |  |a, b |  |a, b |  1,
where a  b  . More generally, these infinite intervals also have cardinality1:

|, b |  |, b |  |a,  |  |a,  |  1.
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Describing Infinite Sets of Vectors

We are now in a position to establish notation and guidelines in order to describe an infinite set of
vectors S from a vector space V,,. We will restrict our attention to sets that have cardinality that
are either 0 or 1. The most convenient way to do this is by using what is called an indexing set,
denoted I, which is typically a non-empty set which is an easily described subset of  (not necessarily
an interval, as the symbol I might lead you to think). The simplest examples will have indexing sets
I   or I   itself. The vectors of S will be in a one-to-one correspondence with the elements of I
through the use of set-builder notation, which we will write in general as:

S  vi | i  I   V,,, where I   is some non-empty indexing set.

To avoid ambiguity, we will insist that vi  vj if i and j are distinct indices in I. In other words, distinct
indices correspond to distinct vectors, and vice versa. Thus, if I is a countable indexing set, then S is
also a countable set of vectors (and similarly for uncountable index sets).
Note that if I  1, 2,  , n, we get our old sets of vectors v1, v2,  , vn.

Example: Let us consider the infinite set of vectors, first in roster form:
S  1, x, x2, x3,  , xn,    F,

that is, the set of all monomials in x. We can view S as a set of vectors from the vector space F of
functions defined on . Since we can list the members of S, this set is countable. Since the powers of
x are natural numbers, we can also write S in set-builder notation as:

S  xn | n   .
In this case, we describe S using the indexing set . In the same way, we can construct the infinite
sets of even monomials and odd monomials:

E  x2n | n     1, x2, x4,  , x2n,  , and
O  x2n1 | n     x, x3, x5,  , x2n1,  .

Notice that for both sets, we used the same indexing set . Since the monomials within each set are in
one-to-one correspondence with , we can say that all three sets S, E and O are countably infinite sets
of vectors.

As seen above, if S is countable, we can describe it using the roster form, where we list the members
of S in a sequence with a clear pattern, or in set-builder notation, using a countable set such as  as
our indexing set. However, if S is uncountable, we can no longer list the members of S in a sequence,
so we have no choice but to use set-builder notation using a non-empty indexing set I.

Example: We will consider several more subsets from F. Let us start with:
S1  ekx | k      , e3x, e2x, ex, 1, ex, e2x, e3x,  .

The indexing set for S1 is . Since  is countable, and the functions in S1 are distinct (no two of them
have the same graph), S1 is also countable. Similarly, the set:

S2  ekx | k   
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has  as an indexing set. S2 is also countable, since  is countable, as we shall see in the Exercises.
However, since the way we list  is not very convenient, it is certainly better to describe S2 using
set-builder notation instead of roster form. Since every integer is also a rational number, S1  S2.
However, the functions e2x/3 and e3x/5 are functions in S2 which are not in S1. Now, consider the set:

S3  ekx | k   .

Since the indexing set is , S3 is also uncountable, and we cannot list the vectors of S3 in roster form.
Note that S1  S2  S3, but e 2 x and ex are functions in S3 which are not in S1 or S2. 

Linearity Concepts for Infinite Sets of Vectors

Fortunately, in order to define and understand linearity concepts for an infinite set of vectors S, we will
test only finite subsets of S. Suppose we are given the infinite set of vectors:

S  vi | i  I   V,,, where I   is some non-empty indexing set.

A finite subset of S can be listed explicitly, and written in roster form:

vi1 , vi2 ,  , vin ,
where i1, i2,  , in are numbers from I, which are called indices (the plural of index), with
i1  i2    in. This notation is particularly important if I is uncountable. This notation is called a
double subscript notation, because the subscript of v (which is i) also contain a subscript (which is 1
through n).
We are now ready to generalize the concepts of linear combinations, Span and linear independence to
include infinite sets:

Definition: Let V,, be a vector space. Suppose that S  vi | i  I   V,,,
where I   is some non-empty indexing set. A linear combination of vectors from S can
be constructed in the following way:
(a) Choose a finite subset of vectors: vi1 , vi2, . . . , vin  from S, where i1  i2    in

are from I.
(b) Choose a corresponding finite list of coefficients c1, c2,  , cn  , as before.
(c) Form the vector expression: c1  vi1  c2  vi2   cn  vin .
Similarly, the Span of S, denoted SpanS as before, is the set of all possible linear
combinations of vectors from all finite subsets of S.

Based on the description above, we can construct SpanS as follows:

1. Form all finite subsets of S: vi1 , vi1 , vi2 , vi1 , vi2 , vi3 , . . . and so on.

In other words, form all subsets consisting of exactly one vector, exactly two vectors, exactly
three vectors, and so on.

2. For each of these subsets, form all possible linear combinations:
c1  vi1  c2  vi2   cn  vin of these finite sets.

3. Collect all of these linear combinations in one enormous set which will be SpanS.
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Note that there is no such thing as the linear combination of an infinite number of vectors. We can only
form the linear combination of a finite number of vectors. We will also write c1vi1  c2vi2   cnvin

for simplicity when the context is clear. Fortunately, if a set of vectors S is countable, there is a simpler
way to think of linear combinations and Spans:

Theorem: Suppose that S  vi | i     v0, v1, v2, v3,  , vn,  is a countable set of
vectors from a vector space V,,. Then, a linear combination of the vectors in S is an
expression of the form:

c0  v0  c1  v1  c2  v2   ck  vk,
for some k  , and coefficients c0, c1, , ck  .
Similarly, SpanS is the set of all linear combinations from S of the form given above.

Proof: Since the set S is countable, a finite subset of n vectors from S has the form:

vi1 , vi2, , vin ,

where we can assume that i1  i2    in, and these subscripts are all natural numbers. Now,
according to the Definition above, a linear combination of this finite set has the form:

r1  vi1  r2  vi2   rn  vin ,

for some scalars r1 through rn. Since in is the largest subscript, suppose in  k. By making a
coefficient 0 if need be, the linear combination we have above can be rewritten to include all of the
vectors from v0 to vk. For example, if we formed the finite set:

v2, v5, v7,

then the linear combination r1  v2  r2  v5  r3  v7 can be written as:
0  v0  0  v1  r1v2  0  v3  0  v4  r2v5  0  v6  r3v7.

This is a linear combination from the finite subset v0, v1, v2,  , v7.
Thus, in general, any linear combination of a finite subset of S can be written in the form:

c0v0  c1v1  c2v2   ckvk,

for some natural number k, and coefficients c0, c1, c2,  , ck. 

This Theorem gives us a significant advantage when we construct the Span of a countable set of
vectors S, and later on as well, when we test if S is linearly independent or not. For example, we do not
need to form the finite subset v1, v3, v6, v8 of S and form all of its linear combinations, because the
linear combinations of this set appear in the set of all linear combinations of the set
v0, v1, v2, , v8, by setting some of the coefficients to zero.

Example: Let us consider the infinite set of monomials:
S  xn | n     1, x, x2, x3,  , xn,    F,

that we saw in an earlier Example. The set S has a monomial with degree n for every positive integer
n, as well as the constant monomial 1. Thus, S is not a subset of any of the polynomial spaces n,
since the polynomials of n have degree at most n, and there will always be an infinite number of
monomials in S whose degree is bigger than any particular n.
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According to the Theorem above, a linear combination of the members of S has the form:
c0  1  c1  x  c2  x2  c3  x3   cn  xn

 c0  c1x  c2x2  c3x3   cnxn.
But this is a polynomial of degree n. Thus, we can conclude that SpanS consists of all possible
polynomials, of any degree. Since the sum of two polynomials and a scalar multiple of a polynomial are
again polynomials, this set forms a vector space, which we will denote as :

  Span1, x, x2, x3,  , xn,    Spanxn | n   . 

The previous Example involved a countable set of vectors. If the set S is uncountable, though, we will
have to follow the original formula to find the Span of S. In some cases, though, it is still possible to
have a grasp as to what the Span of S is.

Example: Consider the uncountable set: S3  ekx |k    F.
To form a finite subset of n vectors, we pick n real numbers: k1  k2    kn, and form the set:

ek1x, ek2x,  , eknx.

A linear combination of this finite set therefore has the form:

c1ek1x  c2ek2x   cneknx,
for some scalars c1, c2,  , cn.
The Span of S consists of all functions of this form, that is, for all possible choices of real numbers
k1  k2    kn, and all possible coefficients c1, c2,  , cn, and all positive integers n. Obviously
this enormous set is certainly uncountable, since SpanS must contain S, but it is still possible to
visualize what each member of SpanS looks like, at least in terms of a formula.

Now, let us generalize the concept of linear independence to an infinite set of vectors:

Definition: Suppose that S  vi | i  I , where I   is some non-empty indexing set, is
an infinite set of vectors from a vector space V,,. We will say that S is linearly
independent if every finite subset of S is linearly independent. In other words, the only
solution to the dependence test equation:

c1  vi1  c2  vi2   ck  vik  0V

is the trivial solution c0  0, c1  0, c2  0, , ck  0, for all indices i1  i2    ik
from I.

Once again, if S is countable, then it becomes easier to test if S is independent or not:

Theorem: Suppose that S  vi | i     v0, v1, v2, v3,  , vn,  is a countable set of
vectors from a vector space V,,. Then, S is linearly independent if and only if the only
solution to the dependence test equation:

c0  v0  c1  v1  c2  v2   ck  vk  0V

is the trivial solution c1  0, c2  0, , ck  0, for all k  . In other words, every finite
subset v0, v1, v2, v3,  , vk  is linearly independent, for every k  .
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The proof is based on exactly the same idea as the proof of the previous Theorem, and will be left as an
Exercise. It tells us that we do not have to test if the set v3, v6, v8 is independent, because this set
will be tested in the process of testing the bigger (more complete) set:

v0, v1, v2, v3,  , v8.

Example: Let us return to the set of all monomials S  1, x, x2, x3, . . . , xn, . . .   F. According
to the Theorem above, in order to test if S is linearly independent, we have to show that every finite
subset of the form:

S /  1, x, x2, x3, . . . , xk

is linearly independent. But S / consists of polynomials (in fact, monomials) of distinct degrees. By our
Theorem in Section 3.2, S / is linearly independent. Since every finite subset S / is linearly independent,
S is also linearly independent by our Theorem.

Example: Let us decide if the infinite uncountable set S3  ekx |k   is linearly dependent or
independent. We saw that every finite subset of S3 has the form:

ek1x, ek2x,  , eknx,

where k1  k2    kn and n is a positive integer. But we saw in Exercise 35 of Section 3.2 that
these finite sets are all linearly independent. Thus, by our definition, S3 is also linearly independent.

3.3 Section Summary

A non-empty set X is finite if the number of elements in the set is finite, that is, a positive integer n. In
other words, we can choose to list the elements of X in some particular order, say
X  x1, x2,  , xn , where the list eventually terminates. We call n the cardinality of our set, and
we use the notation: |X |  n. We agree that the empty set has cardinality 0, and we also consider it to
be a finite set. A set that is not finite is called infinite. The sets of numbers: , ,  and  are all
infinite sets.
The Schroeder-Bernstein Theorem: Suppose that X and Y are two sets (they can be finite or infinite).
Then, |X |  |Y |, that is, X and Y have the same cardinality, if and only if there exists a function
f : X  Y that is both one-to-one and onto.
The sets , ,  all have the same cardinality, and we call this cardinality 0. We refer to these as
countable sets. We write: | |  | |  | |  0.
The set  has cardinality that is strictly bigger than 0, and we call this cardinality 1. Any set with
cardinality strictly bigger than 0 is called uncountable. We write: | |  1.
Let V,, be a vector space. Suppose that S  vi | i  I  is an infinite set of vectors from V,
where I   is a non-empty indexing set. A linear combination of vectors from S can be constructed
in the following way:
(a) Choose a finite subset of vectors: vi1 , vi2, . . . , vin  from S, where i1  i2    in are from I.
(b) Choose a finite list of scalars c1, c2,  , cn  , as before.
(c) Form the vector expression: c1  vi1  c2  vi2   cn  vin .
Similarly, the Span of S, denoted SpanS as before, is the set of all possible linear combinations of
vectors from all finite subsets of S.
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We say that S is linearly independent if every finite subset of S is linearly independent. In other
words, the only solution to the dependence test equation:

c1  vi1  c2  vi2   ck  vik  0V

is the trivial solution c0  0, c1  0, c2  0, , ck  0, for all indices i1  i2    ik from I.
Suppose that S  vi | i     v0, v1, v2, v3,  , vn,  is a countable set of vectors from a
vector space V,,. Then, a linear combination of the vectors in S is an expression of the form:

c0  v0  c1  v1  c2  v2   ck  vk,

for some k   and coefficients c0, c1, , ck  . Similarly, SpanS is the set of all linear
combinations from S of the form given above. Furthermore, S is linearly independent if and only if
the only solution to the dependence test equation:

c0  v0  c1  v1  c2  v2   ck  vk  0V

is the trivial solution c1  0, c2  0, , ck  0, for all n  . In other words, every finite subset
v0, v1, v2, v3,  , vk  is linearly independent, for every k  .

3.3 Exercises

1. Show that the set of odd integers O  7,5,3,1, 1, 3, 5, 7,  is countable by
constructing an explicit bijection from  to O.

2. Show that the set of even integers E  6,4,2, 0, 2, 4, 6,  is countable by constructing
an explicit bijection from  to E.

3. More generally, let m be a fixed positive integer. Show that the set of all multiples of m:

M  4m,3m,2m,m, 0, m, 2m, 3m, 4m, 

is countable by constructing an explicit bijection from  to M.
4. Consider the set of even monomials: Ex  1, x2, x4,  , x2n,  

a. Rewrite S using  as an indexing set in set-builder notation.
b. Describe in words SpanEx. Hint: what can we say about the symmetry of the

polynomials in SpanEx?
c. Show that Ex is linearly independent.

5. Repeat the previous Exercise for the set of odd monomials: Ox  x, x3, x5,  , x2n1,  .
6. Consider the countable set of basic rational functions:

S  1
x , 1

x2 , 1
x3 , 1

x4 ,  , 1
xn ,   F0,.

a. Rewrite S using  as an indexing set in set-builder notation.
b. Write down explicitly what a linear combination of vectors from S looks like. Hint:  is

countable.
c. Prove that S is linearly independent. Hint: Combine all the terms using a least common

denominator, and use the Fundamental Theorem of Algebra.
7. Consider the uncountable set of exponential functions:

S  bx |b  0   F,.
a. What is the indexing set of S?
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b. Write down explicitly what a linear combination of vectors from S looks like.
c. Prove that S is linearly independent.
d. In Calculus, we usually exclude b  1. Why can we allow b  1 in this context?

8. Consider the countable set of radical functions:

S  x1/2, x1/3, x1/4,  , x1/n,    F0,.

a. Rewrite S using  as an indexing set in set-builder notation.
b. Write down explicitly what a linear combination of vectors from S looks like.
c. Prove that S is linearly independent. Hint: mimic the idea we used for exponential functions.

For Exercises 9 to 20: Decide whether or not the set of functions is linearly dependent or
independent. Assume that any finite subset is defined on a common interval.

9. S  1
x  k | k  

10. S   logbx | b  0, b  1 Note: this time, we cannot allow b  1, as compared to Exercise
7. Why?

11. S   x  an | n  , where a   is a fixed real number.
12. S   x  an | a  , where n is a fixed positive integer.

Why is this set different from that in the previous Exercise?

13. S   lnx  k | k  
14. S  e3x, xe3x, x2e3x, x3e3x,  , xne3x,  

15. S  ex sinx, e2x sinx, e3x sinx,  , enx sinx,  

16. S  5x, x5x, x25x, x35x,  , xn5x,  

17. S   sin2x, x  sin2x, x2  sin2x, x3  sin2x,  , xn  sin2x,  
18. S  x1/2, x3/2, x5/2,  , xn/2,  

19. S  1  x, 1  x2, x  x2, x  x3, x2  x3, x2  x4,  , xn  xn1, xn  xn2,  

20. S   , 1
x3 , 1

x2 , 1
x , 1, x, x2, x3,  .

Hint: what would a general linear combination from S look like?
21. Suppose that S  v0, v1, v2, v3,  , vn,  is a countable set of vectors from a vector space V.

Prove that S is linearly independent if and only if every subset of the form:
v0, v1, v2, v3,  , vn

is linearly independent, for every n  .
22. In this Section, we showed that  and  have the same cardinality by listing the members of  as:

0, 1,1, 2,2, 3,3, , n,n,
Use this to explicitly construct a function f :    that is both one-to-one and onto. Hint: an
easy way to do it would be to use a piecewise definition.

23. Suppose that X is a subset of Y. Prove that |X |  |Y |. Hint: state the definition of this symbol and
create an easy function f that satisfies the definition.

24. Suppose that X and Y are both countable sets, and assume for the sake of simplicity that
X  Y  , that is, they have no element in common. Prove that X  Y is also countable. Hint: list
X and Y in a countable way and show how to list the elements of X  Y also in a countable way.
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25. Show that the set of irrational numbers    is also uncountable. Hint: Use Proof by
Contradiction and Exercise 24.

26. In the Exercises of Section 3.2, we saw that the Elimination Theorem and the Extension Theorem
are still valid in an abstract vector space if S is a finite set of vectors. Review the Proofs that you
wrote in that Section, and convince yourself that the Proofs are still valid if S is an infinite set. On
the other hand, explain why the Proof of the Dependence vs. Spanning Sets Theorem does not
extend to an infinite set S (where L  SpanS may also be infinite).

27. The Countability of the Rational Numbers:
The purpose of this Exercise is to show that  is countable, that is: | |  0.
Recall that every rational number a/b can be written as a fraction where b is as small as possible,
i.e., in lowest terms. We will create an infinite table that will contain the members of  in the
order of increasing denominators. On the 1st row we see the members of  (rational numbers
with denominator 1), listed as a sequence as we saw in the Examples. On the 2nd row are the
rational numbers with denominator 2, then on the 3rd row those with denominator 3, and so on.
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a. List the first 7 rational numbers on each of the next 3 rows of this table.
Now, in order to prove that  is countable, we have to list all the rational numbers in one
sequence, without repetition. The idea is to traverse this table in a diagonal or zigzag
manner, following the arrows numbered 1, 2, 3 and so on, as shown in the figure below:
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Thus, the first 6 rational numbers in this sequence are 0, 1
2 , 1,1, 1

2 and 1
3 .

b. List the next 25 rational numbers in this sequence according to this diagonal traversal. Be
sure to include in your traversal appropriate members from the next three rows from (a).

c. Suppose the rational number a/b is found in row i, column j in the table above. This rational
number will be found on the kth arrow as described in the diagonal traversal above. Find a
formula for k in terms of i and j. For example, the number 2/3 in row 3 and column 4 is on
the 6th arrow.

d. Explain why every rational number will be found exactly once in this sequence.
e. The Big Picture: Summarize the steps above into a proof that | |  0.

The idea above is attributed to Georg Cantor (1845, Russia - 1918, Germany), professor at the
University of Halle, and the Father of Set Theory.
It is known as The Cantor Diagonalization Argument.

28. The Uncountability of Sub-intervals of the Real Numbers:
We know from Algebra that there are different kinds of intervals of real numbers: finite open
intervals of the form a, b, finite closed intervals of the form a, b, finite half-open/half-closed
intervals of the form a, b or a, b, infinite open intervals of the form a, and , b, and
infinite closed intervals of the form a,, and , b.
The purpose of this Exercise is to show that all of these eight interval types have cardinality 1,
and thus they are all uncountable.
a. Suppose that a, b is any closed interval of . Find a linear function:

f : 0, 1  a, b,
that is, of the form f x  mx  k, with a positive slope m, which is both one-to-one and
onto a, b. Hint: what should the graph look like? Explain why this proves that all finite
closed intervals a, b have the same cardinality.

b. Show that the same linear function f that you found in the previous part is also a function:

f : 0, 1  a, b,
f : 0, 1  a, b, and
f : 0, 1  a, b,

and each is one-to-one and onto the indicated range when restricted to the corresponding
domain. Hint: this just means that the graph you drew in (a) will have a hole or two. Explain
why this proves that all finite intervals of the form a, b have the same cardinality, and
similarly for the intervals of the other two forms.
Parts (a) and (b) show that in order to prove that a finite interval of any of the four forms
seen above has cardinality 1, we have to prove that the four intervals 0, 1, 0, 1, 0, 1
and 0, 1 — or any particular example of each of these four forms — all have cardinality
1.

c. Sketch the graph of the restricted tangent function from Trigonometry:

tanx :  2 , 2  ,

and explain why it is both one-to-one and onto. Explain why this proves that

 2 , 2  | |  1.

d. Use parts (b) and (c) to prove that for all finite open intervals a, b:
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|a, b |  | |  1.

e. Next, let us consider infinite open intervals of the form a,, starting with a  0. Sketch
the graph of the natural logarithmic function:

lnx : 0,  ,

and explain why this function is one-to-one and onto. Explain why this proves that:

|0, |  | |  1.

f. Let a  . Find a (very simple) linear function f : a,  0,, that is one-to-one and
onto. Explain why this proves that for any a  :

|a, |  | |  1.

g. Show that the same function f that you found in the previous part is also a function:
f : a,  0,,

that is again one-to-one and onto. Explain why this proves that for any a  :

|a, |  |0, |.

h. Let b  . Find a linear function f : , b  0,, that is one-to-one and onto, but with
a negative slope. Explain why this proves that for any b  :

|, b |  | |  1.

i. Show that the same function f that you found in the previous part is also a function:
f : , b  0,,

that is again one-to-one and onto. Explain why this proves that for any b  :

|, b |  |0, |.
j. Show that the function:

f x  x
1  x ,

restricted to the domain 0, 1 is a one-to-one function. Show that its range is 0,. In
other words:

f : 0, 1  0,
is both one-to-one and onto. Explain why this shows that |0, 1 |  |0, |.

k. Find a linear function:

f : 0, 1  0, 1,
which is both one-to-one and onto, but with a negative slope. Explain why this proves that:

|0, 1 |  |0, 1 |.
Explain why this shows that all finite half-open/half-closed intervals have the same
cardinality.

l. Generalize the idea from the previous part to create a linear function:
f : a, b  a, b,

that is both one-to-one and onto. We will call this function a flip.
Now comes the hardest part. We will construct a function:
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f : 0, 1  0, 1,
that is both one-to-one and onto. The idea is to break up 0, 1 into halves, then quarters,
then eighths, and so on, and flip the new interval on the right:

0, 1

 0, 1
2  1

2 , 1 ; flip 1
2 , 1 :

 0, 1
2  1

2 , 1 ; subdivide 0, 1
2 into two:

 0, 1
4  1

4 , 1
2  1

2 , 1 ; flip 1
4 , 1

2 :

 0, 1
4  1

4 , 1
2  1

2 , 1 ; subdivide 0, 1
4 into two:

 0, 1
8  1

8 , 1
4  1

4 , 1
2  1

2 , 1 ; flip 1
8 , 1

4 :

 0, 1
8  1

8 , 1
4  1

4 , 1
2  1

2 , 1 ; subdivide 0, 1
8 into two:

 0, 1
16  1

16 , 1
8  1

8 , 1
4  1

4 , 1
2  1

2 , 1 ; flip 1
16 , 1

8 : . . .

Notice that 1
2n appears twice after the nth flip, but this is a temporary concern, because the

leftmost interval will be divided into two once again in the next iteration and the next
subinterval flipped, and so 1

2n will appear only once after the next step.

m. Write the algorithm above as a piecewise function with an infinite number of pieces in the
domain. Explain why f 0  0 and why this function is one-to-one and onto, with range
0, 1. Hint: the previous part should be very useful. The formula should be in this form:

f x 

0 if x  0,

 if x  1
2 , 1 ,

 if x  1
4 , 1

2 ,

 

 if x  1
2n1 , 1

2n ,

 

Note that we have no choice but to have f 0  0. Explain why this part shows that
|0, 1 |  |0, 1 |. Note that these are almost the same interval, except the second interval
is open at x  1. In other words, they are only different by exactly one point.

n. Sketch the graph of f x from part (m).
o. Apply the same ideas found in parts (l) and (m) to define a function:

f : 0, 1  0, 1,
which is one-to-one and onto. Hint: begin with:

0, 1  0, 1
2  1

2 , 1 .

p. Summarize all the parts above to show that all of the eight interval types of real numbers as
listed at the beginning of this Exercise have cardinality1.
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3.4 Subspaces, Basis and Dimension

We continue generalizing the ideas that we saw in Chapter 1, specifically, the concepts of a subspace
of an abstract vector space, a basis for a vector space, and the dimension of a vector space.

Subspaces

We will define a subspace W of a vector space V in exactly the same way as we did in Chapter 1:

Definition: A non-empty subset W of a vector space V,, is called a subspace of V if W
is closed under vector addition and scalar multiplication.
In other words, for all w 1 and w 2  W, and k  : w 1  w 2  W, and k  w 1  W.
As before, we write W  V, and we refer to V as the ambient space of W.

Notice that the closure properties are the first two properties for a vector space. Let us see if W satisfies
the other eight. Since the members of W are also members of V, then W inherits the six arithmetic
properties of V: the commutative and associative properties of addition,the two distributive properties,
the associative property of scalar multiplication, and the unitary property. This leaves only the existence
of a zero vector in W and additive inverses in W.
The requirement that W be non-empty means that there is at least one vector w  W. However, since
W is closed under , this means that 0  w  0V  W as well. Likewise, 1  w  w  W as well.
Thus, we have proven the following:

Theorem: Let W be a non-empty subset of V,,.
Then: W is a subspace of V if and only if W,, is itself a vector space.

This Theorem also tells us that if we want to show that W is a subspace, then we should be able to
show that 0V  W. In other words, W is not just a non-empty set, but in particular, 0V is one of its
members. The contrapositive of this Theorem also says that if 0V is not in W, then it is impossible for
W to be a subspace of V.

Example: Let V  F,. Consider the set:

W   f x  V | f 3  0.
The zero function zx satisfies the condition that z3  0, and thus zx  W. Thus, W is not empty,
and it contains the zero vector of V. Now, suppose f x and g x are members of W. Thus:

f 3  0 and g 3  0, and so:
f 3  g 3  0  0  0.

Thus, f x  g x  W as well, and so W is closed under vector addition. Now, let k  . Then:

k  f 3  k  f 3  k  0  0,
and thus k  f x  W as well. Thus W is also closed under scalar multiplication, and so W is a
subspace of V. On the other hand, consider the set:
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U   f x  V | f 3  2.
Note that U is not an empty set either, because f x  x  1 satisfies f 3  2, and this function is
certainly a member of V. However, zx does not satisfy the condition z3  2, and so U is not a
subspace of V. 

As before, the Span of a set of vectors is the easiest example of a subspace:

Theorem: Suppose S  vi | i  I   V,,, where I   is some non-empty indexing
set, and let W  SpanS.
Then: W,, is a subspace of V,,.

Proof: The idea behind the Proof of the analogous Theorem in Chapter 1 still works, but the difference
lies in our new notation. In Chapter 1, we were only dealing with a finite set of vectors:
S  v1, v2,  , vn. This time, S could be an infinite set, so the vectors chosen to create a linear
combination for v  SpanS may be completely different vectors from the vectors chosen to create
another linear combination for a second vector w  SpanS. To avoid using cumbersome notation,
suppose that S1  S is the finite set of vectors used to create v, and S2  S is the finite set of vectors
used to create w. Let us combine these two into a single finite set:

S1  S2  S3,
and we can list the members of the finite set S3 in the usual notation:

S3  vi1 , vi2 , . . . , vik .

Since S1 and S2 are both subsets of S3, we can express both v and w as linear combinations of S3, by
placing a coefficient of zero beside a vector in S3 which is not needed in order to produce either v or w,
if there are any. In other words, we can write:

v  c1  vi1  c2  vi2   ck  vik , and
w  d1  vi1  d2  vi2   dk  vik ,

where we allow some coefficients to be zero, if necessary. Now, we can write the sum as:
v  w  c1  d1   vi1  c2  d2   vi2   ck  dk   vik ,

which is again another member of SpanS. Thus, SpanS is closed under vector addition. Similarly:
r  v  r  c1  vi1  c2  vi2   ck  vik 

 rc1   vi1  rc2   vi2   rck   vik ,

by the distributive and associative properties. The result is therefore in SpanS as well. Thus, SpanS
is a subspace of V,,. 

Non-Example: In our most unusual example in Section 3.1, we defined  as a vector space under
ordinary multiplication and exponentiation. The vector space   1 is also a vector space, but with
respect to ordinary addition and multiplication. Thus, even though  is a subset of , it is not a
subspace of , for the simple reason that the operations in  are different from the operations in .

Now let us consider some important families of subspaces and their relationships among each other.
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Example: We saw in Section 3.3 that the polynomial spaces n can be written as:
n  Span1, x, x2,  , xn.

By the same token:
n1  Span1, x, x2,  , xn, xn1,

and thus, the polynomial spaces n form an ascending sequence of nested subspaces:
0  1  2  3  n  n1    .

As indicated at the end of the chain above, all of the n are subspaces of , the vector space of all
polynomials, of all degrees, which we defined as:

  Span1, x, x2,  , xn,  

We can thus visualize the polynomial spaces nested as follows:

 

P 
P n

P 
. . .

P . . .

.

.

P 

The Nesting of Polynomial Spaces

Continuing with this example,  is a subspace of F,, the space of all functions defined over all
real numbers. This is equivalent to saying that the set of all polynomials is closed under addition and
scalar multiplication, that is, the sum of any two polynomials is again a polynomial, and the scalar
multiple of any polynomial is again a polynomial.

Subspaces of Function Spaces

Let us consider functions with special properties. We saw in Section 3.1 the vector space FI
consisting of all functions defined on an interval I. We will refer to any subspace of FI, for any
interval I, as a function space.
In Calculus, we encountered continuous functions on I. It was a basic result that the sum of two
continuous functions and a scalar (constant) multiple of a continuous function are again continuous.
Thus the set CI of continuous functions on I is a subspace of FI, and we write:

CI  f x  FI | f x is continuous on I  FI.

Now, we liked a function even more when it is differentiable, that is, its derivative exists at every point
on the interval I (if I has a closed end-point, say I  a, b, we have to consider only the
right-differentiability of the function at x  a). Again, we saw in Calculus that the sum of two

312 Section 3.4 Subspaces, Basis and Dimension



differentiable functions and a scalar multiple of a differentiable function are again differentiable.
However, we will further require that the derivative of these functions also be continuous (in the
Exercises, we show an example of a differentiable function whose derivative is discontinuous.). We
call these functions C1I, to denote that their first derivative is continuous:

C1I  f x  FI | f x is differentiable, and f /x is continuous on I  FI.

But recall that a function that is differentiable on an open interval I is itself also continuous on I, and
therefore the space C1I is a subspace of CI, so we can write: C1I  CI.
Continuing with this logic, a function that is twice-differentiable on I with a continuous second
derivative also possesses a continuous first derivative, and so we call the set of these functions:

C2I  f x  FI | f x is twice-differentiable, and f //x is continuous on I  C1I.

At this point, let us write the subspace inclusions (or nestings) that we have so far:

C2I  C1I  CI  FI.

By Induction, we can define the subspace CnI consisting of all functions that are differentiable n
times, and whose n th derivative is also continuous. (As mentioned above, this automatically guarantees
that all derivatives, up to the n th derivative, are also continuous.)
However, since we now seem to be going right to left, and as mathematicians we normally like reading
from left to right, we will reverse the subspace symbol and write the descending sequence of nested
subspaces, where the space on the left contains the space on its right:

FI  CI  C1I  C2I  CnI  Cn1I  

Finally, we also have the subspace CI of functions that have derivatives of all possible orders. Since
we require that each derivative is likewise differentiable, we can conclude that all of these derivatives
are also continuous. We sometimes call this subspace the set of real analytic or smooth functions.
Our friends the polynomials, the sine and cosine functions, and the exponential functions of any base,
are all members of this somewhat exclusive club.
Notice also that CI is a subspace of all the CnI, but since the list above does not terminate, we
will exclude CI from the “end” of the list. However, we can visualize these nested subspaces
below, with CI living at the very core:

 
C ( I )

C ( I )C ( I ). . .
C n( I ). . .

C  ( I )

.

F ( I )
.

.

The Nesting of Spaces of Continuous and n-Differentiable Functions
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Basis for a Vector Space

We can define the concept of a basis for a vector space just as we did for n:

Definition — Basis for a Vector Space:
A set of vectors B from a vector space V,, is a basis for V if it is linearly independent
and Spans V.
We will agree that the zero vector space V  0V does not have a basis, since any set
containing 0V is automatically dependent.

Example: We saw in Section 3.2 that the finite set of monomials:
Bn  1, x, x2,  , xn

is a linearly independent subset of n. But we also saw that n  SpanBn , and so Bn is a basis for
n, for every positive integer n. Similarly, if we consider the countably infinite set:

B  1, x, x2, . . . , xn, . . . ,

then B is also linearly independent, and SpanB  , the vector space of all polynomials. Thus, B is a
basis for .

The Spanning property of a basis B tells us that every v  V can be expressed as a linear combination
of the vectors in B in at least one way. It turns out that if we combine this property with linear
independence, then this expression becomes unique, that is, every v  V can be expressed as a linear
combination of the vectors in B in exactly one way. The following Theorem tells us that the converse is
also true:

Theorem — Uniqueness of Representation:
Suppose that S  vi | i  I , for some non-empty indexing set I, is a set of vectors from
some vector space V,,.

Then: S is a basis for V,, if and only if every vector v  V can be represented
uniquely as a linear combination of a finite subset of vectors  vi1 , vi2 , . . . , vik  from S:

v  c1vi1  c2vi2   ckvik .

Proof: We will borrow notation from the proof of our Theorem that SpanS is a subspace of V.
 We are given that S is a basis for V,,. Thus, S Spans V and S is linearly independent.
Therefore, every vector v  V can be expressed as a linear combination from S in at least one way. In
other words, there is a finite subset S1  S such that v is a linear combination of the vectors in S1.
Suppose that there exists another finite subset S2  S such that v is also a linear combination of the
vectors in S2. As before, let S3  S1  S2  vi1 , vi2 , . . . , vik . Thus, the two linear combinations
that we have for v can both be written in terms of the vectors in S3, that is:

v  c1vi1  c2vi2   ckvik , and
v  d1vi1  d2vi2   dkvik .
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But now, subtracting the corresponding sides of the two equations, we get:

0V  c1  d1 vi1  c2  d2 vi2   ck  dk vik .

Since S is linearly independent and S3 is a finite subset of S, S3 is also linearly independent, and so all
the coefficients above have to be zero, that is:

c1  d1, c2  d2,  , ck  dk.

 Now, suppose that S has the uniqueness of representation property, that is, every v  V can be
represented uniquely as a linear combination from S:

v  c1vi1  c2vi2   ckvik .

This property directly shows that S Spans V. To prove linear independence, let us construct the
dependence test equation:

c1vi1  c2vi2   ckvik  0V.

for any finite subset vi1 , vi2 , . . . , vik  of S. But the Multiplicative Property of Zero also tells us that:

0vi1  0vi2   0vik  0V.

By the Uniqueness of Representation Property, we must have:

c1  0, c2  0, . . . , ck  0.
Thus, S is linearly independent.

Our next task, as before, is to show that any non-zero vector space has at least one basis B. Let us try
to construct a basis for V by using the same algorithm that we saw in Chapter 1. The key idea in the
proof is the Extension Theorem, that again, thanks to the 10 Axioms and the additional constructions
and properties of vector spaces, is still true in general, as you proved in Exercise 45 of Section 3.2:

Theorem — The Extension Theorem:
Let S   v1, v2, . . . , vn be a finite, linearly independent set of vectors from some vector
space V,,, and suppose vn1 is not a member of SpanS.
Then, the extended set: S /   v1, v2, . . . , vn, vn1 is still linearly independent.

Let us now attempt to mimic the proof from Chapter 1 of the existence of a basis of a non-zero
subspace V:
We initialize B to contain any nonzero vector, say B  v1. If V  SpanB, then we are finished.
If not, then enlarge B by including a vector that is not in SpanB, say a vector we will call v2. We now
have B  v1, v2, and B is linearly independent by the Extension Theorem. If V  SpanB, then we
are finished.
If not, then enlarge B by including another vector that is not in SpanB, say a vector we will call v3,
and repeat the process of checking if V  SpanB, where now B  v1, v2, v3. Again, since v3 is
not in the Span of v1, v2, the extended set B  v1, v2, v3 is linearly independent.
The process sounds simple enough, but the problem is that we are not guaranteed that this process
will terminate, much less terminate in a finite number of steps. In Chapter 1, we were able to use the
fact that we are dealing with a subspace of n, and therefore if we ever had n vectors in B, we would
have to stop because including one more vector would have resulted in a dependent set.
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In order to show that this algorithm will in fact produce a basis for us in an abstract vector space, we
need an extremely powerful Axiom from Set Theory that is called The Axiom of Choice, or
equivalently, Zorn’s Lemma or a process called Transfinite Induction. We will not elaborate on this
Axiom (the interested reader is invited to do an internet search), which is usually a subject for a more
advanced treatment of Linear Algebra. Suffice it to say that this algorithm will result in a basis B for
our vector space V, and although we did not complete the proof, we will formally state the Theorem as
follows:

Theorem — Existence of a Basis: Every non-zero vector space V,, has a basis B.

The cardinality of this basis B will be the next focus of our attention.

The Dimension of a Vector Space

The fact that our subspaces no longer live in some Euclidean space n leads to some interesting
complications. We will proceed with the following distinction:

Definition: A non-zero vector space V,, is called finite dimensional if we can find a
finite set B which is a basis for V. We call such a set a finite basis for V.
Otherwise, we say that V is infinite dimensional.
We will agree that the zero vector space V  0V has dimension 0, and is also
finite-dimensional.

Our next goal is to show that any two bases for a finite-dimensional space have the same number of
vectors. The key to this in Chapter 1 was The Dependent Sets from Spanning Sets Theorem, and its
contrapositive, the Independent Sets from Spanning Sets Theorem. This says that if a set of vectors
from the Span of a set of n vectors has more than n vectors, then it is automatically dependent. The
proof that we saw there carries over to the Span of a set of vectors from an abstract vector space,
thanks to the Ten Axioms. Thus, we generalize (as seen in the Exercises of Section 3.2):

Theorem — The Dependent/Independent Sets from Spanning Sets Theorem:
Suppose we have a set of n vectors: S  w 1, w 2, . . . , w n  V,,,
and we form W  SpanS.
Suppose now we randomly choose a set of m vectors from W to form a new set:

L  u1, u2, . . . , um.
Then, we can conclude that: if m  n, then L is linearly dependent.
Consequently, the contrapositive states that: if L is linearly independent, then m  n.

Again, this is exactly the Theorem that will allow us to prove:

Definition/Theorem — The Dimension of a Vector Space:
Any two bases for a finite-dimensional vector space V,, have exactly the same
number of elements. We call this common number the dimension of V and is denoted as
dimV. If dimV  k, we also say that V is a k-dimensional vector space.
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The Proof is exactly the same as the analogous Theorem in Section 1.6. This Theorem is actually true
as well even if V is infinite dimensional, though in this case “number of elements” must now be
replaced by the more general term cardinality. Thus, V may have dimension 0 or 1 and so on. Like
our Theorem on the Existence of a Basis, this Theorem will require Transfinite Induction in its proof
when V is infinite-dimensional.

Example: We saw earlier that Bn  1, x, x2, x3, . . . , xn is a basis for n. Since there are n  1
monomials in this set:

dimn   n  1.
Similarly, we saw that the countable set B  1, x, x2, . . . , xn, . . .  is a basis for , and thus:

dim  0.
In Section 3.4, we also saw the linearly independent, uncountable set:

S3  ekx |k    F, with |S3 |  1.

Since the Span of any set of vectors is a subspace, we can construct:

W  SpanS3   F,
and S3 is a basis for W. Thus:

dimW  1. 

We can also generalize the Theorem that says that any subspace of n is at most n-dimensional:

Theorem: Let W,, be a subspace of a finite-dimensional vector space V,,.
If dimV  n, then dimW  n, that is, dimW  dimV.
Furthermore, dimW  n  dimV if and only if W  V.

Again, the proof carries over exactly as we saw it in Section 1.7, thanks to the Extension Theorem.

Example: Consider 2, the vector space of polynomials with degree at most 2. Let:
W   px  2 | p3  2p1 .

First let us show that W is indeed a subspace of 2. First, W is not empty, because the zero polynomial
zx satisfies the condition z3  0  2z1. We must show next that W is closed under addition
and scalar multiplication. Suppose px and qx are members of W and c is a scalar. Then:

p  q3  p3  q3  2p1  2q1  2p  q1, and

c  p3  c  p3  c  2p1  2c  p1,
and thus W is indeed closed under both operations. Now, let us find a basis and the dimension of W.
We begin by forming a typical linear combination from the ambient space 2 and determine what
restrictions are imposed on the coefficients. Using our basis 1, x, x2, a typical member of 2 can be
written as a linear combination:

px  c0  c1x  c2x2.
The defining condition says that p3  2p1, so we must have:
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p3  c0  3c1  9c2  2c0  c1  c2   2p1.
We can rewrite this equation as: c0  5c1  7c2  0.
This is a single homogeneous equation. We can find solutions for it by making c1 and c2 our free
variables (this is because we wrote our linear combination in ascending degree). From this, we have:

c0  5c1  7c2,
and thus we have: px  5c1  7c2  c1x  c2x2.
Let us collect the terms with common coefficients:

px  c15  x  c27  x2 ,

and thus we see that any member of W must be a linear combination of the two polynomials 5  x and
7  x2 (both of which satisfy the required condition: 5  3  25  1, and likewise for 7  x2. In
other words:

W  Span5  x, 7  x2.

Since these are polynomials of different degrees, they are linearly independent by our Theorem in
Section 3.2. Thus, we have found a basis for W:

B  5  x, 7  x2,

and from this, dimW  2. As expected, it is smaller than dim2   3. We graph below the two
members of B on the left. We also graph on the right three examples of linear combinations from B:

p1x  45  x  07  x2   20  4x,

p2x  5  x  3
2 7  x2    11

2  x  3
2 x2, and

p3x  1
3 5  x  7  x2   26

3  1
3 x  x2.

52.50-2.5-5

20

15

10

5

0

-5

x

y

x

y

Two Basis Vectors for W

52.50-2.5-5

40

20

0

-20

x

y

x

y

Other Members of W

We can see both algebraically and graphically that p3  2p1 for all these polynomials.

Let us see what we can do if we have a slightly bigger ambient space and we play with some Calculus:
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Example: Let V  3, and consider:
W  px  3 | p2  0 and p /3  0 ,

under the same addition and scalar multiplication, of course. First let us show that W is indeed a
subspace of V. Again, the zero polynomial zx satisfies these two conditions, so W is not empty. We
must show next that W is closed under vector addition and scalar multiplication. If px and qx are
two vectors in W, and k is any scalar, then:

p  q2  p2  q2  0  0  0, and
p  q /3  p /3  q /3  0  0  0.

Thus, W is closed under addition, since both defining properties are satisfied by p  q. Similarly:

kp2  k  p2  k  0  0, and
kp /3  k  p /3  k  0  0,

and thus W is closed under scalar multiplication. Notice that we used two properties of the derivative:

p  q /x  p /x  q /x, and
k  p /x  k  p /x.

Now, let us further use our knowledge of Calculus in order to find a basis for W. We know that
1, x, x2, x3 is a basis for 3, so first we write:

px  c0  c1x  c2x2  c3x3,
as a typical generic member of 3. In order to be a member of W, it must satisfy the two defining
properties. Since the second property involves a derivative, we first compute:

p /x  c1  2c2x  3c3x2.
Now, the two properties say:

p2  0  c0  2c1  4c2  8c3, and
p /3  0  c1  6c2  27c3.

But this is a homogeneous system of two equations in four variables. We can solve this using our
techniques from Chapter 1. We assemble the matrix:

1 2 4 8
0 1 6 27

with rref
1 0 16 46
0 1 6 27

.

The nullspace of this matrix gives us the solutions to the four coefficients. Since the leading variables
are c0 and c1, and the free variables are c2 and c3, we can sight-read the basis for the nullspace:

c0, c1, c2, c3   c216,6, 1, 0  c346,27, 0, 1  16c2  46c3,  6c2  27c3, c2, c3 .
Thus, px must have the form:

px  16c2  46c3   6c2  27c3 x  c2x2  c3x3

 16c2  6c2x  c2x2  46c3  27c3x  c3x3

 c216  6x  x2   c346  27x  x3 .

These last two polynomials have different degrees, so they are independent, and since every member
of W must be a linear combination of these two polynomials, we conclude that W has basis:
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B  16  6x  x2,  46  27x  x3.

We also conclude that W is 2-dimensional. Notice also that the basis 16,6, 1, 0, 46,27, 0, 1
for the nullspace closely corresponds to the coefficients in the two basis vectors in B. Thus, by
decoding the basis for the nullspace, we can find a basis for W.
We can check that both polynomials in B satisfy the defining properties of W:

p1x  16  6x  x2; p2x  46  27x  x3;
p12  16  12  4  0; p22  46  54  8  0;

p1
/ x  6  2x; p2

/ x  27  3x2, and thus:
p1

/ 3  6  6  0; p2
/ 3  27  27  0.

We also graph the two polynomials below, and indeed we see that both polynomials have 2 as an
x-intercept, and the tangent line at x  3 is horizontal for both graphs.
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The last portion of the previous Theorem which states:

dimW  dimV if and only if W  V,

is false in the case when W is a subspace of an infinite dimensional vector space V. This is one of the
reasons why infinite dimensional vector spaces are best left in the appropriate field of study, which is
called Functional Analysis.

Example: Consider the vector space of all polynomials:
  Span1, x, x2, x3,  , xn, .

Since the set of monomials is countable and linearly independent, dim  0. Now, consider the
subspace:

e  SpanE, where E  1, x2, x4, x6,  , x2n, ,

consisting of all even polynomials, that is, the polynomials px that satisfy the equation px  px.
As seen in the Exercises in the previous Section, E is likewise countable and linearly independent, and
so dime   0 as well. But obviously e is not all of , and so we see that our Theorem on
subspaces of finite dimensional spaces is false if the ambient space is infinite dimensional. 
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Using dim(W) to Find Other Bases for W

In Section 1.9, we saw that if we knew the dimension of W, it becomes easier to verify if a subset B of
W is a basis for W. The Theorem that we saw there generalizes to all finite-dimensional subspaces:

Theorem — The Two-for-the-Price-of-One or Two-for-One Theorem:
Let W,, be a finite-dimensional subspace of a vector space V,,, with
dimW  n, and suppose that B  w 1, w 2,  , w n is any subset of vectors from W.
Then: B is a basis for W if and only if either B is linearly independent or B Spans W. In
other words, it is necessary and sufficient to check B for only one condition (and this would
more easily be the condition of linear independence) without checking the other if B already
contains the correct number of vectors.

3.4 Section Summary

A non-empty subset W of a vector space V,, is called a subspace of V if W is closed under  and
. In other words, for all w 1 and w 2  W, and k  : w 1  w 2  W, and k  w 1  W. As before, we
write W  V, and we refer to V as the ambient space of W.
Let W  V,,. Then: W is a subspace of V if and only if W,, is itself a vector space.
Suppose S  V,,, where S is non-empty. Then SpanS,, is a subspace of V,,.
The polynomial spaces: 0  1  2  3  n  n1    , form an increasing
sequence of nested subspaces.
The continuous functions, differentiable functions with continuous derivatives, and so on, form a
decreasing sequence of nested subspaces: C0I  C1I  C2I . . . CnI  Cn1I . . .
All these subspaces contain CI, the space of all functions with continuous derivatives of all orders.
Polynomials are members of this space, along with sinx, cosx and ex, among many others.
A set of vectors B from V,, is a basis for V if it is linearly independent and Spans V.
Uniqueness of Representation: A set of vectors S   vi | i  I is a basis for V,, if and only if
every vector v  V can be represented uniquely as a linear combination of a finite set of members
vi1 , vi2 , . . . , vik from S: v  c1vi1  c2vi2   ckvik .
Every non-zero vector space V,, has a basis B. A vector space V,, is called finite
dimensional if we can find a finite basis B for V, otherwise we say that V is infinite dimensional.
The Dependent/Independent Sets from Spanning Sets Theorem: Suppose we have a set of n
vectors: S  w 1, w 2, . . . , w n  V,,, and we form W  SpanS. Suppose now we randomly
choose a set of m vectors from W to form a new set: L  u1, u2, . . . , um. Then, we can conclude
that: if m  n, then L is linearly dependent. Consequently, the contrapositive states that: if L is
linearly independent, then m  n.

Let V,, be a finite-dimensional vector space. Any two bases for V,, have the same
number of elements. We call this common number the dimension of V. Let W,, be a subspace
of V,,. If dimV  n, then dimW  n. Furthermore, dimW  n if and only if W  V.
The “Two-for-One” Theorem: Let W,, be a finite-dimensional subspace of a vector space
V,,, with dimW  n, and suppose that B  w 1, w 2,  , w n is any subset of vectors from
W. Then: B is a basis for W if and only if either B is linearly independent or B Spans W.
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3.4 Exercises

1. Show that the set of all diagonal n  n matrices is a subspace of the set of upper triangular n  n
matrices (under the usual matrix addition and scalar multiplication). Is it also true if we replace
“upper” with “lower?”

2. Is the set of all diagonal n  n matrices also a subspace of the set of all symmetric n  n matrices?
3. Show that the set D of all vectors in n that are of the form:  r, r, . . . , r for some r   forms a

subspace of n. Find a basis for D and its dimension.
4. Does the set E of all vectors in n that are of the form:  r, 2r, 3r, . . . , nr for some r   form a

subspace of n? Why or why not? If so, find a basis for E and its dimension.
5. Is the set F of all vectors in 3 that are of the form: r, r2, r3 , for some r  , a subspace of

3? Why or why not? If so, find a basis for F and its dimension.
For Exercises 6 to 12: These Exercises all involve a possible subspace for 2 or 3. In order
to get the same basis as in the Answers (for those sets that are actually subspaces), let
px  a  bx  cx2 be the generic member for 2 (add dx3 for Exercises involving 3). Make
the leftmost variables the leading variables as we did in the Examples.

6. Show that the subset W of 3 defined by: W  px  3 | p2  p1 and p /2  0
is a subspace of 3. Find a basis for W and its dimension.

7. Show that the subset W of 3 defined by:

W  px  3 | p2  p /3 and p3  2p /1
is a subspace of 3. Find a basis for W and its dimension.

8. Show that the subset W of 2 defined by: W   px  2 | 2p1  3p /1 
is a subspace of 2. Find a basis for W and its dimension.

9. Show that the subset W of 2 defined by: W  px  2 
1

2 pxdx  0

is a subspace of 2. Find a basis for W and its dimension.
10. Show that the subset W of 3 defined by: W  px  3 

1

3 px dx  0

is a subspace of 3. Find a basis for W and its dimension.
11. Show that: W   px  2 | p3  2 is not a subspace of 2.
12. Show that the subset W of 3 defined by:

W  px  3 | p1  p2  2p /3, p1  p2 and p //2  p /0
is a subspace of 3. Find a basis for W and its dimension.

13. Show that the subset W1 of V  Spane2x, e3x, e5x defined by:

W1  f x  V | f 0  0 and f /0  0
is a subspace of V. Find a basis for W1 and its dimension.

14. Show that the subset W2 of V  Spane2x, e3x, e5x defined by:

W2   f x  V | f 0  f /0
is a subspace of V. Find a basis for W2 and its dimension. Why is this problem different from the
last one? Without looking at a basis for each space, would it be possible to say that W1 is a
subspace of W2, or W2 is a subspace of W1, or neither?
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15. Show that the subset W of V  Span sinx, cosx, tanx defined by:

W   f x  V | f 0  f /4

is a subspace of V. Find a basis for W and its dimension.
16. Let F be the set of all functions f x defined on an interval I, except possibly at a specific point

x  a  I.
a. Show that F is a vector space under the usual addition and scalar multiplication of functions.

b. Show that: W  f x  F |
xa
lim f a  0 is a subspace of F.

c. Show that: U  f x  F |
xa
lim f a  2 is not a subspace of F.

17. Think carefully about this one before you start making any computations: Show that the subset W
of 3 defined by:

W  px  3 | p1  0, p1  0, and p4  0

is a subspace of 3. Find a basis for W and its dimension. Again, think smartly!
18. In our Examples, we defined subspaces by listing two (or more) conditions joined by the word

“and.” Consider the set: W  px  2 | p2  0 or p3  0 .
a. Show that zx is a member of W.
b. Show that W is closed under scalar multiplication.
c. Show that W is not closed under vector addition, by producing two vectors from W whose

sum is not in W. Conclude that W is not a subspace.

For Exercises 19 to 27: Use the Two-for-One Theorem (and the answer to the
corresponding Exercise) to determine if the indicated set of vectors is also a basis for the
subspace W in the corresponding Exercise. In other words, check if each member of the basis is
actually a vector from the subspace, and check if the set is independent (it is easier to check
independence instead of Spanning).

19. Exercise 6: S  3  24x  9x2  5x3, 7  72x  27x2  15x3

20. Exercise 7: S  10x3  16x2  99x  85, 3x3  20x2  43x  16

21. Exercise 8: S  x2  8x, x2  4
22. Exercise 9: S  x2  2x, 2x  1

23. Exercise 10: S  x3  x  8, x3  3x2  23, 3x2  x  15

24. Exercise 10: S  x3  5x, 13x3  30x2, 6x2  13x
25. Exercise 12: S  22  10x  x2  x3
26. Exercise 14: S  e5x  2e3x, e5x  4e2x

27. Exercise 15: S  tanx  cosx  sinx, 2 tanx  2 sinx
28. Prove that W is a subspace of a vector space V,, if and only if for all vectors v, w  W

and all scalars r, s  : r  v  s  w  W.
29. Let W be a subspace of a vector space V,,. Show that W,, is also a vector space,

that is, W,, satisfies all 10 Axioms for a vector space in its own right. List all 10 Axioms
and decide if the property is inherited from V, or follows from the definition of the word
subspace. Warning: carefully prove that W has a zero vector and every vector has a negative.
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30. Equivalent Conditions for a Basis of a Subspace:
Suppose that V is a non-zero finite-dimensional vector space, and S  w 1, w 2,  , wm is any
subset of V (we are not assuming that S is a basis for V, and neither are we assuming that
dimV  m). Prove the following statements:
a. S is a basis for V if and only if S is a maximal linearly independent subset of V. This

means that if S / is another subset of V, with more vectors than S, then S / must be linearly
dependent. Hint: use Proof by Contradiction and the Extension Theorem to show that S
must also Span V in the converse direction.

b. S is a basis for V if and only if S is a minimal Spanning set of V. This means that if S // is
another subset of V, with fewer vectors than S, then S // cannot Span V. Hint: use Proof by
Contradiction and the Elimination Theorem to show that S must also be linearly independent
in the converse direction. Note that we do not have a Minimizing Theorem to help us.

c. S is a basis for V if and only if for every v  V, the equation:
v  c1w 1  c2w 2   cmwm has exactly one solution in c1, c2, . . . , cm.
This is called the Uniqueness of Representation Property of a basis.

d. Use (a) to show that dimW  k if and only if there exists a maximal linearly
independent subset of W consisting of k vectors.

e. Use (b) to show that dimW  k if and only if there exists a minimal Spanning subset of
W consisting of k vectors.

31. The objective of this Exercise is to demonstrate that the Two-for-One Theorem is sometimes
false if we try to apply it to an infinite dimensional vector space. Consider , the vector space of
all polynomials. Note that dim  0.
a. Show that S1  1, x2, x4,  , x2n,   is a linearly independent subset of , but S1 does

not Span . Note that |S1 |  0, but S1 is not a basis for .
b. Let S2  1  x, 1  x2, x  x2, x  x3, x2  x3, x2  x4,  , xn  xn1, xn  xn2,  .

Show that Spans , but S2 is not linearly independent. Note that |S2 |  0 as well, but S2
is not a basis for  either.

32. Let S   sinx  k |k  0, 2 . Show that S is an infinite set (in other words, if k1  k2 and
both are from 0, 2, then sinx  k1   sinx  k2 , but SpanS is a finite dimensional vector
space. What is its dimension?

33. Consider the vector space Mat3, 2, the set of all 3  2 matrices under the usual matrix addition
and scalar multiplication. Show that the set:

1 0
0 0
0 0

,
0 1
0 0
0 0

,
0 0
1 0
0 0

,
0 0
0 1
0 0

,
0 0
0 0
1 0

,
0 0
0 0
0 1

is a basis for Mat3, 2. Hint: show that every 3  2 can be expressed as a linear combination of
these matrices, and they are linearly independent.

34. Use the idea in the previous Exercise to:
a. find a basis for Matm, n,
b. prove that the set you constructed is indeed a basis, and
c. prove in general that Matm, n has dimension m  n. In particular, this implies that

Matn, n, the space of n  n (square) matrices, has dimension n2.
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35. Show that the set:

1 0 0
0 0 0
0 0 0

,
0 0 0
0 1 0
0 0 0

,
0 0 0
0 0 0
0 0 1

is a basis for the vector space of diagonal 3  3 matrices. Modify the hint in Exercise 32.
36. Let Diagn be the vector space of all diagonal n  n matrices. Use idea of the previous Exercise

to find a general basis for Diagn and state its dimension.
37. Show that the set:

1 0 0
0 0 0
0 0 0

,
0 1 0
0 0 0
0 0 0

,
0 0 1
0 0 0
0 0 0

,

0 0 0
0 1 0
0 0 0

,
0 0 0
0 0 1
0 0 0

,
0 0 0
0 0 0
0 0 1

is a basis for the vector space of upper triangular 3  3 matrices.

38. Let Uppern be the vector space of all upper triangular n  n matrices. Use the idea of the
previous Exercise to find a general basis for Uppern and state its dimension.
Hint: you will need the formula: 1  2  3   k  kk  1

2
that is usually seen in Precalculus when we study Mathematical Induction.

39. Let Lowern be the vector space of all lower triangular n  n matrices. Explain why the
dimension of Lowern should be exactly the same as that of Uppern.

40. Show that the set:

1 0 0
0 0 0
0 0 0

,
0 0 0
0 1 0
0 0 0

,
0 0 0
0 0 0
0 0 1

,

0 1 0
1 0 0
0 0 0

,
0 0 1
0 0 0
1 0 0

,
0 0 0
0 0 1
0 1 0

is a basis for the vector space of symmetric 3  3 matrices. Hint: complete the matrix below
depicting the general form of a symmetric 3  3 matrix:

a b 

b  
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41. Let Symn be the vector space of all symmetric n  n matrices. Use the idea of the previous
Exercise to find a general basis for Symn, and find its dimension.

42. Bisymmetric Matrices: We say that an n  n matrix A is bisymmetric if the entries of A are
symmetric across the main diagonal as well as the opposite diagonal, which is made of the entries
a1,n, a2,n1,  , an,1. Algebraically, this means:

a i,j  a j,i, and a i,j  an1j,n1i for all i, j  1n.

For example, the most general form of a bisymmetric 1  1, 2  2 and 3  3 matrix would be,
respectively:

a,
a b
b a

, and
a b c
b d b
c b a

.

Let us denote by Bisymn the set of all n  n bisymmetric matrices. Notice that every 1  1
matrix is automatically bisymmetric.

a. Show that Bisym2 is a subspace of Sym2.
b. Find a basis for Bisym2 and state dimBisym2. Hint: decompose the matrix above into

two matrices which contain only one distinct letter and the other entries are zeroes.

c. Show that Bisym3 is a subspace of Sym3.
d. Find a basis for Bisym3 and state dimBisym3.
e. Find the general form of all 4  4 bisymmetric matrices and repeat parts (a) and (b).

Replace 2 with 4 in the instructions.

f. Find the general form of all 5  5 bisymmetric matrices and repeat parts (a) and (b).
Replace 2 with 5 in the instructions.

g. Use your answer in (e) to show that if you erase the 1st and 4th rows and 1st and 4th
columns of a 4  4 bisymmetric matrix, what remains is a 2  2 bisymmetric matrix.

h. Use your answer in (f) to show that if you erase the 1st and 5th rows and 1st and 5th
columns of a 5  5 bisymmetric matrix, what remains is a 3  3 bisymmetric matrix.

i. Now, let us begin to generalize: show that Bisymn is a subspace of Symn.
j. Show how to construct a basis for Bisymn consisting of two kinds of matrices: (1)

matrices where the only non-zero entries are in rows 1 and n and in columns 1 and n, and
(2) matrices where all the entries in rows 1 and n and columns 1 and n are zeroes. Show
that the matrices of the 2nd kind are in one-to-one correspondence with a basis for
Bisymn  2. Draw from your observations in parts (e) and (f).

k. Use part (j) and Induction to show that:

dimBisymn 
k2 if n  2k  1, an odd number, and

k2  k if n  2k, an even number.

Note: divide your proof into the case when n is odd and n is even.
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43. The Centralizer of a Matrix: If A and B are n  n matrices, we know in general that AB  BA.
However, let us fix an n  n matrix A. Let us define the set:

CentralizerA  B  Matn | AB  BA .
In other words, CentralizerA consists of all the matrices B that commute with A.

a. Warm-up: Let A 
3 2
4 7

. Describe all the matrices in CentralizerA.

Hint: let B 
a b
c d

. Solve a system of equations involving the entries of B.

What kind of a system do you get?
b. Prove in general that for any n  n matrix A, CentralizerA contains an infinite number of

matrices. Who are these matrices?
c. Prove in general that for any n  n matrix A, CentralizerA is a subspace of Matn. Hint:

you only have to use the Definition of a subspace.
d. Use your answer in (a) to find a basis for the centralizer of the matrix A in that part. What is

the dimension of CentralizerA?
e. Suppose that A  kIn, for some k  . What is CentralizerA?

44. A “Pathological” Example: We required the members of C1I to be differentiable functions
whose derivatives are also continuous. The objective of this Exercise is to investigate a
differentiable function with domain  whose derivative is not continuous.

Consider the function: f x 
x2 sin 1

x if x  0

0 if x  0
with its graph over the interval 0. 1, 0. 1 shown below, with its parabolic asymptotes y  x2:

0.10.050-0.05-0.1

0.01

0.005

0

-0.005

-0.01

x

y

x

y

a. Warm-up: Explain why f x is continuous at all x  0. Then, use the Squeeze Theorem to
show that f x is also continuous at x  0 (see the graph for a hint). Thus, f x is
continuous at all x  .

b. Show that f x is in fact differentiable for all x  , and:

f /x 
2x  sin 1

x  cos 1
x if x  0, and

0 if x  0.

Hint: The first formula follows from basic rules of derivatives. The value of f /0 follows
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from the definition of the derivative: f /0 
h0
lim f 0  h  f 0

h .

The Squeeze Theorem will again be useful.
c. Show that f /x is not continuous at x  0, and in particular:

x0
lim f /x does not exist.

45. Vector Spaces of Infinite Sequences and Series: Let us recall some terms from Calculus:

A sequence an n1
 converges to a limit L   if

n
lim an  L.

This means that for any   0, there exists an integer N such that if n  N, then |an  L |  .
We define: an n1

  bn n1


 an  bn n1
 , and k  an n1


 k  an n1

 .

An infinite series 
n1


an converges to a limit T   if the sequence of partial sums Sn n1

 ,

where Sn  a1  a2   an, converges to T. In this case, we say that the sum of the series is
T. We know the exact sum for geometric series and telescoping series, among others. If the
partial sums do not converge, or have an infinite limit, we say that the series diverges.

We define: 
n1


an 

n1


bn  

n1


an  bn , and k 

n1


an  

n1


k  an .

We also say that 
n1


an converges even though we do not know the exact sum T, but we know

that T exists, thanks to one of our tests for convergence. These tests include the Integral Test,
Comparison Tests, and the Alternating Series Test.
We distinguish between two kinds of convergence:

A series 
n1


an is absolutely convergent if

n1


|an | converges. We often use the Root and Ratio

Tests to determine if a series is absolutely convergent. An absolutely convergent series is also
convergent as defined above.

A series
n1


an is conditionally convergent if

n1


an converges but

n1


|an | diverges.

Exactly one adjective applies to any infinite series: it is either absolutely convergent, or
conditionally convergent, or divergent.

a. Show that the set C of all sequences an n1
 that converge (to any limit) is a vector

space, under the addition and scalar multiplication of sequences defined above.
b. Show that the set C0 of all sequences an n1

 that converge to 0 is a subspace of C.

c. Show that the set C3 of all sequences an n1
 that converge to 3 is not a subspace of C.

d. Show that the set S of infinite series 
n1


an that converge (to any sum) is a vector space,

under the addition and scalar multiplication of infinite series defined above.
e. Show that the set A of absolutely convergent series is a subspace of S. Hint: use the

Triangle Inequality for Real Numbers from Chapter Zero: |x  y |  |x |  |y |.
Which convergence Theorem for positive series would finish the proof?

f. Show that the set D of divergent series is not a vector space.
g. Is the set of all conditionally convergent series a vector space? Why or why not?
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3.5 Linear Transformations on General Vector Spaces

Now we begin generalizing the terms, constructions and Theorems from Chapter 2:

Definition: A linear transformation T : V,V ,V   W,W ,W  is a function that
assigns a unique member w  W to every vector v  V, such that T satisfies the following
conditions for all u, v  V and all scalars k  :

The Additivity Property: T uV v   T u W T v, and

The Homogeneity Property: T k V v  k W T v.

As usual, we write Tv  w, the image of v under T.

It is of course cumbersome to explicitly specify that the addition and scalar multiplication on the left
side of the equations (inside the parentheses) are those of the space V, and those on the right side of the
equation are the operations in W, and indeed we will simply write:

T : V  W is a function, and T satisfies:
Tu  v  Tu  Tv, and
Tk  v  k  Tv,

when the addition and scalar multiplication on each side of the equations are clear. We can visualize
the two linearity properties with essentially the same diagram as in Section 2.1:

 
.

v

v + w
T ( w )

T ( v )

T ( v  + w )

w

k v

T ( v )

k T ( v ) = T ( k v ) 

.

v

WV VW

The Additivity Property The Homogeneity Property

As before, we call V the domain of T and W the codomain of T. A linear transformation is also called
a vector space homomorphism, the last word literally meaning “same form,” because T essentially
preserves the vector addition and scalar operation in both spaces. When the domain is the same space
as the codomain, i.e. T : V  V, we once again call T a linear operator as we did for Euclidean
spaces.

Let us generalize the simplest kinds of linear transformations:
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Definitions/Theorem: Let V,V ,V  and W,W ,W  be any two vector spaces. The
following three examples are all linear transformations:
The zero transformation from V to W is the function:

Z : V  W, where Zv  0W for all v  V.

The identity operator of V is the function:
IV : V  V, where IVv  v for all v  V.

More generally, for any scalar k, the scaling operator of V by k is the function:
Sk : V  V, where Skv  k  v for all v  V.

Proving that these are all linear transformations is easy, and will be assigned in the Exercises.

We began our study of linear transformations of Euclidean spaces by constructing the standard matrix
T and deriving information about T from the properties of matrix multiplication. However, it is only
possible to create a matrix for a linear transformation of abstract vector spaces if the domain is finite
dimensional, as we shall see in the next Section. In the meantime, we will try to be as general as
possible in re-defining the terms and proving the properties from Chapter 2 in the context of abstract
vector spaces, even if these spaces are infinite dimensional.

Evaluation Transformations

Let V  FI and W  . We can construct the evaluation transformation (sometimes called the
evaluation homomorphism):

Ea : FI  , where Ea f x  f a,

for some fixed number a  I. For example, if a  1, then E1x2  5x  2  2, E1lnx  0,
E1sin1x  /2.
Let us show that this is a linear transformation. If f x, g x  V and c is a scalar, then:

Ea f x  g x   f  g a  f a  g a  Ea f x  Eag x.

Similarly:
Eac  f x  c  f a  c  Ea f x,

so indeed Ea is a linear transformation.
We can extend this definition by choosing several members a1, a2, . . . , an  I and writing
a  a1, a2, . . . , an   n. We define:

Ea : V  n, where Ea f x   f a1 , f a2 , . . . , f an  .

It is easy to verify, using the ideas above, that Ea is indeed a linear transformation. For example, if
a  0, /6, /2, then:

Easinx   sin0, sin/6, sin/2  0, 1/2, 1.
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Differentiation and Integration as Linear Transformations

The basic operations of differentiation and integration from Calculus are arguably the most
sophisticated examples of linear transformations that we will see in this course, and demonstrate the
relevance and relationship of Linear Algebra with the fields of Calculus and Differential Equations.

Example: Let V  C1I, the space of all differentiable functions defined on the open interval I,
whose derivatives are also continuous, and let W  CI, the space of all continuous functions with
domain I. Define the differentiation linear transformation:

D : V  W, where:

D f x  d
dx f x  f /x for all f x  V.

For example, Dx3   3x2, Dsin3x  3 cosx, and De4x   4e4x.
Let us show that D possesses the two required properties. If f x, g x  V and c is a scalar, then:

D f x  g x  d
dx  f x  g x  d

dx f x  d
dx g x  D f x  Dg x,

where we used the famous property of the differentiation operation that the derivative of the sum of
two differentiable functions is the sum of their derivatives. Similarly, we use the other famous property
regarding constant multiples to show:

Dc  f x  d
dx c  f x  c  d

dx f x  c  D f x. 

Example: Let V  CI, the vector space of continuous functions on the closed interval I  a, b,
and W  , the vector space of real numbers under ordinary addition and scalar multiplication. Recall
from Calculus that any continuous function on a closed interval is integrable on this interval, so define
the function that finds the definite integral:

Def : CI  , where:

Def  f x  
a

b
f xdx.

For example, if I  0, , then:

Def sinx  
0


sinxdx  cosx|0  cos  cos0  2.

Notice that if f x  0 on the interval I, Def  f x is the area between f x and the x-axis above
a, b. Again, we will use some famous properties, this time of the definite integral, to show that Def
is in fact a linear transformation. If f x and g x  V and c is a scalar, then:

Def  f x  g x  
a

b
 f x  g xdx  

a

b
f xdx  

a

b
g xdx  Def  f x  Def g x,

and similarly:

Def c  f x  
a

b
c  f xdx  c  

a

b
f xdx  c  Def  f x.

Thus, Def is indeed a linear transformation.
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Example: Similarly, we can construct the linear transformation:

Ind : CI  C1I, where: Ind f x  
a

x
f tdt,

and a is the left endpoint of I. The symbol Ind stands for indefinite integral. We know from the
Fundamental Theorem of Calculus (traditionally, Part I) that the function on the right, usually denoted
gx, is in fact differentiable, and its derivative is precisely f x. Since f x was assumed to be
continuous, we obtain a function that is indeed in C1I. The proof of linearity is exactly the same as
that for the definite integral.

Function Spaces Preserved by the Derivative

We saw above that the derivative operation D can be viewed as a linear transformation with domain
C1I and codomain CI, for some interval I. However, suppose we have a function space
W  C1I, W  SpanB, such that the derivative of any function f x from W is again from W.
When this happens, we say that D preserves W, and D becomes an operator, that is, D : W  W.
By induction, of course, all higher derivatives of functions from W will also be in W, so all higher
derivatives D2, D3, , Dn,  likewise preserve W. In particular, D preserves CI, since we can
take derivatives of all order for any function in CI. This will be of particular importance when W is
finite dimensional in Sections 3.6 through 3.8.

Example: We know from Calculus that:
d
dx ex  ex, so by the Chain Rule: d

dx ekx  kekx.

Let us apply this to compute the following derivative:
d
dx x

2e3x   2xe3x  3x2e3x,

which follows from the Product Rule. Notice that the first term involves a new function, xe3x.
Similarly, we get:

d
dx xe3x   e3x  3xe3x,

and so we get another new function, e3x. However, we already know that:
d
dx e

3x   3e3x,

so we no longer get a function that we didn’t see earlier. The computation above tells us that the
function space:

W  SpanB, where B  x2e3x, xe3x, e3x,

is preserved by the derivative. More precisely:
Dc1x2e3x  c2xe3x  c3e3x   c12xe3x  3x2e3x   c2e3x  3xe3x   c33e3x 

 3c1x2e3x  2c1  3c2 xe3x  c2  3c3 e3x,

a linear combination of the three functions in B. Thus, the derivative transformation can be restricted to
W, and becomes an operator D : W  W. Furthermore, W is the smallest function space which
contains x2e3x and is preserved by D. This means that if U is preserved by D and contains x2e3x,
then W  U. 
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Arithmetic Operations on Linear Transformations

Just like linear transformations on the same Euclidean spaces, linear transformations that have the same
domains and codomains can be combined using addition, subtraction and scalar multiplication:

Definition/Theorem: Let T1, T2 : V,V ,V   W,W ,W  be linear transformations,
and k  . Then, we can define the sum, difference and scalar product of these
transformations as:

T1  T2  : V,V ,V   W,W ,W ,
T1  T2  : V,V ,V   W,W ,W , and
k  T1  : V,V ,V   W,W ,W ,

the linear transformations with actions given by:
T1  T2 v  T1v W T2v,
T1  T2 v  T1v W T2v, and
k  T1 v  k W T1v.

Note that the vector addition, subtraction and scalar multiplication on the right side of these
equations are those of the codomain W.

The fact that these functions are indeed linear transformations follow from the linearity properties of T1
and T2 and will be left as Exercises.

Example: Let V  Span sinx, cosx, and suppose:

T : V  V, where: T f x  2f /x  5f x.

We know from Calculus that: d
dx sinx  cosx and d

dx cosx   sinx,

and thus the derivative of a linear combination of sinx and cosx is once again a linear combination
of these two functions. This gives us another example of a finite-dimensional space which is preserved
by the derivative D. Thus T f x  V if f x  V. For example:

T3 sinx  4 cosx  23 cosx  4 sinx  53 sinx  4 cosx
 14 cosx  23 sinx.

Notice that if D is the differentiation operation and I is the identity operator, then we can write T as the
linear combination:

T  2D  5I. 

More generally, we can construct the linear combination of a finite list of linear transformations T1,
T2, . . . , Tn all of which have domain V and codomain W, with coefficients c1, c2, . . . , cn, via:

c1T1  c2T2   cnTn v  c1T1v  c2T2v   cnTnv,

where again, the scalar multiplications and additions on the right side are those of the codomain W.
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The Kernel and Range of a Linear Transformation

We will now generalize two important subspaces associated with a linear transformation that were
introduced in Section 2.5:

Definition/Theorem: If T : V  W is a linear transformation, the kernel of T is the set:
kerT  v  V | Tv   0W .

The set kerT is a subspace of the domain V.
Similarly, we define the range of T as the set:

rangeT  w  W | w  Tv  for some v  V .
The set rangeT is a subspace of the codomain W.

 

0V

.

.
. ..

.

ker (T)

.
.

.

.

.
.

T
T

.

.

. .

.

.

..

range ( T )

0W

V V WW

0V

0W

kerT  v  V | Tv   0W rangeT  w  W | w  Tv  for some v  V
is a subspace of V. is a subspace of W.

Recall that in Section 2.5, we were able to use the fact that for a linear transformation T : n  m:

kerT  nullspaceT  n, and rangeT  colspaceT  m,
which are obviously subspaces of the domain and codomain, respectively. Using only the definitions
above, we will be able to prove that kerT and rangeT are subspaces of V and W, respectively,
without the help of any matrix.

Proof: In the Exercises, you will show that T 0V  0W, as implied in the diagrams, and so by the
definitions, 0V  kerT and 0W  rangeT. We need to show that both sets are closed under vector
addition and scalar multiplication. Suppose v1 and v2 are both members of kerT. Thus:

Tv1   0W  Tv2 , and so:

Tv1  v2   Tv1   Tv2   0W  0W  0W.

Thus, v1  v2 likewise satisfies the definition of a vector in kerT. Similarly:

Tkv1   kTv1   k  0W  0W,

and so kv1 likewise satisfies the definition of a vector in kerT. Now for rangeT: suppose w 1 and w 2
are members of rangeT. Then there must exist two vectors v1 and v2 from V such that:
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w 1  Tv1  and w 2  Tv2 .

Note: these are not the same v1 and v2 that we used in the proof for kerT above. Now:
w 1  w 2  Tv1   Tv2   Tv1  v2 .

But v1  v2  V, and so w 1  w 2 likewise satisfies the definition of a vector in rangeT. Similarly:
kw 1  kTv1   Tkv1 ,

and since kv1  V, kw 1 likewise satisfies the definition of a vector in rangeT. 

Example: Let D : C1I  FI be the derivative transformation. To find kerD, we must find all the
functions f x  C1I such that f /x  zx, the function that is identically 0 for all x  I.
We know that if f x  k, a constant, for all x  I, then f /x  zx. Conversely, suppose f x is a
differentiable function on I and f /x  0 for all x in I. If f x is not a constant function, then there
must be two points c1 and c2 in I where f c1   f c2 . In this case, the slope of the secant line
through c1, f c1  and c2, f c2  would be:

m 
f c2   f c1 

c2  c1
 0.

But The Mean Value Theorem from Calculus tells us that there must be a c  c1, c2  where
f /c  m. This violates the given condition that f /x  0 for all x in I. Thus, every non-constant
function is not in kerD. This tells us that f x  kerD if and only if f x  k, a constant. Since k
can be written as k  k  1, we can conclude that:

kerD  Span1. 

Example: Let Def : C0, 1   be the definite integral transformation:

Def  f x  
0

1
f xdx.

The range of this transformation is a subspace of , which is a 1-dimensional vector space. Thus, its
only subspaces are either 0 or 1 dimensional, and so they are either only 0 or . But:


0

1
xdx  x2

2 0

1
 1

2 .

so the range cannot be only 0. Thus, rangeDef   .
We can make this more explicit: if r is any real number, let us find a multiple of the function f x  x
that has r as its definite integral, by solving the equation:


0

1
cxdx  cx2

2 0

1
 c

2  r.

Thus, c  2r. In other words, Def 2r  x  r, so for any r  , we can find a function
g x  2r  x  C0, 1, such that Def g x  r.
Once again, we can conclude that rangeDef   . There are other continuous functions that have r
as their definite integral, but all we need is one such function.

Example: Let V  SpanB, where B   sinx, cosx. We already know that B is linearly
independent, and so dimV  2. We saw in an Example above that V is also preserved by the
derivative operator D, that is: D : V  V. More explicitly, if:
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f x  c1 sinx  c2 cosx  V, then
D f x  c1 cosx  c2 sinx  V also.

From the equation above, though, we can also see that D f x  zx if and only if both c1 and c2
are zero. Thus, kerD   zx.
To find rangeD, consider an arbitrary vector gx in V:

gx  d1 sinx  d2 cosx  V.
We must ask: under what conditions on d1 and d2 can we find f x  V such that:

D f x  gx?
But if we let f x  c1 sinx  c2 cosx as we did above, then we must solve the equation:

c1 cosx  c2sinx  d1 sinx  d2 cosx.
By the Uniqueness of Representation Theorem, we must have:

c1  d2 and  c2  d1.
This tells us that for any coefficients d1 and d2 in gx, we can find a function f x  V such that
D f x  gx. Thus, rangeD  V.
Notice that D in this Example has domain V and not C1I, and so we obtain a different answer for the
kernel.

Example: Let V  SpanB, where B  e2x, e4x. We know from Section 3.2 that B is linearly
independent. It is also easy to see that V is preserved by the derivative operator D, and thus it is also
preserved by the 2nd derivative D2. Furthermore, the function:

T : V  V, given by T f x  f //x  3f /x  10f x
can also easily be checked to be a linear transformation. Consider the typical member of V:

f x  c1e2x  c2e4x.
Its derivatives are:

f /x  2c1e2x  4c2e4x, and
f //x  4c1e2x  16c2e4x.

Thus:
T f x  4c1e2x  16c2e4x  32c1e2x  4c2e4x   10c1e2x  c2e4x 

 4c1e2x  16c2e4x  6c1e2x  12c2e4x  10c1e2x  10c2e4x  6c2e4x.
We can therefore conclude that f x  kerT if and only if c2  0, that is, f x  c1e2x. Similarly,
since c2 can be any real number, rangeT consists of all multiples of e4x. Thus:

kerT  Spane2x and
rangeT  Spane4x. 

In the next Section, we will construct a matrix for T when V and W are finite dimensional, and we will
use these matrices in Section 3.7 to solve for the kernel and range of T as before — using information
obtained from the nullspace and columnspace of this matrix.
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3.5 Section Summary

A linear transformation T : V,V ,V   W,W ,W  is a function that assigns a unique
member w  W to every vector v  V, such that T satisfies for all u, v  V and all scalars c:

TuV v  Tu W Tv, and Tc V u  c W Tu.

We call V the domain of T and W the codomain of T. When the domain is the same space as the
codomain, i.e. T : V  V, we call T a linear operator.
We can construct the evaluation transformation (sometimes called the evaluation homomorphism):
Ea : FI  , where Ea f x  f a, for some fixed number a  I. We can extend this definition
by choosing several members a1, a2, . . . , an  I and writing a  a1, a2, . . . , an   n. We define:
Ea : V  n, where: Ea f x   f a1 , f a2 , . . . , f an .
The differentiation operation and both definite and indefinite integration operations are linear
transformations on the appropriate function spaces.
In some instances, the derivative of every function in a function space W is again a function from W. In
this case, we say that D preserves W, and we can view the restriction of the derivative operation D to
W to be an operator, D : W  W. In particular, D preserves CI.
We can add and subtract two linear transformations and take a scalar multiple of a linear
transformation using the arithmetic in the codomain of these linear transformations.
Suppose that T : V  W is a linear transformation.
The kernel of T: kerT  v  V | Tv   0W , is a subspace of the domain V, and the
range of T: rangeT  w  W | w  Tv  for some v  V , is a subspace of the codomain W.

3.5 Exercises

1. Compute the evaluation transformations:

a. E25x2  3x  7. b. E/3tanx c. Eelnx

2. Let a  , sin13/5, /6. Compute:

a. Easinx b. Eacos2x c. Eatanx
3. Let a  3, 1, and consider the linear transformation: Ea : 2  2.

a. Compute Ea5x2  8x  3.
b. Find a basis for kerEa. Hint: think of a factored form for px if Eapx  zx.

4. Let a  5, 3,2, and consider the linear transformation: Ea : 3  3.

a. Compute Ea7x3  4x2  3x  6
b. Find a basis for kerEa. Hint: think of a factored form for px if Eapx  zx.

5. Let a  5, 3,2, and consider the linear transformation: Ea : 2  3.
a. Compute Ea4x2  5x  8
b. Describe kerEa. Hint: how many roots can a quadratic polynomial have? Why is this

Exercise different from the two previous ones?
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6. Let T : 2  3 be given by: Tpx   p1, p /2, 2p3  5p /1.
a. Compute T5x2  8x  3.
b. Show that T is in fact a linear transformation.

7. Let T : 2  4 be given by: Tpx  p2, p /1, p //3, 
0

1 pxdx .

a. Compute T5x2  8x  3.
b. Show that T is in fact a linear transformation.

8. Let T : 3  1 be given by: Tpx  p //x.
a. Compute T2x3  5x2  4x  3.
b. Explain why, in general, if px  3, then Tpx  1.
c. Show that T is in fact a linear transformation.
d. Show that kerT  1  3. Hint: Start with a generic cubic:

px  c0  c1x  c2x2  c3x3, and show that c2  c3  0 if and only if px  kerT.
e. Show that rangeT  1.

9. Let T : 2  4 be given by: Tpx  px  x2.
a. Compute T3x2  2x  7.
b. Explain why, in general, if px  2, then Tpx  4.
c. Show that T is in fact a linear transformation.
d. Show that kerT  zx. Hint: Look at the highest degree.
e. Show that rangeT  Spanx2, x3, x4. In other words, rangeT consists exactly of

those polynomials of the form px  c2x2  c3x3  c4x4, that is, polynomials missing the
constant and linear terms.

f. Prove in general that if qx is a fixed polynomial of degree k, then:
Mqx : n  nk given by: Mqxpx  px  qx

(i.e., multiplication by qx) is a linear transformation.
g. Show that kerMqx   zx. Use the same idea as part (d).
h. In contrast, show that: T : 2  2 given by: Tpx  px  x2,

is not a linear transformation.
10. Consider Ind : 2  3, given by: Indpx  

0

x ptdt.

We know from the text that Ind is a linear transformation.
a. Compute Ind3x2  2x  7.
b. Explain why, in general, if px  2, then Indpx  3.
c. Show that kerInd  zx. Hint: Start with a generic quadratic, px  c0  c1x  c2x2

and show that if 
0

x ptdt  zx, then c0  c1  c2  0.

d. Use the same idea to show that rangeInd  Spanx, x2, x3.

For Exercises 11 to 18: We saw that W  Spanx2e3x, xe3x, e3x and
V  Span sinx, cosx are preserved by the derivative D. For the following Exercises, we
are given a function space W  SpanB, where B   f 1x, f 2x, f nx  and a function
f x  W. (a) Find D f x for the indicated f x; b) Construct a generic function
f x  c1 f 1x  c2 f 2x   cn f nx  W; c) Show that D f x  W for the f x you
constructed in part (b), and thus D preserves W; (d) Find a basis for kerD or show that
kerD  zx; (e) Find a basis for rangeD, or show that rangeD  W.
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11. W  SpanB, where B  ex, e2x; f x  5ex  3e2x.

12. W  SpanB, where B  ex sinx, ex cosx; f x  4ex sinx  3ex cosx.
13. W  SpanB, where B  e3x sin2x, e3x cos2x; f x  5e3x sin2x  9e3x cos2x.

14. W  SpanB, where B  xe5x, e5x; f x  2xe5x  7e5x.

15. W  SpanB, where B  x2e4x, xe4x, e4x; f x  5x2e4x  2xe4x  7e4x.

16. W  SpanB, where B  x2  5x, x  5x, 5x; f x  4x2  5x  9x  5x  2  5x.

17. W  3  SpanB, where B  1, x, x2, x3; f x  2x3  8x2  3x  7.

18. W  SpanB, where B  x sin2x, xcos2x, sin2x, cos2x;
f x  4x sin2x  9xcos2x  5 sin2x  8 cos2x.

19. Let B   sinx, cosx and W  SpanB.
Consider the function T : W  W given by: T f x  f //x  3f /x  2f x.
a. Compute T3 sinx  8 cosx.
b. Explain why, in general, if f x  W, then T f x  W also.
c. Show that T is in fact a linear operator. Hint: since W  C2, it is sufficient to show that

the additivity and homogeneity properties are enjoyed by any two twice-differentiable
functions f x and g x.

20. Let S  e4x sin3x, e4x cos3x, and let U  SpanS.
Consider the linear operator T : U  U given by: T f x  f //x  3f /x  2f x.
Notice that this is the same formula as that of Exercise 19, but the domain and codomain are now
a different function space U.
a. Compute T5e4x sin3x  9e4x cos3x.
b. Explain why U is closed under T, that is, if f x  U, then T f x  U also.
c. Explain why your work in Exercise 19 (c) is enough to show that this T is also a linear

operator (even though it is acting on a subspace of C2).

21. The purpose of this Exercise is to generalize the previous Exercise. Let
S  eax sinbx, eax cosbx, for some real constants a and b, and let U  SpanS.
a. Compute Dc1eax sinbx  c2eax cosbx.
b. Use (a) to explain why, in general, if f x  U, then D f x  U also, and thus, D is an

operator: D : U  U.

22. Let S  e4x, e3x, e5x, and let W  SpanS.
a. Compute Dc1e4x  c2e3x  c3e5x .
b. Use (a) to explain why, in general, if f x  W, then D f x  W also, and thus, D is an

operator: D : W  W.
c. Use induction to show that all higher derivatives Dn preserve W, for every integer n  1.
d. Consider the linear transformation T : W  W, given as the linear combination:

T  5D2  8D  21IW.
Find Tc1e4x  c2e3x  c3e5x .

e. Use (d) to find a basis for kerT.
f. Use (d) to find a basis for rangeT.
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23. Suppose that W  SpanB and W is preserved by the derivative, that is, D : W  W is an
operator. Prove that any linear combination: c0IW  c1D  c2D2 cnDn, of the identity
operator on W, the derivative D, and all higher derivatives, also preserves W. Hint: use induction.

24. Suppose that a  a0, a1,  , an , where a0, a1, , an are n  1 distinct real numbers.
Consider the evaluation homomorphism:

Ea : n  n1, where Eapx   pa0 , pa1 ,  , pan  .
Prove that kerEa  zx, where zx is the zero polynomial. Hint: use the Fundamental
Theorem of Algebra. Hint: review Exercises 1 to 5.

25. Suppose instead that a  a1, a2,  , an , where a1, , an are n distinct real numbers.
Consider the evaluation homomorphism:

Ea : n  n, where Eapx   pa1 , pa2 ,  , pan  .

Prove that kerEa is a 1-dimensional subspace of n. What polynomial can serve as a basis for
the kernel? Hint: you may leave your answer in factored form.

26. Let T : Mat2, 3  Mat3, 2 be given by: TA  A, the transpose of A.

a. Let A 
4 3 5
0 1 7

. Compute TA.

b. Explain why, in general, if A  Mat2, 3 then TA  Mat3, 2.
c. Show that T is indeed a linear transformation.
d. Show that kerT  02,3.
e. Show that rangeT  Mat3, 2.

27. State and prove analogous statements to (b) through (e) from the previous Exercise if in general
T : Matm, n  Matn, m is the transpose operation: TA  A.

28. The Trace of a Square Matrix: Define the trace function: tr : Matn, n  , given by:
trA  a1,1  a2,2   an,n.

Prove that tr is a linear transformation.
29. Let T : V  W be any linear transformation. Prove that T 0V  0W in two different ways:

a. Complete the property: 0V  0V  ??? and use it in your proof.
b. Complete the property: 0  v  ??? and use it in your proof.

30. Show that the zero transformation Z : V  W, identity operator IV : V  V, and the scaling
operators Sk : V  V, are in fact linear transformations.

31. Let T : V  W be a linear transformation. Prove that T is the zero transformation Z if and only if
kerT  V or rangeT  0W .

32. Let T1 and T2 be linear transformations from V to W. Show that T1  T2, T1  T2 and k  T1 are
also linear transformations from V to W.

33. Flashback to Section 3.1: Prove that the set of all linear transformations T : V  W is itself a
vector space under the addition and scalar multiplication from the previous Exercise. This vector
space is called HomV, W. Hint: Which of the 10 Axioms are verified by the previous Exercise?

34. From Kansas to Oz: Show that T : , ,   ,, given by: Tx  ex

is a linear transformation. Here,  is a vector space under ordinary addition and scalar
multiplication, but recall that the vector operations in  are: x y  xy, and r  x  xr.
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3.6 Coordinate Vectors and Matrices for Linear Transformations

We saw in Section 2.1 that a linear transformation T : n  m corresponds to an m  n matrix, the
standard matrix of T. Our major goal in this Section is to see that if V and W are finite dimensional
vector spaces, then we can likewise simulate the action of T : V  W using matrix multiplication,
and that there are in fact an infinite number of ways to do this. First, we need to generalize the concept
of coordinates for a vector in n:

Definition: Let B  w 1, w 2, . . . , w n be an ordered basis for an n-dimensional vector space
V. If v is any vector in V, we know that v can be expressed uniquely as a linear combination
of the vectors of B: v  c1w 1  c2w 2   cnw n.
We call the vector c1, c2, . . . , cn  the coordinate vector of vwith respect to B, written as:

v B  c1, c2, . . . , cn .

The n  1 matrix corresponding to v B is called the coordinate matrix of v with respect to
B, written as:

v B 

c1

c2



cn

.

Example: Let B  1, 0, 1, 1, 1, 0, 0,1, 1. We could leave it as an Exercise to check that
this set is indeed a basis for 3, but we will see below that it will not be necessary. Now, suppose
v  4, 8,2. To find the coordinates for vwith respect to B, we have to solve:

4, 8,2  c11, 0, 1  c21, 1, 0  c30,1, 1.

As before, we assemble the vectors of B into columns and solve the augmented system:

1 1 0 | 4
0 1 1 | 8
1 0 1 | 2

, whose rref is
1 0 0 | 1
0 1 0 | 5
0 0 1 | 3

.

Thus, v B  1, 5,3, and indeed, we can check:

1  1, 0, 1  5  1, 1, 0  3  0,1, 1  4, 8,2.

At this point, we also notice that the left side of the rref of our augmented matrix is I3, so as a bonus,
we can see that B is indeed a basis for 3.
Now let us work backwards. Suppose w  3, and w B  5, 2, 7. Then:

w  51, 0, 1  21, 1, 0  70,1, 1  7,5, 2. 

Notice that if we start with a basis B for n and a vector v  n, then v B is another vector from n.
The process of computing the coordinate vector turns out to be a familiar special kind of operation:
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Theorem: For any ordered basis B  w 1, w 2, . . . , w n of an n-dimensional vector space V,
the function T : V  n given by:

T v   v B

is a linear transformation. In particular, if V  n and B is a basis for n, then T is in fact
one-to-one and onto, i.e., an isomorphism of n.

Proof: Suppose that u B  c1, c2, . . . , cn , and v B  d1, d2, . . . , dn . These mean that:

u  c1w 1  c2w 2   cnw n, and
v  d1w 1  d2w 2   dnw n.

Thus, we have:
u  v  c1  d1 w 1  c2  d2 w 2   cn  dn w n,

and therefore:
u  v B  c1  d1, c2  d2, . . . , cn  dn 

 c1, c2, . . . , cn   d1, d2, . . . , dn 

 u B  v B.

Similarly, we can show that c  u B  c  u B , which we leave as an Exercise. Thus the process of
finding the coordinates of an arbitrary vector with respect to B is indeed a linear transformation.
Now, we have to show that T is one-to-one and onto in the special case when V  n. But this follows
automatically because every vector v is uniquely expressible as a linear combination of the vectors of
B. Thus T is onto because every coordinate vector lets us compute the corresponding vector using the
entries as the coefficients for the vectors of B, and T is one-to-one because two different vectors must
have different coordinates by the Uniqueness of Representation property. We will see later in this
Chapter that for a fixed basis B, the process of finding coordinates with respect to B is also an
“isomorphism” from any n-dimensional vector space V to n. 

Coordinates for Abstract Vector Spaces

Let us look at some examples of bases and coordinates for polynomial and function spaces.

Example: Consider n   px  c0  c1x   cnxn |c0, c1, . . . , cn  .
We know that the monomials B  1, x, x2, . . . , xn form a basis for n.
The coefficients of these monomials are exactly the coordinates of px  n with respect to this
basis: pxB  c0  c1x   cnxn B  c0, c1, c2, . . . , cn .
It is thus natural to think of B as a standard basis for n, and also shows why the ascending order is
more natural. Let us look at a specific polynomial space, say 3, with standard basis
B  1, x, x2, x3. Thus, for example:

3  5x  7x2  x3 B  3,5, 7, 1,

4x  x3 B  0, 4, 0,1, and

9x2  6x  8 B  8,6, 9, 0.

Notice that we have to be careful with “missing” powers, and also respect the order of the basis.
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Example: Let us stay with the polynomial space 3. It is a 4-dimensional space, so let us consider:
B /  x3  4x2  5x  2, x2  7, x  3, 2.

There are 4 polynomials in B /, and the degrees of these 4 polynomials are all distinct, and thus from
Section 3.2, we know that B / is linearly independent, and therefore is a basis for 3 by the
Two-For-One Theorem. Finding the coordinates of a random polynomial with respect to this basis,
though, is not as obvious as it was for our standard basis. For example, let us find:

3  5x  7x2  x3 B / .

We have to solve for coefficients c1, c2, c3 and c4, such that:
3  5x  7x2  x3  c1x3  4x2  5x  2  c2x2  7  c3x  3  c42.

We can do this systematically by comparing coefficients, as we did in Section 3.2. Looking at the x3

terms, we must have c1  1. But the x2 terms tell us that: 7  4  c2, and thus c2  3. Now, the x
terms tell us that: 5  5  c3, so c3  0. Finally, the constant terms tell us that: 3  2  3  7  2c4,
so c4  10. Thus 3  5x  7x2  x3 B /  1, 3, 0,10. We can check that:

3  5x  7x2  x3  1  x3  4x2  5x  2  3  x2  7  0  x  3  102. 

Coordinate Vectors for W  Span(B)

If W  SpanB, where B is a linearly independent subset of some vector space V, then we know that
B is automatically a basis for W. We can thus think of B as a standard basis for W.

Example: Consider B   sinx, cosx and W  SpanB. Then:

4 cosx  7 sinxB  7, 4.

The formula for sin   tells us that f x  sinx  /6 is a member of W, because:
sinx  /6  sinxcos/6  cosx sin/6

 3
2 sinx  1

2 cosx,

and thus sinx  /6B  3 /2, 1/2 . 

Constructing A Matrix For T

Now we come to the main goal of this section. We know that a linear transformation T : n  m has
an m  n standard matrix:

T   T e1  | T e2  | | T en .

We compute T x1, x2, . . . , xn  using a matrix product:

T x1, x2, . . . , xn   x1T e1   x2T e2    xnT en   T e1  | T e2  | | T en 

x1

x2



xn

.
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Let us use this to motivate the construction of a matrix for a linear transformation of abstract vector
spaces T : V  W. We must assume that V and W are finite dimensional vector spaces, say with
dimV  n and dimW  m. Our first step is to choose a basis for V, say B  v1, v2, . . . , vn , and
a basis for W, say B /  w 1, w 2, . . . , wm.
We know that any vector v  V can be written uniquely as a linear combination:

v  c1v1  c2v2   cnvn.
By the two linearity properties, we have:

T v   T c1v1  c2v2   cnvn 

 c1T v1   c2T v2    cnT vn .

Now, we saw that the process of finding the coordinates of a vector with respect to a basis is a linear
transformation. Since T v   W, we will now proceed to find the coordinates of T v  with respect
to the basis B / of W:

T v B /  c1T v1   c2T v2    cnT vn B /

 c1T v1 B /  c2T v2 B /   cnT vn B / .

But each of the n coordinate vectors T vi B / in this sum is a vector in m, and thus can be written as
an m  1 coordinate matrix T vi B / . We can thus assemble these n coordinate matrices into a single
m  n matrix which we will call T B,B / , and defined by:

T B,B /   T v1 B / | T v2 B / | | T vn B / .

Again, notice that the dimension of T B,B / is:

m  n  dim codomain of T  dim domain of T .

If we change T v B / to the coordinate matrix T v B / , our last equation above says:

T v B /   T v1 B / | T v2 B / | | T vn B / 

c1

c2



cn

 T B,B / v B.

Let us summarize this construction:

Definition/Theorem: Let T : V  W be a linear transformation, where dimV  n and
dimW  m. Let B  v1, v2, . . . , vn be a basis for V, and let B /  w 1, w 2, . . . , wm be
a basis for W. The m  n matrix T B,B / , given by:

T B,B /   T v1 B / | T v2 B / | | T vn B / ,
is called the matrix of T relative to B and B /.
For any v  V, we can compute T v  via:

T v B /  T B,B / v B.
If T : V  V is an operator and we use the same basis B for the domain and codomain
(that is, B  B /, we write T B instead of T B,B.
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We can think of computing T v  via T v B /  T B,B / v B as a three-step process:

1. ENCODE: Given v  V, find coefficients c1, c2, , cn, such that:
v  c1v1  c2v2   cnvn,

and assemble the coordinate matrix:

v B 

c1

c2



cn

 n.

2. MULTIPLY: Compute the product:

T B,B / v B  T B,B /

c1

c2



cn

 T v  B / 

d1

d2



dm

 m.

3. DECODE: Use the coefficients d1, d2, , dm of T v  B / and the basis B / to explicitly find:

T v   d1w 1  d2w 2   dmwm  W.

Example: Let T : 3  2 be the function given by:

T px  5p /x  p //x2x  7  p3  x2.
Since each derivative drops the degree by 1, the first term will have degree at most 2, the second
derivative has degree at most 1, so when we multiply it by 2x  7, the product will have a degree of at
most 2. The last term has degree either 0 or 2. Thus, T indeed sends a polynomial from 3 to 2. For
example:

T 2  3x  5x2  x3   53  10x  3x2   10  6x2x  7  2  9  45  27x2

 76x2  72x  85  2.
Let us first prove that T is indeed a linear transformation:

T px  qx
 5p  q /x  p  q //x2x  7  p  q3  x2

 5p /x  q /x  p //x  q //x2x  7  p3  q3  x2

 5p /x  5q /x  p //x2x  7  q //x2x  7  p3  x2  q3  x2

 5p /x  p //x2x  7  p3  x2  5q /x  q //x2x  7  q3  x2

 T px  T qx.
Notice that the additivity property essentially follows from the distributive and commutative
properties. Similarly, we can show that T c  px  c  T px.
Now, let us use the standard bases:

B  1, x, x2, x3 and B /  1, x, x2

for 3 and 2, and find T B,B / . We apply T to each vector of B, in the given order:
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T px  5p /x  p //x2x  7  p3  x2, and so:
T 1  0  0  1  x2  x2;
T x  5  1  0  3  x2  3x2  5;

T x2   5  2x  22x  7  9  x2  9x2  6x  14;
T x3   5  3x2  6x2x  7  27  x2  24x2  42x.

Thus:

T 1B /  0, 0, 1,

T xB /  5, 0,3,

T x2 B /  14, 6, 9, and

T x3 B /  0,42,24.

We assemble these 4 coordinate vectors into the columns of a 3  4 matrix:

T B,B / 

0 5 14 0
0 0 6 42
1 3 9 24

.

Let us recompute T 2  3x  5x2  x3  using T B,B / :

1. ENCODE: Find 2  3x  5x2  x3 B :

2  3x  5x2  x3 B  2, 3,5, 1.
2. MULTIPLY: Compute the product T B,B / v B:

T v B /  T B,B / v B 

0 5 14 0
0 0 6 42
1 3 9 24

2
3
5

1



85
72
76

.

3. DECODE: Use the coefficients in T v  B / and B / to find T v :

T v   85  1  72  x  76  x2

 85  72x  76x2,
which confirms our previous computation.

Example: Let us suppose that we are given a linear transformation T : 2  1, with matrix:

T B,B / 
5 3 2
4 1 7

,

where B  x2  2, x  3, 1 and B /  x  1, x  1. The polynomials in B have distinct degrees,
and there are three polynomials in B from 2, which just happens to be 3-dimensional, and so B is a
basis for 2. On the other hand, B / contains two polynomials from 1 which are not parallel to each
other, and so B / is likewise a basis for 1. Now, suppose we want to find T px, where:
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px  7x2  4x  8.
We follow the three steps, as usual:

1. ENCODE: Find pxB . Since there is only one basis vector of degree 2 and one of degree 1, it
is easy to figure out the required coefficients. With a little effort, we find:

7x2  4x  8  7x2  2  4x  3  61, and so

7x2  4x  8B  7, 4,6.
2. MULTIPLY: Compute the product T B,B / pxB:

5 3 2
4 1 7

7
4
6


11
74

.

3. DECODE: We find T px using the coefficients 11 and 74 on the ordered basis B /:

T px  11x  1  74x  1  85x  63. 

Unfortunately, as far as this Example is concerned, there is absolutely no way that we can check that
this answer is correct, since we have no idea about the inner workings of T. The example also begs the
question: why on earth would anyone use the two strange and inconvenient bases that we saw above?
In a little bit, though, we will revisit how to create the projection matrix onto a plane  from Chapter 2.
Since we already have one way to do it, we can certainly verify our answer. We will be using a basis
which on face value looks complicated, but is chosen because the action of the projection operator
follows easily.

Function Spaces Preserved by the Derivative

We have seen that in general, the derivative transformation:

D : C1I  CI,
has domain C1I and codomain CI, for some interval I. Both spaces are unfortunately infinite
dimensional, and so it is impossible to create a matrix to represent this operation. However, we have
seen finite dimensional subspaces W  C1I, W  SpanB for some finite set of differentiable
functions B, which are preserved by D. In this case, D becomes an operator:

D : W  W,
and so we can assemble DB.

Example: We saw in Section 3.5 that W  SpanB, where B  x2e3x, xe3x, e3x, is preserved by
D. The derivatives of the three functions in B are:

Dx2e3x   3x2e3x  2xe3x,
Dxe3x   3xe3x  e3x, and
De3x   3e3x.

Assembling the coefficients in the columns of a 3  3 matrix, in the order given by B (both left-to-right
and top-to-bottom), we get:
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DB 

3 0 0
2 3 0
0 1 3

.

Thus, if we want to compute the derivative of f x  5x2e3x  9xe3x  4e3x, we perform the matrix
product:

3 0 0
2 3 0
0 1 3

5
9
4



15
17
21

.

Decoding the result, the derivative is: f /x  15x2e3x  17xe3x  21e3x. 

Revisiting Projections and Reflections

Let us see how to apply the ideas in this Section to find another way to create the standard matrix of the
projection and reflection operators that we saw in Section 2.2.

Example: Suppose that  is the plane with equation: 5x  2y  6z  0.
We will find the standard matrix of proj by first finding the matrix of proj with respect to a basis B
which is not the standard basis. Instead, we will pick any two vectors on  as well as the normal
vector n which we can easily extract from the equation above. To keep it simple, we will pick vectors
from  where one coordinate is zero. For example, we can choose 2,5, 0 and 0, 3, 1. Together
with the obvious normal vector for , we get the following basis B for 3:

B   2,5, 0, 0, 3, 1, 5, 2,6.

It is indeed easy to check that the first two vectors are on . Now, since n  5, 2,6 is obviously not
on , we know from Chapter 1 that these three vectors indeed form a basis for 3.
There is a good reason why we chose this basis. If a vector is already on , then its projection onto 
is itself. If a vector is orthogonal to , then its projection is the zero vector. Thus:

proj2,5, 0  2,5, 0,
proj0, 3, 1  0, 3, 1, and

proj5, 2,6  0, 0, 0.
To form proj B , we need to find the coordinates of the three image vectors with respect to B. Since
2,5, 0 and 0, 3, 1 are the first two members of B, we obtain:

2,5, 0B  1, 0, 0, 0, 3, 1B  0, 1, 0, and 0, 0, 0B  0, 0, 0.

Thus:

proj B 

1 0 0
0 1 0
0 0 0

 Diag 1, 1, 0.
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This looks almost too easy, but unfortunately, this is not the standard matrix proj . To find the
standard matrix, we will need to do a bit more work. We need to find proje1 , proje2 , and
proje3 . To do this, we follow the same recipe: Encode, Multiply and Decode.
For the Encode step, we need to solve the three systems:

2 0 5 | 1
5 3 2 | 0
0 1 6 | 0

,
2 0 5 | 0
5 3 2 | 1
0 1 6 | 0

and
2 0 5 | 0
5 3 2 | 0
0 1 6 | 1

.

But since the coefficient matrices are all the same, we can solve all three simultaneously using:

2 0 5 | 1 0 0
5 3 2 | 0 1 0
0 1 6 | 0 0 1

.

This system should look familiar: it is exactly the same system we use to find the inverse of a matrix!
Applying Gauss-Jordan to this augmented matrix, we find the rref:

1 0 0 | 20
65  5

65
15
65

0 1 0 | 30
65

12
65

29
65

0 0 1 | 5
65

2
65  6

65

.

Thus, we see e1 B, e2 B and e3 B in the three columns on the right.

Now, we are ready for the Multiply step. But again, instead of multiplying proj B by e1 B , e2 B
and e3 B separately, we can do it simultaneously with a single matrix product:

1 0 0
0 1 0
0 0 0

20
65  5

65
15
65

30
65

12
65

29
65

5
65

2
65  6

65



4
13  1

13
3

13
6

13
12
65

29
65

0 0 0

.

Now, this matrix contains the coordinates of proje1 , proje2  and proje3 , all with respect to
B, in the respective columns. In order to find the coordinates of these three vectors with respect to the
standard basis, we must use the 3 coefficients for each column in a linear combination with the 3
vectors of B. But these 3 vectors are found in the coefficient matrix:

2 0 5
5 3 2

0 1 6

,

which we saw above. Thus, to Decode these three columns, we again form just one matrix product,
and we finally obtain the standard matrix:
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proj  
2 0 5
5 3 2

0 1 6

4
13  1

13
3

13
6

13
12
65

29
65

0 0 0

 1
65

40 10 30
10 61 12
30 12 29

.

We can verify using the ready-made formula in Exercise 26 of Section 2.2 that the matrix we obtained
above is correct. Before we leave this Example, let us summarize our computations above in just one
equation:

proj  
2 0 5
5 3 2

0 1 6

1 0 0
0 1 0
0 0 0

20
65  5

65
15
65

30
65

12
65

29
65

5
65

2
65  6

65

 Bproj BB
1.

Here, we used the notation B to denote the matrix whose columns are the coordinates of the vectors
in B (with respect to the standard basis for 3.
We can use these ideas to compute refl  as well. The only difference is that:

refl   Diag 1, 1,1,
because refln   n, while the reflection of any vector on  is itself. 

We will see in Sections 6.4 and 6.5 that the formula proj   Bproj B B
1 can be generalized

so that we can find the matrix of an operator on a finite-dimensional vector space V with respect to two
different bases for V using an analogous product of three matrices.

3.6 Section Summary

Let B  w 1, w 2, . . . , w n be an ordered basis for an n-dimensional vector space V. If v is any vector
in V, we know that v can be expressed uniquely as a linear combination of the vectors of B:
v  c1w 1  c2w 2   cnw n.

We call the vector c1, c2, . . . , cn  the coordinate vector of vwith respect to B,
written symbolically as v B  c1, c2, . . . , cn .

The n  1 matrix corresponding to v B is called the coordinate matrix of vwith respect to B,
written symbolically as v B.

For any basis B of an n-dimensional vector space V, the function T : V  n given by T v   v B ,
namely, finding the coordinates with respect to B, is a linear transformation. In particular, if V  n

and B is a basis for n, then T is in fact one-to-one and onto, i.e., an isomorphism.
Let T : V  W be a linear transformation, where dimV  n and dimW  m. Let
B  v1, v2, . . . , vn be a basis for V, and let B /  w 1, w 2, . . . , w n be a basis for W. The m  n
matrix whose columns, from left to right, are T v1 B / through T vn B / is called the matrix of T
relative to B and B /, and written symbolically as:

T B,B /   T v1 B / | T v2 B / | | T vn B / .
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Moreover, for any v  V: T v B /  T B,B / v B.
If T : V  V is a linear operator and we use the same basis B for the domain and codomain, we write
T B instead of T B,B.

We can compute T v  using T B,B / and a three-step process:

1. ENCODE: Given v  V, find v B  
n, and rewrite this into the n  1 column matrix v B.

2. MULTIPLY: Compute the product T B,B / v B  T v B / , an m  1 column matrix.
3. DECODE: Use the coefficients of T v B / and the basis B / to explicitly find T v  W.

If a finite-dimensional function space W  SpanB, where B is linearly independent, is preserved by
the derivative D, we can construct DB and compute the derivative of a function from W using a
matrix product.
The ideas in this Section can be used to find projL , reflL , proj , and refl , for any line L
passing through the origin in 2 or 3, and any plane  passing through the origin in 3.

3.6 Exercises

1. Let B   1,1, 1, 1,1,1, 0, 1, 1.

a. Find 3, 5,8B using the Gauss-Jordan algorithm.
b. By looking at the rref of your augmented matrix in (a), explain why B is indeed a basis for

3.
c. Find e2 B, where e2  0, 1, 0.

2. Let B  2x3  5x2  3x  7, x2  4x  9, 1
2 x  5, 3 .

a. Explain, just by inspection, why B is a basis for 3.
b. Find 3x3  6x2  8x  2B by the method of comparing coefficients.

3. Show that the following vectors are members of W  Span sinx, cosx, from the 4th
Example of this Section, and find their coordinate vectors with respect to B   sinx, cosx.

a. cosx  /4 b. sinx  sin13/5
c. sinx  cos112/13 d. cosx  tan120/21

4. Let a  3, 1 and Ea : 2  2, the linear transformation from Exercise 3 in Section 3.5.
Let B  1, x, x2 and B /  e1, e2.

a. Find T B,B / .
b. Use T B,B / to recompute T 5x2  8x  3.
c. Use T B,B / to compute T 7x2  5x  4.

5. Let a  5, 3,2 and Ea : 3  3, the linear transformation from Exercise 4 in Section 3.5.
Let B  1, x, x2, x3 and B /  e1, e2, e3.

a. Find T B,B / .
b. Use T B,B / to recompute T 7x3  4x2  3x  6.
c. Use T B,B / to compute T 9x3  7x2  2x  5.
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6. Let a  5, 3,2, and Ea : 2  3, the linear transformation from Exercise 5 in Section 3.5.
Let B  1, x, x2 and B /  e1, e2, e3.
a. Find T B,B / .
b. Use T B,B / to recompute T 4x2  5x  8.
c. Use T B,B / to compute T 3x2  2x  6.

7. Let T : 2  3 be the linear transformation from Exercise 6 in Section 3.5 given by:

T px   p1, p /2, 2p3  5p /1.

Let B  1, x, x2 and B /  e1, e2, e3.
a. Find T B,B / .
b. Use T B,B / to recompute T 5x2  8x  3.
c. Use T B,B / to compute T 7x2  5x  4.

8. Let T : 2  4 be the linear transformation from Exercise 7 in Section 3.5:

T px  p2, p /1, p //x, 
0

1
pxdx .

Let B  1, x, x2 and B /  e1, e2, e3, e4.
a. Find T B,B / .
b. Use T B,B / to recompute T 5x2  8x  3.
c. Use T B,B / to compute T 7x2  5x  4.

9. Let T : 3  1 be the linear transformation from Exercise 8 in Section 3.5 given by:
T px  p //x.

Let B  1, x, x2, x3 and B /  1, x.
a. Find T B,B / .
b. Use T B,B / to recompute T 2x3  5x2  4x  3.
c. Use T B,B / to compute T 7x3  8x2  3x  6.

10. Let Ind : 2  3 be the linear transformation from Exercise 10 in Section 3.5 given by:

Ind px  
0

x
ptdt.

Let B  1, x, x2 and B /  1, x, x2, x3.
a. Find  Ind B,B / .
b. Use  Ind B,B / to recompute Ind 3x2  2x  7.
c. Use  Ind B,B / to compute Ind 7x2  5x  4.

For Exercises 11 to 18: The following function spaces were seen in Exercises 11 to 18 of
Section 3.5. (a) Use the basis B, in the order given, to find DB , and (b) find the derivative of
the function f x by using a matrix product. Reminder: Encode, Multiply, Decode.

11. W  SpanB, where B  ex, e2x; f x  5ex  3e2x.

12. W  SpanB, where B  ex sinx, ex cosx; f x  4ex sinx  3ex cosx.
13. W  SpanB, where B  e3x sin2x, e3x cos2x; f x  5e3x sin2x  9e3x cos2x.
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14. W  SpanB, where B  xe5x, e5x; f x  2xe5x  7e5x.

15. W  SpanB, where B  x2e4x, xe4x, e4x; f x  5x2e4x  2xe4x  7e4x.

16. W  SpanB, where B  x2  5x, x  5x, 5x; f x  4x2  5x  9x  5x  25x .

17. W  3  SpanB, where B  1, x, x2, x3; f x  2x3  8x2  3x  7.

18. W  SpanB, where B  x sin2x, xcos2x, sin2x, cos2x;
f x  4x sin2x  9xcos2x  5 sin2x  8 cos2x.

19. Let B   sinmx, cosmx, where m  , and let W  SpanB. Consider the differentiation
operator: D : W  W.

a. Explain in general why D f x  W for any f x  W.
b. Find DB.

20. Let B  ek1x, ek2x, . . . , eknx, with k1, k2, . . . , kn   distinct real numbers, and let
W  SpanB. Consider the differentiation operator: D : W  W.

a. Explain in general why D f x  W for any f x  W.
b. Find DB.
c. What kind of matrix is DB?

21. Let B  eax sinbx, eax cosbx, where a, b  , and let W  SpanB. We know from
Exercise 21 in Section 3.5 that D preserves W. Find DB.

22. Let B  x2ekx, xekx, ekx, where k  , and W  SpanB. Consider the differentiation
operator: D : W  W.

a. Explain in general why D f x  W for any f x  W.
b. Find DB.
c. Find Dxnekx  for any positive integer n and any k  .
d. Use induction to show that W  Spanxnekx, xn1ekx, . . . , x2ekx, xekx, ekx is the smallest

subspace that contains xnekx and is preserved under D.

23. Let B   sinx, cosx and W  SpanB. Let T : W  W be the linear operator from
Exercise 19 in Section 3.5:

T  f x  f //x  3f /x  2f x.

a. Find T B.

b. Use T B to recompute T 3 sinx  8 cosx.

c. Use Exercise 3(b) to compute T sinx  sin13/5.

24. Let S  e4x sin3x, e4x cos3x and U  SpanS. Let T : U  U be the linear operator from
Exercise 20 in Section 3.5 given by:

T  f x  f //x  3f /x  2f x.

a. Find T S.

b. Use T S to recompute T 5e4x sin3x  9e4x cos3x.

c. Use TS to compute T 3e4x sin3x  7e4x cos3x.

Section 3.6 Coordinate Vectors and Matrices for Linear Transformations 353



25. Let T : 3  2 be given by:
T px  p /x  x  1p //x  2p1.

a. Directly compute T 5x3  6x2  4x  9.
b. Explain why, in general, if px  3, then T px  2.
c. Show that T is indeed a linear transformation.
d. Find the matrix T B,B / with respect to the standard bases B  1, x, x2, x3 for 3 and

B /  1, x, x2 for 2.
e. Use T B,B / to recompute T 5x3  6x2  4x  9.

26. Let T : 2  3 be given by:
T px  px  2x  5  p /x  x2  3  p2  x3.

a. Directly compute T 6x2  2x  7.
b. Explain why, in general, if px  2, then T px  3.
c. Show that T is indeed a linear transformation.
d. Find the matrix of T with respect to the standard bases B  1, x, x2 for 2 and

B /  1, x, x2, x3 for 3.
e. Use T B,B / to recompute T 6x2  2x  7.

27. Suppose that T : 2  1 is a linear transformation whose matrix with respect to the bases
B  1, 5  x, 2  3x  x2 for 2 and B /  x  3, 2 for 1 is given by:

T B,B / 
4 1 5
7 0 2

.

a. Find 6x2  3x  8 B.
b. Use (a) to compute T 6x2  3x  8. Don’t forget to perform all three steps.
c. Use the idea of (a) and (b) to compute T1, Tx and Tx2 . Computational Hint: You can

find the three coordinate vectors at the same time by solving a 3  6 augmented matrix.
d. Use (c) to construct T  S,S/ , where S  1, x, x2 and S /  1, x are the standard bases

for 2 and 1, respectively.
e. Use T S,S/ to recompute T 6x2  3x  8.

28. Suppose that T : 1  2 is a linear transformation whose matrix with respect to the bases
B  1, 2  x for 1 and B /  x2  x, x  1,1 for 2 is given by:

T B,B / 

5 3
1 2
8 7

.

a. Find 3x  5 B.
b. Use (a) to compute T 3x  5. Don’t forget to perform all three steps.
c. Use the idea of (a) and (b) to compute T 1 and T x. See the Hint in Exercise 27 (c).
d. Use (c) to construct T S,S/ , where S  1, x and S /  1, x, x2 are the standard bases

for 1 and 2, respectively.
e. Use T S,S/ to recompute T 3x  5.
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29. Suppose that T : 2  2 is an operator whose matrix with respect to the basis
B  2, 5  x, 2  3x  x2 is given by:

T B 

2 1 2
3 2 1
1 1 3

.

a. Find 3x2  5x  7 B.
b. Use (a) to compute T 3x2  5x  7. Don’t forget to perform all three steps.
c. Use the idea of (a) and (b) to compute T 1, T x and T x2 .

See the Hint in Exercise 27 (c).
d. Use (c) to construct T B / , the matrix of T with respect to the standard basis

B /  1, x, x2.
e. Use T B / to recompute T 3x2  5x  7.

30. If V is a vector space and B is a fixed basis for V, prove that for all vectors u  V:

c  u B  c  u B.

This completes the proof that the operation of finding coordinates is a linear transformation. Hint:
what is the meaning of each side of this equation, starting with u B?

31. Consider the plane through the origin, , with equation:

3x  7y  8z  0.

Review the last Example in this Section.
a. Show that v1  7,3, 0 and v2  8, 0, 3 are two linearly independent vectors on the

plane .
b. Let n  3, 7,8 be the obvious normal for the plane. Show that:

B  v1, v2, n
is a basis for 3.

c. Use the geometric description of proj to explain why proj B  Diag 1, 1, 0.

d. Use a single matrix (of dimension 3  6 to find e1 B, e2 B, and e3 B.
e. Compute proje1 , proje2 , and proje3  using (c) and (d).
f. Find the standard matrix proj , using (e).

g. Similarly, show that refl B  Diag 1, 1,1.
h. Find the standard matrix refl . You may use your answers from (d).

i. Let L be the line Spann . Find the standard matrix projL .

For Exercises 32 to 34: Repeat Exercise 31 with the indicated plane. Find vectors v1 and v2
on  where either x  0 or y  0 or z  0 in part (a) to slightly simplify the computations.

32.  : 5x  3y  7z  0.

33.  : 2x  y  5z  0.

34.  : x  2
3 z. Think very carefully about part (a).
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35. Alternative Formulas for Projection and Reflection Matrices: Let us generalize the four
previous Exercises. Suppose that  : ax  by  cz  0 is a plane in 3 passing through the
origin. For simplicity, let us assume that none of the coefficients is zero. Consider the matrix:

C 

b c a
a 0 b
0 a c

.

a. Explain the relevance of the three columns of C.
b. Explain why C is invertible.
c. Show that:

proj   C
1 0 0
0 1 0
0 0 0

C1 and refl   C
1 0 0
0 1 0
0 0 1

C1.

d. How would you modify the matrix C if  had equation: ax  cz  0, where a  0 and
c  0?

36. The Minimizing Theorem: Now that we have coordinate vectors, we can state a general version
of The Minimizing Theorem: Suppose that V is a finite dimensional vector space, with basis
B  v1, v2, . . . , vn. Suppose that S  w 1, w 2, . . . , w k is any finite subset of vectors from V.
Let w 1 B , w 2 B , , w k B be the respective coordinate matrices. Let us assemble them in the
columns of:

A   w 1 B | w 2 B | | w k B , with rref R.
Suppose that i1, i2,  , im are the columns of R that contain the leading variables. Prove that the
set S /  w i1 , w i2 , . . . , w im , that is, the subset of vectors of S corresponding to the leading
columns of A, is a linearly independent set, and:

SpanS  SpanS / .
Furthermore, every vi  S  S /, that is, the vectors of S corresponding to the free variables of R,
can be expressed as linear combinations of the vectors of S /, using the coefficients found in the
corresponding column of R.

For Exercises 37 to 40: Use the Minimizing Theorem above to find a subset S / of
S  w 1, w 2, . . . , w k which is linearly independent such that SpanS  SpanS / , and for
every vi  S  S /, find a linear combination of the vectors from S / that will add up to vi. Use a
convenient basis B for the ambient space (if this is given as SpanB, use B itself as a basis). You
may use the symbols w 1, w 2, . . . , w k in your answers.

37. S  5  4x  3x2, 6  7x  2x2, 2  5x  6x2, 1  2x  3x2  2

38. S  3  5x  x2  4x3, 4  7x  2x2  3x3, x  2x2  7x3,
3  4x  x2  2x3, 7  3x  15x2  7x3  3

39. S  3  4x  3x2  x3  5x4,1  3x  2x2  4x3  3x4, 3  11x  6x2  40x3  7x4,
7  4x  x2  37x3  x4,2  3x  2x2  x3  3x2, 1  3x  3x2  6x3  6x6  4

40. S   5ex  4e3x  3e4x, 6ex  7e3x  2e4x, 2ex  5e3x  6e4x,
ex  2e3x  3e4x, 8ex  11e3x  Spanex, e3x, e4x
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41. Suppose that V and W are vectors spaces with dimV  n and dimW  m. Let
B  v1, v2, . . . , vn be a basis for V, and let B /  w 1, w 2, . . . , wm be a basis for W. Suppose
that T1 and T2 are both linear transformations with domain V and codomain W. Prove that:

a. T1  T2 B,B /  T1 B,B /  T2 B,B / .

b. k  T1 B,B /  k  T1 B,B /

42. Casting Shadows: Let us imagine that the yz-plane is a wall, and a window-pane is formed by
the unit vectors jand k. Imagine also that the sun is located infinitely far away, in the direction of
u  a, b, c. For now, let us assume that c  0 (i.e. the sun is above the horizon), and that light
is coming from the sun in parallel rays, in the direction of u.

If v is an arbitrary vector on the yz-plane, let Suv be its shadow on the xy-plane. Thus, we have
a function: Su : 2  2, where the domain 2 refers to the yz-plane, with basis B  j, k ,
and the codomain 2 refers to the xy-plane, with basis B /  i, j . Above, on the right, we
show the image under Su of the unit square, with the letter R inside.

a. Explain why our assumptions imply that the shadow of a triangle is again a triangle, and the
shadow of two parallel vectors are again parallel. Thus, Su is additive and homogeneous.

b. Find Su j and Su k .

c. Use (b) to assemble SuB,B / .
d. Find SuB,B / if u  3,2, 5, and sketch the effect of Su on B.
e. Show that SuB,B / is undefined if c  0, but it is still defined if c  0.

What would be the physical interpretation of SuB,B / if c  0?
Demonstrate your answer with u  3,2,5.
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3.7 One-to-One and Onto Linear Transformations;

Compositions of Linear Transformations

Now that we have some understanding of how to compute the action of a linear transformation by
constructing a matrix for it, we will go into a deeper exploration of the properties of linear
transformations. In particular, we will see how to generalize the idea of a linear transformation being
one-to-one or onto, how to use the rref of a matrix in order to find a basis for the kernel and the range
and to test for the one-to-one and onto properties, how to compose two transformations, and find a
matrix for this composition.

One-to-One Transformations and Onto Transformations

We can use exactly the same definition for one-to-one functions that we saw with Euclidean spaces:

Definition: We say that a linear transformation T : V  W is one-to-one or injective if the
image of different vectors from the domain are different vectors from the codomain:

if v1  v2 then Tv1   Tv2 .
We again say that T is an injection or an embedding.

As before, we can rephrase this definition in terms of its contrapositive:

Theorem: A linear transformation T : V  W is one-to-one if and only if the only way two
vectors from the domain have the same image in the codomain is for them to be the same
vector to begin with:

if Tv1   Tv2  then v1  v2.
In other words, the only solution to Tv1   Tv2  is v1  v2.

Finally, this condition is once again intimately related to the kernel of T :

Theorem: A linear transformation T : V  W is one-to-one if and only if kerT  0V .

The proof, of course, is exactly the same as in Chapter 2, thanks to the linearity properties of T. We
would also like to point out that all the statements above are true even if V or W is infinite dimensional
(you will notice in the proof in Chapter 2 that there is no mention whatsoever of a matrix for T). As
with one-to-one transformations, we can define onto transformations in exactly the same way as with
Euclidean spaces:

Definition/Theorem: We say that a linear transformation T : V  W is onto or surjective if
the range of T is all of W:

rangeT  W.
Since rankT  dimrangeT, we can also say that T is onto if and only if
rankT  dimW, in the case when W is finite dimensional.
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We again say that T is a surjection or a covering. We can visualize these two concepts using
essentially the same diagrams from Chapter 2:

 .
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. ..
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T is one-to-one if and only if

kerT  0V .

T is onto if and only if

rangeT  W.

Finding the Kernel and Range Using TB,B /

Our next task is to determine if a given linear transformation is one-to-one, onto, neither or both. For
this, we will need to study its kernel and range. Recall that we can find a basis for the kernel and range
of a linear transformation T : n  m by examining the rref of its standard matrix T . The
nullspace of T  is the same as kerT, and the original columns of T  corresponding to the leading
1’s in the rref form a basis for rangeT, since this subspace is the same as colspaceT . We can
apply this idea to T B,B / when we are dealing with a linear transformation between abstract vector
spaces. We will leave the proof of the following as an Exercise:

Theorem: Suppose that T : V  W is a linear transformation, with dimV  n and
dimW  m, both finite-dimensional vector spaces. Let B  v1, v2,  , vn be a basis for
V, and let B /  w 1, w 2,  , wm be a basis for W. Let us construct the m  n matrix TB,B /

as we did in the previous Section, and let R be the rref of TB,B / . Suppose that:

 z1, z2, . . . , zk  n

is the basis that we obtain for nullspace TB,B / using R, as we did in Chapter 2.
By the Uniqueness of Representation Property, we know that there exists ui  V so that
ui B  zi for every i  1k.
We conclude that the set u1, u2, . . . , uk  V is a basis for kerT.
As usual, if there are no free variables in R, then nullspace TB,B /  0n , and
consequently kerT  0V . Similarly, the set of original columns:

 ci1 , ci2 , . . . , cir   m

from TB,B / corresponding to the leading 1’s of R form a basis for columnspace TB,B / as
we found in Chapter 2, and there exists dj  W so that dj

B /  cij for every j  1 r.

We conclude that the set d1, d2, . . . , dr  W is a basis for rangeT.
If T is the zero transformation, then rangeT  0W .
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In other words, the information provided by TB,B / and R simply needs to be decoded with respect to
the corresponding basis: we use B to find a basis for kerT from a basis for nullspace TB,B / , and
we use B / to find a basis for rangeT from a basis for columnspace TB,B / .

Example: Let T : 3  2 be given by:

Tpx  p /x  3x  p //x  2p1.

We leave it the reader to verify that this is indeed a linear transformation. Let us choose the standard
bases B  1, x, x2, x3 for 3 and B /  1, x, x2 for 2. We compute T on the basis vectors:

T1  0  0  2  1  2,

Tx  1  3x  0  21  3,

Tx2   2x  3x  2  2  1  8x  2, and

Tx3   3x2  3x  6x  21  21x2  2.

Now, we encode each as a column for TB,B / :

TB,B / 

2 3 2 2
0 0 8 0
0 0 0 21

, with rref
1 3/2 0 0
0 0 1 0
0 0 0 1

.

Thus, we have one free variable, and the coordinates with respect to B of the single member of the
basis for our kernel are 3/2, 1, 0, 0. Clearing fractions, we can use 3, 2, 0, 0.
Decoding these coordinates with respect to B, the actual polynomial is:

px  3  1  2  x  0  x2  0  x3  3  2x.
We can check that:

Tpx  2  3x  0  23  2  0,
so px is indeed in the kernel. Thus:

kerT  Span3  2x.

Since kerT  zx, T is not one-to-one.
Similarly, we have leading 1’s in the 1st, 3rd and 4th columns, so the coordinates with respect to B / of
the members of the basis for our range are found in the original 1st, 3rd and 4th columns of TB,B / :

2, 0, 0, 2, 8, 0 and 2, 0, 21.

Decoding these coordinates with respect to B /, the actual members of our basis are:

2  0  x  0  x2,2  8  x  0  x2, 2  0  x  21x2

 2,2  8x, 2  21x2.

But notice that dim2   3 and our basis above has 3 members, so actually:

rangeT  2  Span2,2  8x, 2  21x2  Span1, x, x2

and T is onto.
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The Dimension Theorem for Abstract Vector Spaces

We will now fully generalize the Dimension Theorem for a linear transformation involving abstract
vector spaces:

Theorem — The Dimension Theorem:
Let T : V  W be a linear transformation, and suppose that V is finite dimensional with
dimV  n. Then, both kerT and rangeT are finite dimensional, and we can define:

rankT  dimrangeT, and

nullityT  dimkerT.
Furthermore, these quantities are related by the equation:

rankT  nullityT  n  dimV  dim domain of T .

Proof: Since V is finite dimensional, kerT  V is automatically finite dimensional.
Now, suppose that nullityT  k, with k  n. If k  0, that is, T is not one-to-one, suppose that
S  v1, v2,  , vk is a basis for kerT. Note that if T is one-to-one, then k  0, and there is no
basis for kerT, so we may just assume that S is the empty set.
By the Extension Theorem, we can enlarge S, one vector at a time, to a basis
B  v1, v2,  , vk, vk1, vk2,  , vn for V. Thus, any vector v  V can be expressed uniquely as a
linear combination:

v  c1v1  c2v2   ckvk  ck1vk1  ck2vk2   cnvn.
From this, we get:

Tv  Tc1v1  c2v2   ckvk  ck1vk1  ck2vk2   cnvn 

 Tc1v1   Tc2v2    Tckvk   Tck1vk1   Tck2vk2    Tcnvn 

 c1Tv1   c2Tv2    ckTvk   ck1Tvk1   ck2Tvk2    cnTvn 

 ck1Tvk1   ck2Tvk2    cnTvn ,

since Tv1   0W, Tv2   0W, , Tvk   0W. This tells us that rangeT is Spanned by the set
Tvk1 , Tvk2 ,  , Tvn , which we illustrate in the following diagram:

 

v1

V W

v2
...

. .vk

vk

ker ( T )

.
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0W

..
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range  T 

.

T
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The Dimension Theorem
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Since there are n  k vectors in this set, we will complete the Proof by showing that this set is also
linearly independent, and thus rankT  n  k. We construct the dependence test equation:

dk1Tvk1   dk2Tvk2    dnTvn   0W.

Reversing the steps above, we get: Tdk1vk1  dk2vk2   dnvn   0W.
This shows that the vector v  dk1vk1  dk2vk2   dnvn is a member of kerT. Recall, though,
that v1, v2,  , vk is a basis for kerT. Thus, we can find coefficients d1, d2,  , dk such that:

dk1vk1  dk2vk2   dnvn  d1v1  d2v2   dkvk,
in other words:

 d1v1  d2v2   dkvk  dk1vk1  dk2vk2   dnvn  0W.
But now, since v1, v2,  , vk, vk1, vk2,  , vn is a basis for all of V, this set is linearly
independent, and so d1  d2    dk  dk1    dn  0.
In particular, this shows that the coefficients dk1 through dn in our dependence test equation for
Tvk1 , Tvk2 ,  , Tvn  above are all zero, and so this set is linearly independent. This completes
the Proof.

Example: In our previous Example, the basis for our kernel had one vector, so nullityT  1.
However, rangeT  2, so rankT  3. Thus we verify the Dimension Theorem for this Example:
rankT  nullityT  3  1  4  dim3 . 

The Dimension Theorem also tells us that if V is finite dimensional, then the range of T : V  W is
also finite dimensional, even if the codomain W is infinite dimensional. Thus, we can also regard T as a
linear transformation: T : V  rangeT, and now both V and rangeT are finite dimensional. This
means that we can always construct the matrix of a linear transformation with respect to finite bases
when the domain is finite dimensional.

Comparing Dimensions

As before, knowledge of the relative dimensions of the domain and codomain can immediately tell us if
T is not one-to-one or not onto (proven exactly as in Chapter 2):

Theorem: Suppose T : V  W is a linear transformation of finite dimensional vector spaces.
Then:
a) if dimV  dimW, then T cannot be onto.
b) if dimV  dimW, then T cannot be one-to-one.

Example: Any linear transformation T : 4  7 cannot be onto since:
dim4   4  8  dim7 .

However, it may or may not be one-to-one.
Similarly, any linear transformation T : 6  6 may or may not be onto, but it cannot be one-to-one,
since:

dim6   7  6  dim6 . 
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Compositions of Linear Transformations

We can compose two linear transformations, as before, as long as the codomain of the first
transformation is the same as the domain of the second transformation:

Definition/Theorem: Suppose that T1 : V  U and T2 : U  W
are linear transformations. Their composition:

T2  T1 : V  W
is also a linear transformation. Its action is given as follows:
Suppose v  V, T1v  u  U, and T2u  w  W. Then:

T2  T1 v  T2T1v  T2u  w.

We can visualize the composition of these two transformations using the following diagram:

 

.
.

T

. w

u

v
T

T   T

.

WV U

°

.

The Composition of Two Linear Transformations

Again, the linearity of the composition follows from that of the individual transformations, and is left as
an easy Exercise.

Example: Let T1 : 2  4, and T2 : 4  3 be given by:

T1px  x2  x  3  px, and T2rx  d
dx rx  Drx.

For instance:
T13x2  5x  4  x2  x  3  3x2  5x  4

 3x4  8x3  18x2  19x  12, and

T25x4  3x2  7x  2  20x3  6x  7.

We saw in the Exercises of Section 3.4 that multiplying a polynomial by a fixed polynomial is a linear
transformation, and so is taking a derivative, so both T1 and T2 are linear transformations.
Let us demonstrate the composition T2  T1 on 3x2  5x  4:

T2  T1 3x2  5x  4  T2T13x2  5x  4

 T23x4  8x3  18x2  19x  12 (from above)

 12x3  24x2  36x  19. 
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Example: Let D : C1I  CI be the differentiation operation, where I  a, b, and
Ind f : CI  C1I be the indefinite integral operation. Then:

D  Ind  f   D 
a

x
f tdt  d

dx a

x
f tdt  f x,

where the last equation follows from The Fundamental Theorem of Calculus. Thus, D  Ind  ICI,
the identity operator on CI. However, let us see what happens to f x  x2  5x  3 under the
reverse composition Ind  D, where I  0, 1:

Ind  D x2  5x  3

 Ind d
dx x

2  5x  3  Ind 2x  5

 
0

x
2t  5dt  t2  5t|0

x  x2  5x.

Thus, in this case, Ind  D  IC1I. Notice that in particular, if f x  c, any constant valued function
where c  0, then Ind  Dc  0  c. 

In Section 3.8, we will study invertible linear transformations. Recall that we learned that a left inverse
for a linear operator on n must also be a right inverse. But our Example shows that this is not always
true in the infinite dimensional case.

More generally, if we have a (finite) sequence of linear transformations, T1, T2, . . . , Tn, where the
codomain of T i is the domain of T i1 for all i  1n  1, we can once again construct the n-fold
composition:

Tn  Tn1   T2  T1,
defined inductively in the usual manner as Tn  Tn1   T2  T1 .

The Matrix of a Composition

It should be no surprise that we can compute the matrix of a composition using a matrix product:

Theorem: Let T1 : V  U and T2 : U  W be linear transformations of finite dimensional
vector spaces. Let B be a basis for V, B / a basis for U, and B // a basis for W. Then:

T2  T1 B,B //  T2 B /,B //  T1 B,B / .
In particular, if V  U  W, that is, T1 and T2 are operators on V, then:

T2  T1 B  T2 B  T1 B.
Furthermore, if T1  T2  T, the self-composition T  T  T 2 has matrix:

T 2 B  TB
2 .

We can generalize this formula for the r-fold self-composition:
T r B  TB

r .

Proof: Let B  v1, v2, . . . , vn, B /  u1, u2, . . . , uk, and B //  w 1, w 2, . . . , wm be the
respective bases. By construction, the matrices we are interested in are:
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T2  T1 B,B //  Z   T2  T1 v1 B // | T2  T1 v2 B // | | T2  T1 vn B // ,

T2 B /,B //  X   T2u1 B // | T2u2 B // | | T2uk B // , and

T1 B,B /  Y   T1v1 B / | T1v2 B / | | T1vn B / .

Our goal is to show that Z  XY. All we have to do is unravel the definitions. The first column of Z is
T2  T1 v1 B // . We need to show that this equals the first column of XY. But recall from the
definition of general matrix products that the first column of XY is Xy1, where y1 is the first column of
Y. But y1 is T1v1 B / . Thus, we must show that:

T2  T1 v1 B //  XT1v1 B /  T2 B /,B // T1v1 B /

But recall that in general (changing notation slightly to avoid confusion):

TS,S/ vS  TvS/

where S is a basis for the domain of T and S / a basis for the codomain. Thus:

T2 B /,B // T1v1 B /  T2T1v1 B //  T2  T1 v1 B // .

Similarly, the rest of the columns of C are equal to the corresponding columns of AB. 

Clearly, this idea also applies to the composition of several linear transformations, as long as the
compatibility criterion is satisfied.

Example: Let T1 : 3  2 and T2 : 2  2 be given by:
T1px  3p /x  5x  p //x, and
T2qx  q2, q3.

We will leave it as an Exercise to show that these are indeed linear transformations. Let us find the
individual matrices and the matrix of the composition using the standard bases B  1, x, x2, x3,
B /  1, x, x2, and B //  e1, e2 for 3, 2 and 2 respectively:

T11  3  0  5x  0  0,
T1x  3  1  5x  0  3,

T1x2   3  2x  5x  2  4x, and
T1x3   3  3x2  5x  6x  21x2.

Thus we can assemble:

T1 B,B / 

0 3 0 0
0 0 4 0
0 0 0 21

Now for T2:
T21  1, 1,
T2x  2, 3, and

T2x2   4, 9.
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Thus:

T2 B /,B // 
1 2 4
1 3 9

We get the matrix of the composition using a matrix product:

T2  T1 B,B //  T2 B /,B // T1 B,B / 
1 2 4
1 3 9

0 3 0 0
0 0 4 0
0 0 0 21


0 3 8 84
0 3 12 189

.

Since we computed T1 explicitly for the members of B, we can find their values under the composition
directly:

T2T11  T20  0, 0,
T2T1x  T23  3, 3,

T2T1x2   T24x  8,12, and
T2T1x3   T221x2   21  4,21  9  84,189

and we can see that these are indeed the four columns of the matrix product.

Example: We saw in the previous Section that the function space:
W  SpanB, where B  x2e3x, xe3x, e3x,

is preserved by the derivative operation D. In other words, D is an operator:
D : W  W.

We also found the matrix of D with respect to B:

DB 

3 0 0
2 3 0
0 1 3

.

Thus, the second derivative D  D  D 2 also preserves W, and:

D 2 B  DB
2 

3 0 0
2 3 0
0 1 3

2



9 0 0
12 9 0

2 6 9

.

We can use this matrix to find the 2nd derivative of f x  8x2e3x  5xe3x  9e3x using the matrix
product:

9 0 0
12 9 0

2 6 9

8
5

9



72
141

127

.

Thus, f //x  72x2e3x  141xe3x  127e3x.
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3.7 Section Summary

We say that a linear transformation T : V  W is one-to-one or injective if the image of different
vectors from the domain are different vectors from the codomain: if v1  v2 then Tv1   Tv2 .
T is one-to-one if and only if kerT  0V .

We say that a linear transformation T : V  W is onto or surjective if rangeT  W.
The rref R of TB,B / can be used to find a basis for nullspace TB,B / and columnspace TB,B / , as
we did in Chapter 2.
By decoding the basis for nullspace TB,B / using B, we can find a basis for kerT. Similarly, by
decoding the basis for columnspace TB,B / using B /, we can find a basis for rangeT.

The Dimension Theorem for Abstract Vector Spaces: Let T : V  W be a linear transformation, and
suppose that V is finite dimensional with dimV  n. Then, both kerT and rangeT are finite
dimensional, and we define rankT  dimrangeT, and nullityT  dimkerT. Furthermore:

rankT  nullityT  n  dimV.
Let T : V  W be a linear transformation of finite dimensional vector spaces. Then:
(a) if dimV  dimW, then T cannot be onto;
(b) if dimV  dimW, then T cannot be one-to-one.
Let T1 : V  U, and T2 : U  W be linear transformations. The composition: T2  T1 : V  W is
again a linear transformation. Its action is given as follows: suppose v  V, T1v  u  U, and
T2u  w  W. Then: T2  T1 v  T2T1v  T2u  w.
Let B be a basis for V, B / a basis for U, and B // a basis for W. Then:

T2  T1 B,B //  T2 B /,B // T1 B,B / .

In particular, if V  U  W, that is, T1 and T2 are operators on V, then T2  T1 B  T2 B  T1 B.
Furthermore, if T1  T2  T, the self-composition T  T  T 2 has matrix: T 2 B  TB

2 .

We can generalize this formula for the r-fold self-composition: T r B  TB
r .

3.7 Exercises

1. Let T : 2  4 be the linear transformation from Exercise 7 of Section 3.5, and Exercise 11 of
Section 3.6, given by: Tpx  p2, p /1, p //x, 

0

1 pxdx .

a. Can we immediately say that T is not one-to-one? Why or why not?
b. Can we immediately say that T is not onto? Why or why not?

Let B  1, x, x2 and B /  e1, e2, e3, e4. The matrix TB,B / can be found in the
Answer Key for Exercise 11, Section 3.6.

c. Find the rref of TB,B / .
d. Use (c) to find a basis (if possible) for kerT and state nullityT.
e. Use (c) to find a basis for rangeT and state rankT.
f. Is T one-to-one? Is T onto?
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g. Verify the Dimension Theorem for T.
h. Describe all polynomials px  2, such that:

p2  38, p /1  3, p //x  10, and 
0

1
pxdx  13/6.

Hint: Solve an augmented system that uses TB,B / . What should be on the rightmost
column?

2. Let T : 3  1 be the linear transformation from Exercise 8 in Section 3.5 and Exercise 12 in
Section 3.6, given by: Tpx  p //x.
a. Can we immediately say that T is not one-to-one? Why or why not?
b. Can we immediately say that T is not onto? Why or why not?

Let B  1, x, x2, x3 and B /  1, x. The matrix TB,B / can be found in the Answer
Key for Exercise 12, Section 3.6.

c. Find the rref of TB,B / .
d. Use (c) to find a basis (if possible) for kerT and state nullityT.
e. Use (c) to find a basis for rangeT and state rankT.
f. Is T one-to-one? Is T onto?
g. Verify the Dimension Theorem for T.

3. Let T : 2  3 be the linear transformation from Exercise 10 in Section 3.5 and Exercise 10 in
Section 3.6, given by: Tpx  

0

x ptdt.

a. Can we immediately say that T is not one-to-one? Why or why not?
b. Can we immediately say that T is not onto? Why or why not?

Let B  1, x, x2 and B /  1, x, x2, x3. The matrix TB,B / can be found in the Answer
Key for Exercise 10, Section 3.6.

c. Find the rref of TB,B / .
d. Use (c) to find a basis (if possible) for kerT and state nullityT.
e. Use (c) to find a basis for rangeT and state rankT.
f. Is T one-to-one? Is T onto?
g. Verify the Dimension Theorem for T.

4. Let T : 3  2 be the linear transformation from Exercise 25 in Section 3.6, given by:

Tpx  p /x  x  1  p //x  2p1.

a. Can we immediately say that T is not one-to-one? Why or why not?
b. Can we immediately say that T is not onto? Why or why not?

Let B  1, x, x2, x3 and B /  1, x, x2. The matrix TB,B / can be found in the Answer
Key for Exercise 21, Section 3.6.

c. Find the rref of TB,B / .
d. Use (c) to find a basis (if possible) for kerT and state nullityT.
e. Use (c) to find a basis for rangeT and state rankT.
f. Is T one-to-one? Is T onto?
g. Verify the Dimension Theorem for T.
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5. Let T : 2  3 be the linear transformation from Exercise 29 in Section 3.6, given by:

Tpx  2x  5  px  x2  3  p /x  p2  x3.

a. Can we immediately say that T is not one-to-one? Why or why not?
b. Can we immediately say that T is not onto? Why or why not?

Let B  1, x, x2 and B /  1, x, x2, x3. The matrix TB,B / can be found in the Answer
Key for Exercise 22, Section 3.6.

c. Find the rref of TB,B / .
d. Use (c) to find a basis (if possible) for kerT and state nullityT.
e. Use (c) to find a basis for rangeT and state rankT.
f. Is T one-to-one? Is T onto?
g. Verify the Dimension Theorem for T.

6. Let T : 2  3 be the linear transformation given by:

Tpx  x2  5  p /x  p //1  x3  2x  4.

a. Convince yourself mentally that T is indeed a linear transformation from 2 to 3.
b. Can we immediately say that T is not one-to-one? Why or why not?
c. Can we immediately say that T is not onto? Why or why not?
d. Let B  1, x, x2 and B /  1, x, x2, x3. Find TB,B / .
e. Find the rref of TB,B / .
f. Use (e) to find a basis (if possible) for kerT and state nullityT.
g. Use (e) to find a basis for rangeT and state rankT.
h. Is T one-to-one? Is T onto?

i. Verify the Dimension Theorem for T.
7. Let T : 3  2 be the linear transformation given by:

Tpx  p2  2x2  10x  6  p /1  3x2  15x  9.

a. Convince yourself mentally that T is indeed a linear transformation from 3 to 2.
b. Can we immediately say that T is not one-to-one? Why or why not?
c. Can we immediately say that T is not onto? Why or why not?
d. Let B  1, x, x2, x3 and B /  1, x, x2. Find TB,B / .
e. Find the rref of TB,B / .
f. Use (e) to find a basis (if possible) for kerT and state nullityT.
g. Use (e) to find a basis for rangeT and state rankT.
h. Is T one-to-one? Is T onto?
i. Verify the Dimension Theorem for T.

8. Suppose that T : 2  1 is a linear transformation whose matrix with respect to the bases
B  1, 5  x, 2  3x  x2 for 2 and B /  x  3, 2 for 1 is given by:

TB,B / 
4 1 5
7 0 2

.
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Note: this was the linear transformation in Section 3.6, Exercise 27.
a. Can we immediately say that T is not one-to-one? Why or why not?
b. Can we immediately say that T is not onto? Why or why not?
c. Find the rref of TB,B / .
d. Use (c) to find a basis (if possible) for kerT and state nullityT.
e. Use (c) to find a basis for rangeT and state rankT.
f. Is T one-to-one? Is T onto?
g. Verify the Dimension Theorem for T.

9. Suppose that T : 1  2 is a linear transformation whose matrix with respect to the bases
B  1, 2  x for 1 and B /  x2  x, x  1,1 for 2 is given by:

TB,B / 

5 3
1 2

8 7

.

Note: this was the linear transformation in Section 3.6, Exercise 28.
a. Can we immediately say that T is not one-to-one? Why or why not?
b. Can we immediately say that T is not onto? Why or why not?
c. Find the rref of TB,B / .
d. Use (c) to find a basis (if possible) for kerT and state nullityT.
e. Use (c) to find a basis for rangeT and state rankT.
f. Is T one-to-one? Is T onto?
g. Verify the Dimension Theorem for T.

10. Suppose that T : 2  1 is a linear transformation whose matrix with respect to the bases
B  1, 2  x, x  x2 for 2 and B /  x  3, x  1 for 1 is given by:

TB,B / 
2 1 3
8 4 12

.

a. Can we immediately say that T is not one-to-one? Why or why not?
b. Can we immediately say that T is not onto? Why or why not?
c. Find the rref of TB,B / .
d. Use (a) to find a basis (if possible) for kerT and state nullityT.
e. Use (a) to find a basis for rangeT and state rankT.
f. Is T one-to-one? Is T onto?
g. Verify the Dimension Theorem for T.

11. Suppose that T : 1  2 is a linear transformation whose matrix with respect to the bases
B  1, 1  x for 1 and B /  x2  2x, x  1, 1 for 2 is given by:

TB,B / 

14 10
21 15

35 25

.
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a. Can we immediately say that T is not one-to-one? Why or why not?
b. Can we immediately say that T is not onto? Why or why not?
c. Find the rref of TB,B / .
d. Use (c) to find a basis (if possible) for kerT and state nullityT.
e. Use (c) to find a basis for rangeT and state rankT.
f. Is T one-to-one? Is T onto?
g. Verify the Dimension Theorem for T.

12. Suppose that T : 2  2 is the operator whose matrix with respect to the standard basis
B  1, x, x2 is given by:

TB 

4 3 6
1 2 5

5 12 3

.

a. Can we immediately say that T is not one-to-one? Why or why not?
b. Can we immediately say that T is not onto? Why or why not?
c. Find the rref of TB.
d. Use (c) to find a basis (if possible) for kerT and state nullityT.
e. Use (c) to find a basis for rangeT and state rankT.
f. Is T one-to-one? Is T onto?
g. Verify the Dimension Theorem for T.
h. Find all polynomials px  2, if possible, such that:

Tpx  6  7x  9x2.

Hint: find the rref of a certain augmented matrix.

13. Let T1 : 2  3 and T2 : 3  2 be the linear transformations given by:

T1px  x2  3x  5  p /x  4px, and
T2qx  3q /x  5q //x.

Let B  1, x, x2 and B /  1, x, x2, x3 be the standard bases, respectively, for 2 and 3.

a. Convince yourself mentally that T1 and T2 are linear transformations.
b. Find T1 B,B / and T2 B /,B.
c. Explain why both compositions T2  T1 and T1  T2 are defined.
d. Find T2  T1 B and T1  T2 B / .

14. Let T1 : 2  3 and T2 : 3  3 be the linear transformations given by:

T1px  2x  3  px, and
T2qx  q3, q /2, q //1.

Let B  1, x, x2, B /  1, x, x2, x3 and B //  e1, e2, e3 be the standard bases,
respectively, for 2, 3 and 3.

a. Convince yourself mentally that T1 and T2 are linear transformations.
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b. Find T1 B,B / and T2 B /,B // .
c. Explain why the composition T2  T1 is defined, and find T2  T1 B,B // using (b).
d. Is the composition T1  T2 defined? Why or why not?
e. Is the matrix product T1 B,B /  T2 B /,B // defined? Why or why not?

15. Let T1 : 2  3 and T2 : 3  1 be linear transformations.
Suppose that B  1, 1  x, 2x  x2  2, B /  1, 1  x, 3x  x2, x2  x3  3, and
B //  1, 1  x  1. Note that each set contains polynomials of distinct degrees, and each set
contains the correct number of vectors, so both are bases for the corresponding space. Now,
suppose we are given that:

T1 B,B / 

3 5 1
2 4 2

1 0 7
1 2 1

, and T2 B /,B // 
3 2 5 1
2 4 7 3

.

a. Does the composition T1  T2 make sense? Why or why not? If so, what are the domain and
codomain of T1  T2?

b. Does the composition T2  T1 make sense? Why or why not? If so, what are the domain and
codomain of T2  T1?

c. Compute T13x2  5x  2

d. Use your work to (c) to compute T2  T1 3x2  5x  2.
e. Find T2  T1 B,B // .
f. Use your answer to (e) to compute T2  T1 3x2  5x  2 directly. You should get the

same answer as in part (d).

16. Let T1 : 1  2 and T2 : 2  1 be linear transformations. Let B  1, 1  x  1, and
B /  1, 1  x, 3x  x2  2. Note that each set contains polynomials of distinct degrees, and
each set contains the correct number of vectors needed to form a basis, so they are all bases for
the corresponding spaces. Now, suppose we are given that:

T1 B,B / 

2 3
1 4
0 7

, and T2 B /,B 
4 3 2
7 1 4

a. Is the composition T1  T2 defined? Explain. If so, what are the domain and codomain of
T1  T2?

b. Is the composition T2  T1 defined? Explain. If so, what are the domain and codomain of
T2  T1?

c. Compute T15x  7
d. Use (c) to compute T2  T1 5x  7.
e. Find T2  T1 B.
f. Use your answer to (e) to compute T2  T1 5x  7 directly. You should get the same

answer as in part (d).
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g. Compute T26x2  3x  4.
h. Use (g) to compute T1  T2 6x2  3x  4.
i. Find T1  T2 B / .
j. Use your answer to (i) to compute T1  T2 6x2  3x  4 directly. You should get the

same answer as in part (h).

For Exercises 17 to 23: In Section 3.6, Exercises 11 to 18, we found the matrix DB of the
derivative operation D on the subspaces W  SpanB. (a) Use your answers in that section to
find the matrices of the 2nd and 3rd derivatives, D 2 B and D 3 B ; (b) Use these matrices to
directly find the 2nd and 3rd derivatives of the indicated function f x using a matrix product. (c)
Show that D is both one-to-one and onto on W by finding the rref of DB and describing kerD
and rangeB.

17. W  SpanB, where B  ex, e2x; f x  5ex  3e2x.

18. W  SpanB, where B  ex sinx, ex cosx; f x  4ex sinx  3ex cosx.
19. W  SpanB, where B  e3x sin2x, e3x cos2x; f x  5e3x sin2x  9e3x cos2x.

20. W  SpanB, where B  xe5x, e5x; f x  2xe5x  7e5x.

21. W  SpanB, where B  x2e4x, xe4x, e4x; f x  5x2e4x  2xe4x  7e4x.

22. W  SpanB, where B  x25x, x5x, 5x; f x  4x25x  9x5x  25x .

23. W  SpanB, where B  x sin2x, xcos2x, sin2x, cos2x;
f x  4x sin2x  9xcos2x  5 sin2x  8 cos2x.

24. In Exercise 21 of Section 3.6, we constructed the matrix DB of the derivative operator D on
W  SpanB, where B  eax sinbx, eax cosbx:

DB 
a b
b a

.

a. Find D 2 B and D 3 B. Observe how the four entries are related to each other in two pairs.

b. Use Induction to show that for any positive integer k: D k B 
ak bk

bk ak
,

for some real numbers ak and bk.

25. Suppose that T1 : V  U, and T2 : U  W are linear transformations of vector spaces.
Prove that T2  T1 is also a linear transformation. In other words, prove that T2  T1 is additive
and homogeneous.

26. Prove that if T : V  W is one-to-one and S  v1, v2,  , vk is a set of linearly independent
vectors from V, then Tv1 , Tv2 ,  , Tvk  is a set of linearly independent vectors from W.

27. Let a1, a2,  , an, an1   be n  1 distinct real numbers, and construct
a  a1, a2,  , an, an1   n1. Prove that the evaluation homomorphism:

Ea : n  n1, where: Eap x   p a1 , p a2 , . . . , p an , p an1  ,

as defined in Section 3.5, is one-to-one. Hint: See Exercise 24 in Section 3.5.
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28. Suppose that T : V  W is a linear transformation, with dimV  n and dimW  m. Prove the
following statements:

a. If n  m, then: T is one-to-one if and only if for any basis v1, v2,  , vn  for V, the
image set Tv1 , Tv2 ,  , Tvn   is linearly independent. Hint: think of kerT.

b. If n  m, then: T is onto if and only if there exists a linearly independent subset
v1, v2,  , vm  from V, such that the image set Tv1 , Tv2 ,  , Tvm   is also
linearly independent. Note that there are only m vectors in these sets. Hint: T is onto if and
only if rankT  m.

c. Bonus: show that (a) is still true if the phrase “for any basis” is replaced with “for at least
one basis.”

29. Decoding the Kernel and Range: The purpose of this Exercise is to show that we can obtain a
basis for kerT and rangeT by decoding the information found in any matrix for T. Suppose
that T : V  W is a linear transformation, with dimV  n and dimW  m, both
finite-dimensional vector spaces. Let B  v1, v2,  , vn be a basis for V, and let
B /  w 1, w 2,  , wm be a basis for W. Let us construct the m  n matrix TB,B / , and let R be
the rref of TB,B / .

a. Suppose that z  nullspace TB,B /  n. By the Uniqueness of Representation Property,
we know that there exists u  V such that u B  z. Show that u  kerT.

b. Conversely, suppose that u  kerT. Show that u B  nullspace TB,B / .

c. Now suppose that b  colspace TB,B /  m. By the Uniqueness of Representation
Property, we know that there exists d  W such that d

B
 b. Show that d  rangeT.

d. Conversely, suppose that d  rangeT. Show that d
B
 colspace TB,B / .

e. Use (a) and (b) to prove that kerT  0V if and only if
nullspace TB,B /  0n .

f. Similarly, use (c) and (d) to prove that rangeT  0W if and only if
colspace TB,B /  0m .

Parts (e) and (f) handle the trivial cases where either kerT or rangeT is the
zero-subspace. Thus, we finish the problem by assuming that neither space is the
zero-subspace:

g. Let  z1, z2, . . . , zk  n be the basis that we obtain for nullspace TB,B / using R, as
we did in Chapter 2. By (a), the corresponding vectors ui such that ui B  zi for every
i  1k form a subset u1, u2, . . . , uk for kerT.
Prove that u1, u2, . . . , uk is a basis for kerT. Reminder: this means you have to prove
two properties: linear independence and Spanning.
In particular, this tells us that dimkerT  dim nullspace TB,B / for any matrix
TB,B / representing T.

h. Finally, let ci1 , ci2 , . . . , cir   m be the original columns of TB,B / that correspond to
the leading 1’s found in R, so that this set forms a basis for columnspace TB,B / as we
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found in Chapter 2. By (b), the corresponding vectors dj  W such that dj
B /  cijfor

every j  1 r form a subset d1, d2, . . . , dr for rangeT.

Prove that d1, d2, . . . , dr is a basis for rangeT. Again, you have to show both linear
independence and Spanning properties.
In particular, this tells us that dimrangeT  dim colspace TB,B / for any matrix
TB,B / representing T.

30. The Kernel and Range of a Composition: The purpose of this Exercise is to generalize Exercise
23 in Section 2.5. We will investigate the kernel and range of the composition of two linear
transformations. Suppose that:

T1 : V  U, and T2 : U  W,

are linear transformations of vector spaces. We do not have to assume that any of these spaces is
finite-dimensional.

a. Write down the general definition of the kernel of any linear transformation T : X  Y,
where X and Y are arbitrary vector spaces.

b. Adapt the definition in part (a) to write down the definition of kerT1 , kerT2  and
kerT2  T1 , as set-up above. There should be three separate definitions. Make sure that
you precisely use the symbols V, U, W, 0V, 0U and 0W, where appropriate.

c. Two out of the three subspaces that you defined in (b) are subspaces of the same vector
space. Which of the two kernels live in which same vector space?

d. Use your definitions to prove that kerT1   kerT2  T1 .
Hint: This means that you must show that every member v of kerT1  is also a member of
kerT2  T1 . Note that in Section 2.5, we did not know the general concept of a subspace.
We can now say that kerT1  is a subspace of kerT2  T1 , and not just a subset.

e. Use part (d) to prove that if T2  T1 is one-to-one, then T1 is also one-to-one.

f. Write down the contrapositive of the statement in (e).

Now, we will repeat the steps above for the range:
g. Write down the general definition of the range of T : X  Y, as set-up in (a).

h. Adapt the definition in part (g) to write down the definition of rangeT1 , rangeT2 , and
rangeT2  T1 , as set up above. There should be three separate definitions. Make sure that
you precisely use the symbols V, U, and W, where appropriate.

i. Two out of the three subspaces that you defined in (h) are subspaces of the same vector
space. Which of the two ranges live in which same vector space?

j. Use your definitions to prove that rangeT2  T1   rangeT2 .
Hint: This means that you must show that every member w of rangeT2  T1  is also a
member of rangeT2 . Again, we can now say that rangeT2  T1  is a subspace of
rangeT2 , and not merely a subset.

k. Use part (j) to prove that if T2  T1 is onto, then T2 is also onto. Do you notice the difference
with part (e)?

l. Write down the contrapositive of the statement in (k).

Section 3.7 Compositions of Linear Transformations 375



3.8 Isomorphisms

Now that we understand the nature of one-to-one and onto linear transformations, we will put them
together, as before, to generalize a very special kind of linear transformation:

Definition: If V and W are vector spaces, we say that a linear transformation T : V  W is an
isomorphism if T is both one-to-one and onto. We also say that T is invertible, T is
bijective, and that V and W are isomorphic to each other.
If V  W, an isomorphism T : V  V is also called an automorphism or self-isomorphism.

The existence of an isomorphism between two spaces forces their dimensions to be equal:

Theorem: Let T : V  W be an isomorphism of finite dimensional vector spaces. Then:
dimV  dimW.

Proof: If dimV  dimW, then T cannot be onto, and if dimV  dimW, then T cannot be
one-to-one. Thus we must have dimV  dimW. 

This Theorem says that we do not have to bother asking if a linear transformation is an isomorphism if
the domain and the codomain do not have the same dimension. (In fact, this Theorem is true even if
both V and W are infinite dimensional, but the proof needs the Axiom of Choice). Likewise, the
converse of this Theorem is also true and will be proven in the Exercises:

Theorem: If V and W are finite dimensional vector spaces and dimV  dimW, then
there exists an isomorphism T : V  W.

Again, this Theorem is true even if both spaces are infinite dimensional, but the Axiom of Choice is
needed as well. Thus, the two statements above can be combined in full generality as:

Theorem: Two vector spaces V and W are isomorphic to each other if and only if:
dimV  dimW.

Now, we come to a Theorem that is often taken by some textbooks to be the definition of what an
isomorphism of vector spaces is:

Definition/Theorem: A linear transformation T : V  W is an isomorphism of vector
spaces if and only if there exists another linear transformation:

T 1 : W  V,
called the inverse of T, which is also an isomorphism, such that if v  V and
Tv  w  W, then T 1w  v, and thus:

T 1  Tv  v and T  T 1 w  w.

In other words, T 1 is also a one-to-one and onto linear transformation.
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Furthermore, T 1 is unique, and T and T 1 possess the cancellation properties:

T 1  T  IV and T  T 1  IW,

where IV and IW are the identity operators on V and W, respectively.
In particular, if T is an automorphism, we get: T 1  T  IV  T  T 1.

 

T  TIV

T   TIW

V W

w
v

.

. .
°

°

WV

.
w

v

T

T 

.

.

The Composition of T with T 1 T 1  T  IV and T  T 1  IW

Since the roles of T and T 1 can be reversed, this Theorem tells us that it is indeed appropriate that we
say that V and W are isomorphic to each other. We can also say that “V is isomorphic to W” and “W
is isomorphic to V. ”

Proof:  Suppose T is an isomorphism, which according to our definition means that T is both
one-to-one and onto. We must show that we can construct a linear transformation T 1 : W  V, which
is also an isomorphism, such that T 1  T  IV and T  T 1  IW.
Suppose that w  W. We must define T 1w. Since T is onto, we can find at least one member v  V
so that Tv  w. However, T is also one-to-one, so there is at most one such vector v. Thus, we can
define:

T 1w  v, where Tv  w,

and this can be done in exactly one way. Thus, T 1 is a well-defined function. Furthermore, with this
notation, we immediately get the last part of the Theorem:

TT 1w  Tv  w for all w  W, and
T 1Tv  T 1w  v.

Now, let us show that T is a linear transformation, that is, it enjoys the two linearity properties:
Additivity: Suppose w 1, w 2  W. We must show that:

T 1w 1  w 2   T 1w 1   T 1w 2 .

But T 1w 1   v1 and T 1w 2   v2, where these two vectors satisfy the defining conditions:
Tv1   w 1 and Tv2   w 2. But this means that:

Tv1  v2   Tv1   Tv2   w 1  w 2,

since T itself is additive. By our previous reasoning, this means that v1  v2 is the unique member of V
with image w 1  w 2. Thus:

T 1w 1  w 2   v1  v2  T 1w 1   T 1w 2 ,

and thus T 1 is additive.
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Homogeneity: Suppose k  . We must show that:
T 1k  w  k  T 1w.

Again, we know that T 1w  v, with the defining condition that Tv  w.
But this means that:

Tk  v  k  Tv  k  w,
since T itself is homogeneous. Thus, k  v is the unique member of V with image k  w, and so:

T 1k  w  k  v  k  T 1w.
Hence, T 1 is also homogeneous.
Finally, we also have to show that T 1 is both one-to-one and onto:
T 1 is one-to-one: Suppose T 1w 1   T 1w 2 . Using our notation above, we find T 1w 1   v1
and T 1w 2   v2. Thus v1  v2. But now Tv1   Tv2 , and this means w 1  w 2. Thus T 1 is
one-to-one.
T 1 is onto: Suppose v  V. We have to show that we can find w  W such that T 1w  v. But:

T 1Tv  v,
and thus Tv  w  W is a vector mapped by T 1 to v. Thus T 1 is onto.
Thus, T 1 is also a one-to-one and onto linear transformation, with the property that T 1  T  IV and
T  T 1  IW. This proves one direction.
 Conversely, suppose that we can construct a linear transformation T 1 : W  V that is both
one-to-one and onto, such that T 1  T  IV and T  T 1  IW. We must show that T itself is both
one-to-one and onto.
T is one-to-one: Suppose Tv1   Tv2 . Then T 1Tv1   T 1Tv2 . But T 1  T  IV, and
thus IVv1   IVv2 , hence v1  v2. Thus T is one-to-one.
T is onto: Suppose w  W. We must show that we can find v  V such that Tv  w. This time, we
will use the composition T  T 1, which our hypotheses says is the same as IW. Thus:

w  IWw  T  T 1w  TT 1w,

and so T 1w  v  V is a vector mapped by T to w. Thus, T is onto.

Notice that T 1 exists whether or not V and W are finite dimensional. In this special case, though, we
can find its matrix in a natural way:

Theorem: Suppose T : V  W is an isomorphism of finite dimensional vector spaces. By
the previous Theorems, we know that dimV  dimW  n, say, and there exists
T 1 : W  V such that T 1  T  IV and T  T 1  IW. If B is a basis for V and B / is a basis
for W, then T B,B / is an invertible n  n matrix, and:

T 1 B /,B  T B,B /
1 .

In particular, if T : V  V is an automorphism, then:

T 1 B  T B
1.

Proof: We know from the previous Section that the matrix of the composition of two transformations is
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the product of the matrices of each transformation, in the same order, using the appropriate bases.
Thus:

T 1 B /,B  T B,B /  T 1  T B,B  IVB and

T B,B /  T 1 B /,B  T  T 1 B /,B /  IW B / .

However, the matrix of the identity operator on any finite-dimensional vector space with respect to any
of its bases is always the identity matrix, since by definition, IVv  v for any v  V. Since
dimV  dimW  n, we get:

IVB  In  IW B / ,

and thus:

T B,B /  T 1 B /,B  In  T 1 B /,B  T B,B / .

This shows that T B,B / is invertible, with inverse T 1 B /,B. 

Example: Let T : 3  4 be the linear transformation given by:

T px   p2, p3, p /1, p //1.

It is easy to check that T is a linear transformation. Let us find its matrix with respect to the standard
bases B  1, x, x2, x3 for 3 and similarly B /  e1, e2, e3, e4 for 4. Since we need to evaluate
px, p /x and p //x at the indicated points, we first create a table:

px p /x p //x p2 p3 p /1 p //1
1 0 0 1 1 0 0
x 1 0 2 3 1 0
x2 2x 2 4 9 2 2
x3 3x2 6x 8 27 3 6

We can now compute:
T 1  1, 1, 0, 0,

T x  2, 3, 1, 0,

T x2   4, 9,2, 2, and

T x3   8, 27, 3, 6.

We assemble TB,B / , column by column:

T B,B / 

1 2 4 8
1 3 9 27
0 1 2 3
0 0 2 6

.

Using technology, we find that this 4  4 matrix is invertible, and its inverse, which is T 1 B /,B, is:
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T B,B /
1  T 1 B /,B  1

50

54 4 120 30
18 18 40 85
6 6 30 20

2 2 10 15

.

We can now use this inverse matrix to accomplish the following:

Find a polynomial px, of degree at most 3, such that p2  5, p3  10, p /1  2,
and c  1 is an inflection point.

This is equivalent to finding a polynomial px such that:

T px  5,10, 2, 0.

(The second derivative of a cubic is a linear polynomial, so we are guaranteed a sign change whenever
there is a zero; conversely, quadratics and linear functions do not have inflection points.) To find the
coordinates of px with respect to B, we multiply:

1
50

54 4 120 30
18 18 40 85
6 6 30 20

2 2 10 15

5
10

2
0



11
7
3

1

.

Decoding these coordinates with respect to B, we get:

px  11  7x  3x2  x3.

We can check algebraically that p2  5 and p3  10. We get the derivatives:
p /x  7  6x  3x2 and p //x  6  6x, and likewise see that p /1  2 and p //1  0, and the
2nd derivative indeed experiences a sign change at c  1, so this is indeed an inflection point. 

Applications in Calculus and Ordinary Differential Equations

We saw in the two previous Sections that in some cases, we can restrict the derivative transformation
D to a finite dimensional function space W  SpanB, and the derivatives are again in W. We say in
this case that D preserves W, and so D is an operator:

D : W  W.
If DB is an invertible matrix, then D is an invertible operator. However, this means that D1 gives an
an antiderivative for every function f x from W.

Example: We saw in the previous Section that the function space:
W  SpanB, where B  x2e3x, xe3x, e3x,

is preserved by the derivative operation D, in other words, D is an operator:
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D : W  W.
We also found the matrix of D with respect to B:

DB 

3 0 0
2 3 0
0 1 3

.

Since this lower triangular matrix is invertible, D is an isomorphism on W. In other words, D is an
automorphism. We can find D1 B via:

D1 B  DB
1 

3 0 0
2 3 0
0 1 3

1

  1
27

9 0 0
6 9 0
2 3 9

Thus, we want to find 5x2e3x  8xe3x  2e3x dx, we encode the coefficients 5,8, 2 in a column
matrix, perform the matrix product:

 1
27

9 0 0
6 9 0
2 3 9

5
8

2



 5
3

14
9

 4
27

and decode the coordinates for our answer (adding an arbitrary constant C, as usual), to get:

5x2e3x  8xe3x  2e3x dx   5
3 x2e3x  14

9 xe3x  4
27 e3x  C.

You might recall that to find this antiderivative directly, we would need to apply a technique called
Integration by Parts. This Example shows how to do it instead using a matrix!

Let us extend this idea to solve a special kind of differential equation, that is, an equation involving
one or more derivatives:

Definition: Let x be an independent variable, and y a variable that depends on x. An
ordinary linear differential equation is an equation of the form:

cnyn   c2y2  c1y /  c0y  gx,
for some positive integer n, scalars c0, c1, , cn, and function gx.

A solution to such an equation is a function y  f x defined on some interval I, that satisfies the
differential equation. The word “ordinary” refers to the appearance of only ordinary derivatives from
basic Calculus (as opposed to partial derivatives that appear in Multi-Variable Calculus; an equation
involving partial derivatives is naturally referred to as a partial differential equation or P.D.E.).

STEM majors often take a separate course on Differential Equations, but we will see below how to use
the concept of a linear transformation, and in particular an invertible transformation, in order to solve
these kinds of differential equations.
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Example: Let us consider the differential equation:

2y //  5y /  4y  185x2e3x  281xe3x  188e3x.
We want to find one solution to this equation (the process of finding all solutions to this differential
equation is more difficult, and is treated more appropriately in a full-term course in Differential
Equations). Since the function on the right is a member of the vector space:

W  SpanB, where B  x2e3x, xe3x, e3x,

it is natural to guess that we will find a solution to this o.d.e. also in W. Since W is preserved by D, and
thus by D2 as well, this further gives us hope that W contains at least one solution.
Now that we have a guess for the space to work with, we can think of the left side of this equation as
the operator:

T : W  W, given by:
T  f x  2f //x  5f /x  4f x.

Notice that T  2D2  5D  4IW, a linear combination of the operators IW, D and D2, and thus we
are certain that T is in fact a linear transformation. Thus, we can find T B using I3, DB and
D 2 B  DB

2 which we found in an Example in Section 3.7:

T B  2D 2 B  5DB  4I3

 2
9 0 0

12 9 0
2 6 9

 5
3 0 0

2 3 0
0 1 3

 4
1 0 0
0 1 0
0 0 1



37 0 0
34 37 0

4 17 37

.

Notice that the final matrix is again lower triangular. It is invertible, with inverse:

T 1 B  T B
1  1

50653

1369 0 0
1258 1369 0
430 629 1369

.

Since we want T f x  185x2e3x  281xe3x  188e3x, we get:
f x  T 1185x2e3x  281xe3x  188e3x .

Using the inverse matrix and the desired output encoded in a column matrix, we compute:

1
50653

1369 0 0
1258 1369 0
430 629 1369

185
281
188

 1
50653

253, 265
151, 959
354, 571



5
3
7

.

Thus, one solution to our differential equation is:

f x  5x2e3x  3xe3x  7e3x. 

You might be wondering — doesn’t this computation show that the function we found is the only
solution to this differential equation? The answer is no, because we looked for a solution in only one
function space W. To find all solutions, we need to extend our transformation above to the entire space
of twice differentiable functions defined on all real numbers:
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T : C2  C0,

and thus there may be other solutions that are members of this C2, and not just the subspace W
that we considered. However, as before, any two solutions will differ by a member of the kernel of T,
and finding the members of this kernel is one of the tasks of a full-term course in Differential
Equations.

It is also crucial in this process that we pick the appropriate function space W to work with. The
function gx on the right side of the differential equation should point us in the right direction. It is
important in the process that W is preserved by the first, and possibly second and higher derivatives.

Polynomial Curve Fitting

We can use the idea of a linear transformation to find polynomials (or possibly other functions for that
matter, but there are no guarantees for functions that are not polynomials) that pass through certain
points.
We know from basic algebra that two distinct points determine a unique line. Since we want our lines
to represent a polynomial function, though, we will insist that all the points that we deal with have
distinct x-coordinates. Similarly, three non-collinear points will determine a unique parabolic function
px  ax2  bx  c. If the points are collinear, we get a “degenerate” quadratic px  bx  c or a
constant polynomial px  c, but notice that all these polynomials are still members of 2. Continuing
with this analogy, four points with distinct x-coordinates will determine a unique polynomial of at
most third degree, in other words, a member of 3, and so on. In fact, we proved in Exercise 28 of
Section 3.7 that the evaluation homomorphism:

Ea : n  n1, where:

Eap x   p a1 , p a2 , . . . , p an , p an1  ,

is a one-to-one function, if the a i are distinct numbers. By the Dimension Theorem, and the fact that
dimn   n  1  dimn1 , Ea is also onto, and thus is invertible.

Example: Let us find a cubic polynomial that passes through the points:

4,198, 1, 102, 2,48 and 3,58.
We will do this by constructing the evaluation transformation:

Ea : 3  4,
for the vector a  4,1, 2, 3, and then we look for the unique member of 3 whose image under Ea
is 198, 102,48,58.
We can use the standard basis B  1, x, x2, x3 for 3 and similarly the standard basis
B /  e1, e2, e3, e4 for 4. We compute:

Ea 1  1, 1, 1, 1,
Ea x  4,1, 2, 3,

Ea x2   16, 1, 4, 9, and
Ea x3   64,1, 8, 27.
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We assemble the matrix:

EaB,B / 

1 4 16 64
1 1 1 1
1 2 4 8
1 3 9 27

.

Our discussion preceding this Example tells us that this should be an invertible matrix. Indeed, its
inverse is:

Ea
1 B /,B  1

252

12 168 168 72
2 98 154 54

8 7 28 27
2 7 14 9

,

which we can find using technology. Thus, there is exactly one cubic polynomial that passes through
the given four points. We can find it by assembling the desired y-coordinates in a coordinate matrix and
performing the matrix product with this inverse:

1
252

12 168 168 72
2 98 154 54

8 7 28 27
2 7 14 9

198
102
48
58



62
55
10

5

.

Using our ordered basis for 3 to decode this coordinate matrix, the actual polynomial we are looking
for is:

px  5x3  10x2  55x  62.

 

We can see from its graph above that px passes through the points 4,198, 1, 102, 2,48
and 3,58. 
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3.8 Section Summary

We say that T : V  W is an isomorphism if T is both one-to-one and onto. We also say that T is
invertible, T is bijective, and the vector spaces V and W are isomorphic to each other.
Two finite dimensional vector spaces V and W are isomorphic to each other if and only if
dimV  dimW. The converse will be proven in the Exercises.
A linear transformation T : V  W is an isomorphism of vector spaces if and only if there exists a
linear transformation T 1 : W  V, which is also an isomorphism, such that: T 1  T  IV and
T  T 1  IW, where IV and IW are the identity operators on V and W, respectively.
Suppose T : V  W is an isomorphism of finite dimensional vector spaces. By the Theorems above,
we know that dimV  dimW  n, say, and there exists a linear transformation T 1 : W  V such
that T 1  T  IV and T  T 1  IW. If B is a basis for V and B / is a basis for W, then T B,B / is an
invertible n  n matrix, and T 1 B /,B  T B,B /

1 .

Isomorphisms can be used to solve ordinary linear differential equations or to find polynomials that
pass through given points or possess certain attributes (when applicable).

3.8 Exercises

1. Let T : 2  3 be the linear transformation given by:

T px  p3, p5, p /2,

and let B  1, x, x2  2, and B /  e1, e2, e3 be the standard bases for 2 and 3.
a. Verify that T is indeed a linear transformation and find T B,B / .
b. Prove that T is an isomorphism by finding the inverse of this matrix.
c. Use (b) to find a polynomial px of degree at most 2 that passes through 3, 75 and

5, 99, and with p /2  13.

2. Let T : 3  4 be the linear transformation given by:

T px  p4, p1, p3, p /1,

and let B  1, x, x2, x3  3, and B /  e1, e2, e3, e4 the standard bases for 3 and 4.
a. Verify that T is indeed a linear transformation and find T B,B / .
b. Prove that T is an isomorphism by finding the inverse of this matrix.
c. Use (b) to find a polynomial of degree at most 3 passing through 4,247, 1,7 and

3, 19, and with p /1  23.

For Exercises 3 to 9: adapt the ideas in Exercises 1 and 2 in order to construct a linear
transformation T : n  n1 (for an appropriate n, construct the matrix for T with respect to
the standard basis of each space, find the inverse of this matrix, and use it to find the polynomials
with the indicated properties. Use technology if allowed by your instructor to invert the 4  4
matrices.

3. Find a polynomial px of degree at most 2 that passes through the points:
a. 2, 52 and 4, 58, and with p /3  21.
b. 2,13 and 4,25, and with p /3  14.
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4. Find a polynomial px of degree at most 2 that passes through the point:
a. 3, 83, with p /4  77, and 

0

1 pxdx  35/2.

b. 3,106, with p /4  45, and 
0

1 pxdx  65/6.

5. Find a polynomial px of degree at most 2 that passes through the point:
a. 5,58, with p /2  25 and p /7  47.
b. 5, 324, with p /2  68, and p /7  202.
c. 5, 53, with p /2  12, and p /7  12 also. Explain what happened.

6. Find a polynomial px of degree at most 3 that passes through the points:
a. 5, 851, 2, 89, and 3,61, and with p /2  31.
b. 5,349, 2,55, and 3,85, and with p /2  45.

7. Find a polynomial px of degree at most 3 that passes through the points:
a. 3, 152 and 2, 47, with p /4  269 and p /5  161.
b. 3,532 and 2, 148, with p /4  868 and p /5  1237.

8. Find a polynomial px of degree at most 3 that passes through the points:
a. 4, 815 and 7,2474, with p /6  1133 and p //9  460.
b. 4,188 and 7, 1275, with p /6  417 and p //9  216.

9. Find a polynomial px of degree at most 3 that passes through the point:
a. 6, 2185, with p /8  1616, p //3  148, and 

0

1 pxdx  77/12.

b. 6, 2277, with p /8  2094, p //3  198, and 
0

1 pxdx  11/4.

10. Find a polynomial px of degree at most 3, with:
a. p /0  11, p //7  10, 

0

1 pxdx  26
3 , and 

2

0 pxdx  88
3 .

b. p /0  9, p //7   1001
2 , 

0

1 pxdx   11
12 , and 

2

0 pxdx  86
3 .

For Exercises 11 to 16: We saw the following sets of functions B and spaces W  SpanB in
the Exercises of Sections 3.5 and 3.6. We saw in Section 3.5 that the derivative operator D
preserves W, and we constructed DB in Section 3.6. The corresponding Exercise numbers are
indicated for your reference. (a) Check your homework solutions and the Answer Key for DB ;
(b) Show that D is invertible on W by finding DB

1;
(c) Use (b) to find the indicated antiderivative.

11. B  e3x sin2x, e3x cos2x; Exercise 13, Section 3.5 and Exercise 13, Section 3.6.
Find the antiderivative:  11e3x sin2x  29e3x cos2xdx.

12. B  xe5x, e5x; Exercise 14, Section 3.5 and Exercise 14, Section 3.6.
Find the antiderivative:  15xe5x  43e5x dx.

13. B  x2e4x, xe4x, e4x; Exercise 15, Section 3.5 and Exercise 15, Section 3.6.
Find the antiderivative:  16x2e4x  44xe4x  3e4x dx.

14. B  x2  5x, x  5x, 5x; Exercise 16, Section 3.5, and Exercise 16 of Section 3.6.
Find the general antiderivative:  7x2  5x  4x  5x  9  5x dx.
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15. B  x sin2x, xcos2x, sin2x, cos2x;
Exercise 18, Section 3.5, and Exercise 18 of Section 3.6.
Find the general antiderivative: 4x sin2x  9xcos2x  5 sin2x  8 cos2xdx.

16. Let B  eax sinbx, eax cosbx, where a and b are non-zero scalars.
Exercise 21, Section 3.5, and Exercise 21, Section 3.6.
Find the two general antiderivatives:  eax sinbxdx and  eax cosbxdx.

17. Use the inverse of the matrix in the subsection on Applications in Calculus and Ordinary
Differential Equations to find a solution to the differential equation:

2y //  5y /  4y  74x2e3x  364xe3x  33e3x.

For Exercises 18 to 31: For each of the following linear ordinary linear differential equations:
(a) choose an appropriate function space W  SpanB where you are likely to find a solution to
the equation; (b) construct a linear transformation T : W  W that represents T; (c) find TB;
(d) verify that TB is invertible, and find its inverse; (e) use the inverse to find a solution y  f x
to the equation. Note that we already have the matrix for D and its powers for some of the W that
appear below in Exercises 17 to 23 of Section 3.7. Consult the Answer Key.

18. 2y //  5y /  3y   49
3  29

3 x  5x2

19. 2y //  5y /  3y  1215  4158x  189x2  486x3

20. 3y //  8y /  7y  64 sinx  166 cosx
21. 2y ///  4y //  3y /  8y  25 sinx  109 cosx
22. 3y //  8y /  7y  319 sin2x  186 cos2x
23. 2y ///  4y //  3y /  8y  319 sin2x  186 cos2x
24. 9y //  5y /  4y  2250e3x sin2x  1390e3x cos2x
25. 3y ///  7y //  2y /  6y  134e3x sin2x  390e3x cos2x
26. 2y //  9y /  4y  36xe5x  19e5x

27. 2y ///  7y //  3y /  4y  576xe5x  139e5x

28. 3y //  11y /  8  36x2e4x  6xe4x  13e4x

29. 3y ///  4y //  8y /  11  170x2e4x  349xe4x  213e4x

30. 4y //  9y /  8  23 sinh3x  32 cosh3x.
Recall that Dsinhx  coshx and Dcoshx  sinhx. Don’t forget the Chain Rule.

31. 3y //  4y /  6  2x sin2x  86xcos2x  64 sin2x  4 cos2x
32. Let B  eax sinbx, eax cosbx, and W  SpanB. Suppose that D is the derivative operator

on W. In Exercise 24 of Section 3.7, we showed that for all positive integers k:

D k B 
ak bk

bk ak
,

for some real numbers ak and bk.
a. Show that a matrix which has the form above is always invertible if either ak or bk is

non-zero.
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b. Show that any linear combination of the matrices DB, D 2 B, , D k B also has the
same form as the matrix above.

c. Use (b) to show that the linear differential equation:

cnyn  cn1yn1   c2y //  c1y /  c0y  d1eax sinbx  d2eax cosbx

always has a solution in W, for any real numbers d1, d2, c0, c1, , cn, as long as
transformation representing the left side of the equation is not the zero transformation on W.

d. Is it true in general that the linear combination of invertible matrices is again invertible, as
long as the sum is a non-zero matrix?

33. Use the inverse of the matrix in the subsection on Applications in Polynomial Curve Fitting to
find a cubic polynomial passing through the four points:

4,116, 1,31/2, 2,14 and 3,43/2.

34. Find a quadratic polynomial px passing through the three points:

3,147/2, 1, 29/2, and 2, 29.

35. Find a quadratic polynomial px passing through the three points:

4, 185, 1, 32, and 5, 158.

For Exercises 36 to 38: Use technology to find the inverse of Ea in order to find px, if
allowed by your instructor.

36. Find a cubic polynomial px passing through the four points:

3,187, 1, 5, 2, 33 and 4, 359.

37. Find a cubic polynomial px passing through the four points:

4, 435, 1, 6, 2,45 and 3,174.

38. Find a quartic (degree 4) polynomial px passing through the five points:

5,5176, 2,169, 3,504, 6,8289, 8,26639.

39. Suppose that T : 2  3 is a linear transformation, and the matrix of T with respect to the bases
B  2, 3  x, 5  7x  x2 for 2 and B /   1,2, 5, 0,1, 4, 0, 0,3 for 3 is:

T B,B /  Diag3, 1/2,5.

a. Explain why T is an isomorphism.
b. Compute T 4  8x  3x2 . Express your answer as a vector in 3. Reminder: Encode,

Multiply, Decode.
c. Find T 1 B /, B.
d. Use (c) to find T 15,4, 7.

40. Repeat the previous Exercise if: TB,B / 

2 5 7
0 1/3 2
0 0 1

.

You may use part of your solutions to (b) and (d) from the previous Exercise.
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41. Suppose that T : 2  2 is an operator whose matrix with respect to the basis
B  2, 5  x, 2  3x  x2 is given by:

TB 

2 1 2
3 2 1
1 1 3

.

a. Prove that T is invertible by finding the inverse of this matrix.
b. Use the inverse of this matrix to find a quadratic polynomial px, such that:

T px  81  134x  33x2.
Reminder: Encode, Multiply, Decode.

42. From Kansas to Oz . . . and Back! Show that: T :   , given by: Tx  ex is an
isomorphism. What is the name of its inverse?

43. Let V be any vector space (it can be infinite dimensional). Show that V is isomorphic to itself.
Hint: state the definition of any isomorphism T : V  W and rewrite it to say what it means if
V  W.

44. Let V, U and W be any three vector spaces (they can be infinite dimensional). Suppose that
T1 : V  U is a linear transformation, and T2 : U  W is also a linear transformation.
a. Prove that if T1 and T2 are both one-to-one, then T2  T1 is also one-to-one.
b. Prove that if T1 and T2 are both onto, then T2  T1 is also onto.
c. Prove that if T1 and T2 are both isomorphisms, then T2  T1 is also an isomorphism.
d. Conclude that if V is isomorphic to U and U is isomorphic to W, then V is isomorphic to W.

Thus, all three spaces are isomorphic to each other.

45. Show that T : Matm, n  Matn, m, where: TA  A, is an isomorphism.

46. Let B be a fixed basis for a finite-dimensional vector space V. Show that:

T : V  n, given by: T v  v B,

that is, the coordinates of v with respect to B, is an isomorphism. Note: since we already know
from Section 3.6 that T is a linear transformation, we only have to show that T is both one-to-one
and onto.

47. Suppose that V and W are vector spaces, with dimV  n and dimW  m, and suppose that B
is a fixed basis for V and B / is a fixed basis for W. Consider now the vector spaces:

X  HomV, W  T |T : V  W is a linear transformation , and

Y  Matm, n  A |A is anm  n matrix .

a. Show that the function: S : X  Y, given by: ST  T B,B / ,
which takes a linear transformation T and creates its matrix with respect to B and B /, is a
linear transformation.

b. Show that S is in fact an isomorphism, and thus: HomV, W  Matm, n.
c. Explain in words what this isomorphism means.

48. We know that if T : V  V is an operator on a finite-dimensional vector space V, then T is
one-to-one if and only if T is onto, thanks to the Dimension Theorem. The purpose of this
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Exercise is to show that this statement may be false if V is an infinite-dimensional vector space.
Consider the vector space  consisting of all polynomials. We know from Section 3.4 that
dim  0. Now, consider the function:

T :   , given by: T px  x  px.
a. Show that T is indeed a linear transformation.
b. Show that T is one-to-one.
c. Show that T is not onto. Hint: this means that there exists at least one polynomial qx

which is not in rangeT.
d. Now, let D be the derivative operator. Show that  is preserved by D.
e. Show that D is onto.
f. Show that D is not one-to-one. Hint: what is kerD?

49. The objective of this Exercise is to prove the Theorem: Two finite dimensional vectors spaces V
and W are isomorphic to each other if and only if dimV  dimW.
a. Warm-up: Construct a simple isomorphism from 4 to 3. Hint: use the standard bases.
b. Use the Dimension Theorem to prove that if T : V  W is an isomorphism, then

dimV  dimW.
For the converse: Suppose dimV  dimW  n. Let B  v1, v2, . . . , vn be an
ordered basis for V, and let B /  w 1, w 2, . . . , w n be an ordered basis for W. Define a
function:

T : B  B / given by: Tvi   w i for i  1. . n.
c. Show using linearity that T can be extended to a linear transformation:

T : V  W,
on the entire vector space V, and not just the basis vectors. In other words, show how to
define Tv for an arbitrary vector v  V. Hint: use Uniqueness of Representation.

d. Show that the linear transformation T in (c) is both one-to-one and onto, and thus T is an
isomorphism.

50. Use the previous Exercise to prove the following:
a. Any two lines L1 and L2 passing through the origin of 2 are isomorphic to each other. Use

a similar argument for any two lines passing through the origin in 3.
b. More generally, if L1 is a line in n passing through the origin, and L2 is a line in m

passing through the origin, then L1 and L2 are isomorphic to each other (even though they
are in different ambient spaces).

c. Any two planes 1 and 2 passing through the origin of 3 are isomorphic to each other.
d. The vector space Diagn of diagonal n  n matrices, and Euclidean n-space n, are

isomorphic to each other.
e. The vector space Uppern of upper triangular n  n matrices and the space Lowern of

lower triangular n  n matrices are isomorphic to each other. What would be a simple
isomorphism connecting these two spaces?

f. Both Uppern and Lowern, as in the previous part, and the space Symn of symmetric
n  n matrices, are all isomorphic to each other.

g. Suppose that n  2k  1, where k is a positive integer. Show that the vector space Bisymn
of bisymmetric n  n matrices, and Matk, k, the space of all k  k matrices, are
isomorphic to each other.
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A Summary of Chapter 3

We call V,, a vector space if V is a non-empty set, and the operations  and  satisfy the Ten
Axioms for a Vector Space: for all u, v and w  V and all r, s  , V,, satisfies:
1. u v  V; 2. r  u  V; 3. u v  v u; 4. u v  w  u v w;
5. There exists 0V  V, such that: 0V  v  v  v 0V;
6. There exists v  V such that: v v  0V  v  v;
7. r  s  v  r  v  s  v; 8. r  u v  r  u  r  v;
9. r  s  v  s  r  v  rs  v; 10. 1  v  v.
When the operations  and  are understood, we write V instead of V,,.
The Span of a finite set of vectors S  v1, v2, . . . , vn  V,, is the set of all possible linear
combinations from S: SpanS   c1  v1   c2  v2    cn  vn  | c1, c2, . . . , cn  .

S is linearly independent if the only solution to: c1  v1   c2  v2    cn  vn   0V, the
dependence test equation, is the trivial solution c1  0, c2  0, . . . , cn  0.
Suppose that S  vi | i  I   V,, is an infinite set of vectors, where I   is a non-empty
indexing set. A linear combination of vectors from S can be constructed in the following way:
1. Choose a finite subset of vectors: vi1 , vi2, . . . , vin   S, where i1  i2    in  I.
2. Choose a finite list of scalars c1, c2,  , cn  .
3. Form the vector expression: c1  vi1   c2  vi2    cn  vin .
SpanS is the set of all possible linear combinations of vectors from all finite subsets of S.
S is linearly independent if every finite subset of S is linearly independent. In other words, the only
solution to the dependence test equation: c1  vi1  c2  vi2   cn  vin  0V,
is the trivial solution: c1  0, c2  0, , cn  0, for all indices i1  i2    in  I.
The Elimination Theorem: Let S  v1, v2,  , vn   V,, be linearly dependent, with
dependence equation: c1  v1   c2  v2    cn  vn   0V, where cn  0.
Then: Spanv1, v2,  , vn   Spanv1, v2,  , vn1 .
The Extension Theorem: Let S  v1, v2,  , vn   V,, be linearly independent, and let
w  V be a vector which is not in SpanS.
Then: the enlarged set S /  v1, v2,  , vn, w  is still linearly independent.
A non-empty subset W  V is a subspace of V if W is closed under  and . We write: W  V.
Suppose S is a non-empty subset of a vector space V. Then: SpanS is a subspace of V.
A set of vectors B  V is a basis for V if it is linearly independent and Spans V.
Every vector space V has a basis B. V is finite dimensional if we can find a finite basis B for V,
otherwise we say that V is infinite dimensional.
The Dependent/Independent Sets from Spanning Sets Theorem: Suppose we have a set of n
vectors, S  w 1, w 2, . . . , w n   V,,, and we form W  SpanS. Suppose now we randomly
choose a set of m vectors from W to form a new set: L  u1, u2, . . . , um .
Then, we can conclude that: if m  n, then L is linearly dependent.
Consequently, the contrapositive states that: if L is linearly independent, then m  n.
Any two bases for a finite-dimensional vector space V have exactly the same number of vectors.
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We call this common number the dimension of V.
Let W be a subspace of a finite-dimensional vector space V. Then: dimW  dimV. Furthermore,
dimW  dimV if and only if W  V (this can be false if V is infinite dimensional).
A linear transformation T : V,V ,V   W,W ,W  is a function that assigns a unique
member w  W to every vector v  V, such that T satisfies for all u, v  V and all scalars c:

TuV v  Tu W Tv, and Tc V u  c W Tu.
We call V the domain of T, and W the codomain of T. If T : V  V, we call T an operator.

The kernel of T is the subspace: kerT  v  V | Tv   0W  V.
The range of T is the subspace: rangeT  w  W | w  Tv  for some v  V  W.

Uniqueness of Representation Property: Let B  w 1, w 2, . . . , w n  be an ordered basis for a finite
dimensional vector space V. If v  V, then v can be expressed uniquely as a linear combination of the
vectors of B: v  c1  w 1   c2  w 2    cn  w n .
The vector c1, c2, . . . , cn  is the coordinate vector of vwith respect to B, written as:
v B  c1, c2, . . . , cn . The n  1 column matrix corresponding to v B is the coordinate matrix of
vwith respect to B, written as v B.

Let T : V  W be a linear transformation, where dimV  n and dimW  m.
Let B  v1, v2,  , vn  be a basis for V, and let B /  w 1, w 2, . . . , wm  be a basis for W.
The m  n matrix whose columns, from left to right, are Tv1 B / through Tvn B / is the matrix of T
relative to B and B /, and written as: T B,B /  Tv1 B / | Tv2 B / |  | Tvn B / .

If v  V, then TvB /  T B,B /  v  B. If T : V  V is an operator, and we use the same basis B
for the domain and codomain, we write T B instead of T B,B .

Let T1 : V  U and T2  U  W be linear transformations of finite dimensional vector spaces. Let B
be a basis for V, B / a basis for U, and B // a basis for W. Then: T2  T1 B,B //  T2 B /,B //  T1 B,B / .

A linear transformation T : V  W is one-to-one or injective if the image of different vectors from the
domain are different vectors from the codomain: if v1  v2, then Tv1   Tv2 .
T is one-to-one if and only if kerT  0V .
T is onto or surjective if and only if rangeT  W.
The Dimension Theorem for Abstract Vector Spaces: Let T : V  W be a linear transformation, and
suppose that V is finite dimensional, with dimV  n. Then, both kerT and rangeT are finite
dimensional, and if we define rankT  dimrangeT, and nullityT  dimkerT, then:

rankT  nullityT  n  dimV.
We say that T : V  W is an isomorphism if T is both one-to-one and onto. We also say that T is
invertible, T is bijective, and that V and W are isomorphic to each other. Two finite dimensional
vector spaces V and W are isomorphic if and only if dimV  dimW.
T : V  W is an isomorphism of vector spaces if and only if there exists a linear transformation
T 1 : W  V, which is also an isomorphism, such that: T 1  T  IV and T  T 1  IW.
Suppose T : V  W is an isomorphism of finite dimensional vector spaces. We know that
dimV  dimW, and there exists T 1 : W  V such that T 1  T  IV and T  T 1  IW. In this
case, for any basis B for V, and any basis B / for W, TB,B / is an invertible square matrix, and
T 1 B /,B  T B,B /

1 .
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Chapter 4
Peeling the Onion:

The Subspace Structure
of Vector Spaces

We defined Linear Algebra as the study of vector spaces, their structure, and the linear transformations
that map one vector space to another. In this Chapter, we will explore at a deeper level the structure of
vector spaces — that is, how the subspaces of a vector space interact with each other, and how
subspaces behave with respect to a linear transformation.
We will see first how to make two subspaces V and W of some ambient space U interact using two
basic operations: the join and the intersection operations, denoted by V W and V W, in order to
produce new subspaces of U. We will find algorithms in order to find a basis for these resulting
subspaces if we are given bases for V and W.
The Preservation of Subspaces Theorem tells us that a linear transformation T : n  m will take a
subspace V of the domain n and map it into a subspace TV of the codomain m. Similarly, if W is a
subspace of m and we look for all the vectors in n that get mapped by T into W, the resulting set of
vectors T1W is a subspace of the domain n. We will see how to explicitly find a basis for these
image and pre-image subspaces.
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The Image TV of V, and the Preimage T 1W of W

We will take a linear transformation T : n  m and restrict it to a subspace V of n. In particular,
we will see that restricting a linear transformation to the rowspace of T always results in a
one-to-one linear transformation, and as such we can construct an inverse to this restriction.
We will construct the quotient space V/W where W is a subspace of V, and see the Isomorphism
Theorems of Amalie Emie Noether. We know that a linear transformation T : V  W must be
one-to-one and onto in order to be an isomorphism. However, the First Isomorphism Theorem says that
any linear transformation will induce an isomorphism between V/kerT and rangeT. The Second
Isomorphism Theorem refers to an isomorphism concerning nested subspaces, and the Third
Isomorphism Theorem, also known as The Diamond Isomorphism Theorem, refers to the join and
intersection of two subspaces that were constructed in the first section.
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4.1 The Join and Intersection of Two Subspaces

We know from basic Set Theory as seen in Chapter Zero that if we have two subsets A and B of some
universal set U, we can find the union and the intersection of these two sets, written as:

A  B  x  U | x  A or x  B, and
A  B  x  U | x  A and x  B

We can picture these operations with the Venn diagrams from Chapter Zero:

 
.

.

A  B

.

A  B

A 

B

The Union and Intersection of two Sets A and B

Our goal in this Section is to describe what happens when A and B are subspaces of a vector space U.
For simplicity, we will focus our examples on subspaces of n. However, if dimU  n and B is a
fixed basis for U, the process of finding coordinates with respect to U will produce an isomorphism:

T : U  n, where Tu  uB.

Thus, we can perform whatever computation we show below in n using these coordinate vectors, and
us B to decode our answers back to vectors in V. We will see some Exercises where we will apply this
concept. Whenever possible, we will state our Theorems in terms of abstract vector spaces instead of
just Euclidean spaces.
Unfortunately, if V and W are arbitrary subspaces of some ambient space U, their union V W is
usually not a subspace of U. For example, in 3, the proper subspaces are lines and planes through
the origin, aside from the two trivial subspaces. However, the union of a plane  and a line L that is not
on the plane is certainly not a subspace of 3:

 

L
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v

w
vw

.

z

y

x

.

The Union of a Plane  and a Line L is Not a Subspace of 3
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This is because if we add a non-zero vector v from  to a non-zero vector w from L, the sum v  w is
neither on  nor L.
However, let’s take a look at two distinct lines L1 and L2 that pass through the origin. Just by
themselves, these two lines do not form a subspace of 3 either, but the unique plane  that contains
these two line is a subspace of 3:

 


.

.

L1

L2

.

z

y

x

The Plane  Containing Two Lines is a Subspace

Moreover, it is the smallest subspace of 3 that contains these two lines. But recall from Chapter 1
that every point on this plane is a sum of two vectors, one from each line. We can generalize this
construction using the following:

Definition/Theorem: Let V and W be two subspaces of some ambient vector space U. We
define the join of these two subspaces as the set of all vectors of U that can be written as the
sum of one vector from V and one vector from W, and it is denoted:

V W  u  U | u  v  w for some v  V, and some w  W .
Then: V W is a subspace of U, and if B is a basis for V and B / is a basis for W, then B  B /

Spans V W. Consequently, V W is the smallest subspace of U that contains V W, and:
dimV W  dimV  dimW.

We pronounce V W as “V join W. " It also follows from the commutative property of vector
addition that V W  W  V.

Proof: We have to show that V W is closed under addition and scalar multiplication. If u1 and u2 are
members of V W, then we can write:

u1  v1  w 1 and u2  v2  w 2,
for some v1 and v2 from V, and some w 1 and w 2 from W. But then:

u1  u2  v1  w 1   v2  w 2   v1  v2   w 1  w 2 ,

by the commutative property. Since V and W are closed under addition, u1  u2 is again a member of
V W. Similarly, we can easily show that k  u1 is a member of V W.
Now, if B  v1, v2, . . . , vn is a basis for V and B /  w 1, w 2, . . . , wm is a basis for W, then every
member of V is a linear combination of the members of B, and every member of W is a linear
combination of the members of B /. Thus, every member of V W can be written as:
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u  v  w  c1v1  c2v2   cnvn  d1w 1  d2w 2   dmwm,
which looks like a linear combination of the vectors of B  B /. Thus, B  B / Spans V W. However,
B  B / is not necessarily linearly independent. However, we can use The Minimizing Theorem to
obtain a subset S  B  B / that is linearly independent so that:

SpanS  SpanB  B / .

Since the number of members of B  B / is at most the number of members of B plus the number of
members of B /, we get:

dimV W  n  m  dimV  dimW.
Next, to show that V W is the smallest subspace that contains V W, we have to show that if X is
any subspace of U that contains V W, then X also contains V W. So let us suppose that X is a
subspace of U that contains V W. Certainly X contains B  B /, since this is a subset of V W. But
since X is a subspace of U, it is also closed under vector addition and scalar multiplication. Thus X
contains all linear combinations from the set B  B /. But we saw above that this set Spans V W, so
all the members of V W are also members of X. Thus X contains V W. 

We can visualize V W and V W using the following diagram:

 
U

V

W

.

U
V

W V  W
V V W

The Union V W versus The Join V W

Now we can think about constructing a basis for V W. Since we know that B  B / Spans V W, we
can find a linearly independent subset of B  B /, as we did in The Minimizing Theorem of Chapter 1,
which still Spans V W.

Example: Let B   7,1, 4, 1, 1,3, 6, 7 and B /   3, 1,4,5, 4,3, 7, 5. We can
easily see that the two vectors in each set are not parallel to each other, so they are respectively bases
for V  SpanB and W  SpanB / . The join V W is Spanned by the four vectors of:

B  B /   7,1, 4, 1, 1,3, 6, 7, 3, 1,4,5, 4,3, 7, 5.

We do not see any obvious dependence relationships among these four vectors, so we assemble the
four vectors into the columns of a matrix:

7 1 3 4
1 3 1 3

4 6 4 7
1 7 5 5

, with rref

1 0 0 5/6
0 1 0 5/6
0 0 1 1/3
0 0 0 0

.
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Thus, the first three columns of our original matrix form a basis for the join:

V W  Span 7,1, 4, 1, 1,3, 6, 7, 3, 1,4,5,

and therefore V W is a 3-dimensional subspace of 4. 

The Intersection of Two Subspaces

Unlike the union of two subspaces, we are guaranteed that the intersection of two subspaces is again a
subspace:

Theorem: Let V and W be two subspaces of some ambient vector space U. Then, the
intersection of these two subspaces:

V W  u  U | u  V and u  W 

is a subspace of U.

We can visualize the intersection of two subspaces below:

 
.U

V

W

.

.

V  W

The Intersection of two Subspaces V W

Proof: Both subspaces contain 0U, so V W is not empty. Next, we have to show that V W is closed
under vector addition. Suppose u1 and u2 are members of V W. Thus u1 and u2 are both members of
V and W. But each of these is a subspace of U, and thus each is closed under vector addition. Thus
u1  u2 is a member of V as well as W, and thus u1  u2  V W. As usual, we leave it as an exercise
to show that V W is closed under scalar multiplication.

Now, if we are given a basis B  v1, v2, . . . , vn for V and a basis B /  w 1, w 2, . . . , wm W, how
would we find a basis for V W? Unfortunately, this is not a straightforward process — it is not a
simple matter of finding B  B /. Let us motivate its construction, once again, by considering the
familiar 3.

Example: Let us find a basis for the intersection of two planes through the origin:

V  Span 4, 1, 0, 0, 1,2, and
W  Span 5, 1, 0, 0, 3, 5.
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We saw how to find the intersection of two planes in Chapter 1 if they were given in terms of their
more natural Cartesian equations. Unfortunately, we are given these two rather inconvenient bases
instead. However, it is not that difficult to find a normal vector for each plane. Although the cross
product would give us a normal easily, we will instead find the orthogonal complements of V and W,
that is, finding the nullspaces of the two matrices:

4 1 0
0 1 2

and
5 1 0

0 3 5
.

The rref of these two matrices are:

1 0  1
2

0 1 2
and

1 0 1
3

0 1 5
3

.

Thus, we have the normals 1/2, 2, 1 and 1/3,5/3, 1, or more conveniently, 1, 4, 2 and
1, 5,3. Now that we have the normal vectors, we want to find the intersection of the two planes:

x  4y  2z  0, and
x  5y  3z  0.

Now all we have to do is find the nullspace of a second matrix:

1 4 2
1 5 3

with rref
1 0 22
0 1 5

.

Thus, the intersection of these two planes, as expected, is a line given by:
V W  Span22, 5, 1. 

Surprisingly, the algorithm to find the intersection of two arbitrary subspaces V and W of some ambient
space k is exactly the same as our example above.

Theorem: Let V and W be two subspaces of some ambient space k. Then:
V W  V W .

Furthermore, suppose B  v1, v2, . . . , vn is a basis for V and B /  w 1, w 2, . . . , wm a
basis for W. The following algorithm finds a basis for V W:
Step 1. Form the matrix C, with rows v1, v2, . . . , vn, and D, with rows w 1, w 2, . . . , wm.
Step 2. Find a basis for the nullspace of each of these matrices using their rrefs.
Step 3. Assemble these two sets of basis vectors together as the rows of a third matrix E.
Step 4. Find a basis for the nullspace of this final matrix using its rref.
The basis for the nullspace in Step 4 is also a basis for V W.

We note that the equation above can be rewritten as:

V W  V W,

which is analogous to De Morgan’s Law from Chapter Zero.
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Proof: Recall that every vector in V is orthogonal to every vector in V, and vice-versa. Similarly,
every vector in W is orthogonal to every vector in W, and vice-versa. Thus, the vectors in V W are
exactly those vectors that are orthogonal to both V and W. But the vectors which are orthogonal to
both of these spaces are precisely those vectors in the orthogonal complement of the space Spanned by
both V and W, and this is computed precisely by assembling a matrix whose rows are formed by a
basis for V and a basis for W and finding the nullspace of this matrix. This also tells us that
V W  V W .

Example: Let us look again at our previous example, with:

B   7,1, 4, 1, 1,3, 6, 7, B /   3, 1,4,5, 4,3, 7, 5,

V  SpanB and W  SpanB / . This time, let us find a basis for V W. We assemble the two bases
separately as the rows of two matrices:

C 
7 1 4 1
1 3 6 7

and D 
3 1 4 5

4 3 7 5
.

We individually find the rref of these matrices, which are:

1 0 3/11 2/11
0 1 23/11 25/11

and
1 0 1 2
0 1 1 1

.

From these rref, we sight-read a basis for the nullspaces of C and D:

 3, 23, 11, 0, 2, 25, 0, 11 and  1, 1, 1, 0, 2,1, 0, 1.

We could take a minute to check mentally that both of the vectors from each set are orthogonal to the
corresponding two vectors from the original bases using the dot product, so we are confident that these
are indeed bases for the orthogonal complements. Now, for the final phase, we assemble these final
four vectors into the rows, once again, of a third matrix:

3 23 11 0
2 25 0 11
1 1 1 0
2 1 0 1

, with rref

1 0 0 3/4
0 1 0 1/2
0 0 1 5/4
0 0 0 0

.

We have a single free variable, and thus V W is 1-dimensional, and by clearing fractions, we get:

V W  Span3,2, 5, 4.

To check this answer, we will verify that the single vector in our basis is a member of both V and W by
expressing it as a linear combination of both B and B / :

3,2, 5, 4  1
2 7,1, 4, 1  1

2 1,3, 6, 7, and

3,2, 5, 4   1
5 3, 1,4,5  3

5 4,3, 7, 5. 
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This has certainly not been a simple process. Notice that we had to perform the Gauss-Jordan
algorithm on three matrices. There is one special case, though, where the intersection is quite simple:

Theorem: Let W be any subspace of some Euclidean space n. Then:
W W  0n .

In other words, the only vector common to a subspace W and its orthogonal complement W

is the zero vector.

Proof: This proof is best described as magical. Let w  W W. By definition, every member of W is
orthogonal to every member of W, and vice versa. So in particular, w is orthogonal to itself, that is:

w  w  0.
But recall that w  w  w2, and the only vector whose length is 0 is the zero vector. Thus w  0n,
and W W  0n . 

On the other hand, we will find out in Chapter 7 that W W  n, for any subspace W of n.

In a special case, the join of two subspaces is known by another name:

Definition: Let V and W be two subspaces of some ambient vector space U. Suppose
V W  0U . Then the join of V and W is written as: V W  VW, and is called the
direct sum of V and W.

The Relationship Between V W and V W

We will find out in Section 4.5, at the end of this Chapter, that the join and the intersection of two
subspaces are connected by The Diamond Isomorphism Theorem. The proof of the following
consequence regarding their dimensions is an Exercise in that Section, and easily follows from the
aforementioned Theorem:

Theorem — The Dimension Theorem for the Join and Intersection:
Let V and W be finite-dimensional subspaces of a vector space U. Then: V W is also finite
dimensional, and:

dimV W  dimV  dimW  dimV W.

Example: In our previous Example, with:

B   7,1, 4, 1, 1,3, 6, 7, B /   3, 1,4,5, 4,3, 7, 5,
and V  SpanB, W  SpanB / , we saw that:

dimV W  3, dimV  2, dimW  2, and dimV W  1.
Thus, indeed:

dimV W  3  2  2  1  dimV  dimW  dimV W. 
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4.1 Section Summary

Let V and W be two subspaces of some ambient vector space U. We define the join of these two
subspaces as the set of all vectors of U that can be written as the sum of one vector from V and one
vector from W, and it is denoted:

V W  u  U | u  v  w for some v  V and some w  W .

Then: V W is a subspace of U, and if B is a basis for V and B / is a basis for W, then B  B / Spans
V W. Consequently, V W is the smallest subspace of U that contains V W, and:

dimV W  dimV  dimW.

The intersection of these two subspaces:
V W  u  U | u  V and u  W 

is a subspace of U.
Suppose B  v1, v2, . . . , vn is a basis for V and B /  w 1, w 2, . . . , wm is a basis for W, and these
are subspaces of some k. Form the matrix C, with rows v1, v2, . . . , vn, and D, with rows
w 1, w 2, . . . , wm. Next, find a basis for the nullspace of each of these two matrices. Assemble these two
sets of basis vectors together as the rows of a third matrix. The nullspace of this final matrix is V W.

Let W be any subspace of some Euclidean space n. Then W W  0n .
The Dimension Theorem for the Join and Intersection:
Let V and W be finite-dimensional subspaces of a vector space U. Then: V W is also finite
dimensional, and:

dimV W  dimV  dimW  dimV W.

4.1 Exercises

For Exercises 1 to 5: For the following subspaces V and W for their respective n: (a) find a basis
for V W and state its dimension; (b) find a basis for V W and state its dimension; (c) check that
each basis member that you found in (b) is in fact a linear combination of the members from the basis
for V as well as W; (d) verify that the Dimension Theorem for the Join and Intersection is true.
It is highly recommended that technology be used to find the rref of the matrices involved.

1. V, W  4; V  Span 1,1,12, 6, 11,16, 13, 1,
W  Span 1, 1,16, 10, 7,11, 5, 1.

2. V, W  4; V  Span 3, 5,2, 4, 1, 2, 7,3,
W  Span 0, 2, 1,5, 2,3, 1, 6.

3. V, W  4; V  Span 3,2, 7,4, 2, 13,12,2, 2, 3,5, 1,
W  Span 3,5, 6,11, 1, 16,8, 8, 1,3, 2,4

4. V, W  5; V  Span 3, 4,1, 4, 6, 6, 8, 5, 15,13, 1,2, 0,5, 3,
W  Span 1, 3,2, 7, 2, 4,1, 7,7,6

5. V  Span 1, 7, 5,6, 6, 1,8, 2,4, 2, 1, 0, 3,4, 3, 5, 3,2, 7,4  5,
W  Span 6, 9,2, 0, 0, 5, 1,3,3,2, 3, 2,1,2, 0  5.
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For Exercises 6 to 8: For the following subspaces V  SpanB and W  SpanB /  of the
respective n, perform parts (a) through (d) in the instructions for Exercises 1 to 5. Use the
standard basis 1, x, x2 , . . . , xn to encode the polynomials into matrices. Exercise 6 is started
for you.

6. B  6  x  2x2  10x3, 11  3x  6x2  2x3, and
B /  3  17x  5x2  4x3, 3  11x  4x2  2x3  3.

C 
6 1 2 10

11 3 6 2
; D 

3 17 5 4
3 11 4 2

.

7. B  2  5x  10x2  5x3, 6  7x  4x2  x3,  8  14x  16x2  3x3, and
B /  2  3x  19x2  13x3, 7  7x  11x2  12x3  3.

8. B  3  2x  4x2  x4, 6  3x2  5x3  5x4, 7  7x  8x2  2x3  8x4,
 5  2x  7x2  x3  x4, and

B /  1  6x  3x2  2x3  4x4, 5  14x  7x2  x3  12x4,
 9x  3x2  2x4, 3  6x  3x3  2x4  4.

9. Let V and W be subspaces of some ambient vector space U. Prove that V W as well as V W
are closed under scalar multiplication.

10. Suppose that V and W are subspaces of 8 with dimV  4 and dimW  6. Prove that
2  dimV W  4.

11. Suppose that V and W are subspaces of 12 with dimV  8 and dimW  9. State and prove a
compound inequality analogous to the one in the previous Exercise.

12. Suppose V and W are subspaces of some ambient space U, and V W  0U . Prove that
every vector u  V W can be expressed uniquely in the form v  w, where v  V and w  W.
In other words:

If u  v1  w 1 and u  v2  w 2, where v1, v2  V
and w 1, w 2  W, then v1  v2 and w 1  w 2.

13. Suppose V is a 5-dimensional subspace of 7 and W is a 3-dimensional subspace of 7, and you
computed that V W is 5-dimensional. What must be the relationship between V and W? Prove
your answer. Hint: Think about the process of finding the basis for V W. Don’t peek at the
answer key until you have your own answer.

14. Similarly, suppose that V is a 6-dimensional subspace of 8 and W is a 4-dimensional subspace
of 8. What can you conclude if you computed that V W is 4-dimensional? Again, prove your
answer.

15. Put together and generalize the ideas behind the last two Exercises into a single Theorem by
completing the following Theorem, and prove it: Let V and W be two finite-dimensional
subspaces of a vector space U. Then, W is a subspace of V if and only if either . . .
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4.2 Restricting Linear Transformations and

the Role of the Rowspace

In Algebra, Trigonometry and Calculus, we encounter functions that are usually defined on an interval,
and perhaps even the set of all real numbers. However, we also often study these functions when they
are restricted to a smaller domain. We see this, for example, when we study a continuous function on
a closed interval a, b. In Calculus, the Extreme Value Theorem tells us that such a restricted
continuous function has an absolute maximum and minimum on a, b. In this section, we will
analogously see how to restrict a linear transformation T to a subspace of the domain, and the
surprising role that the rowspace has when we want a certain desirable quality to be manifested by this
restriction.

Restricting a Linear Transformation

In Linear Algebra, we can take a linear transformation T : V  W and restrict it to a subspace U of V.
Again, for simplicity, we will focus our examples on linear transformations T : n  m, but we will
state our theorems in terms of abstract vector spaces instead of just Euclidean spaces.

Definition/Theorem: Let T : V  W be a linear transformation, and U a subspace of the
domain V. The restriction of T to U, denoted T |U and pronounced “T restricted to U, ” is the
linear transformation:

T |U : U  W, given by
T |U u  Tu for all u  U.

The only issue here is that of linearity, but the additivity and homogeneity properties are inherited by
the restriction from T. In other words, since they are valid for the vectors of V, they are also valid for
the vectors of the subspace U.

Example: Let T : 3  4 be the linear transformation given by the 4  3 matrix:

T 

3 2 5
2 1 1
4 1 5

1 1 4

.

Let us consider the restriction of T to the plane through the origin, U, given by:

3x  5y  2z  0.

It is easy to see that the set B   5, 3, 0, 0, 2, 5 is a basis for U. Let us find the matrix of T |U
with respect to the bases B for U and the standard basis B /  e1, e2, e3, e4 for 4. Thus T |U  will
be a 4  2 matrix. We compute:
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T5, 3, 0 

3 2 5
2 1 1
4 1 5

1 1 4

5
3
0



21
13
23

8

, and

T0, 2, 5 

3 2 5
2 1 1
4 1 5

1 1 4

0
2
5



29
7
23
22

.

Since we are using the standard basis for 4, these images are already encoded. Thus:

T |U B,B / 

21 29
13 7
23 23

8 22

. 

What can we say about the kernel and range of a restricted transformation? We have the following
Theorem, which will be proven in the Exercises:

Theorem: Let T : V  W be a linear transformation, and U a subspace of V. Let us define:

kerT |U   u  U | Tu  0W , and

rangeT |U   w  W | w  Tu for some u  U .

Then: kerT |U   kerT  U and rangeT |U   rangeT.

 

.

U
..

.
. ..

.

T | U

ker (T | U )

W.

.
.

range (T |U )

ker (T)

. .. .

0W

range (T ).
.. ..

T
.

V

The Kernel and Range of the Restriction of T to U

This Theorem tells us that instead of studying T : V  W, we can study the restricted transformation:

T |U : U  rangeT |U ,
and the kernel of this restriction is: kerT |U   kerT  U.
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The Role of the Rowspace

In Algebra and Trigonometry, we see many important functions that are not one-to-one, such as the
quadratic and sine functions. However, we would very much like to construct an “inverse” for such a
function. To do so, we would need to first restrict it to an interval where it is one-to-one. For the
inverse to be as general as possible, we want this interval to be the biggest interval possible, such that
the function is still one-to-one on this interval (although for some functions such as the secant, the
domain could consist of two or more intervals).
For example, we traditionally restrict y  x2 on x  0, and y  sinx on /2,/2, thus making
these functions one-to-one on these domains. From these, we construct the inverse functions: y  x
and y  sin1x. These functions have the familiar Cancellation Properties:

x2  x if x  0, and  x 2  x if x  0;

sinsin1x  x if x  1, 1, and sin1sinx  x if x  /2,/2.

Let us show each pair of functions, where the original function is in red, and the inverse function is in
blue:

21.510.50

2

1.5

1

0.5

0

x

y

x

y

y  x2 versus y  x

1.510.50-0.5-1-1.5

1.5

1

0.5

0

-0.5

-1

-1.5

x

y

x

y

y  sinx versus y  sin1x

In the same way, if a linear transformation T : V  W is not one-to-one on V, then perhaps we can
restrict T on a subspace U of V so that the transformation will be one-to-one on U. We would also like
to have U “as big as possible.” Unfortunately, we do not generally have a graph of a linear
transformation to help us visually check where a transformation is one-to-one, in the same way that we
have the Horizontal Line Test in precalculus. And how would we know if this domain is as big as
possible, even if we were to visualize it?
In the case when T : n  m, the best choice for U turns out to be a subspace closely related to T:

Theorem: Let T : n  m be a linear transformation, with standard matrix T.
Let U  rowspaceT  n. Then: the restriction T |U : U  m is one-to-one.
Furthermore, for any subspace W of n such that dimW  dimU  rankT, the
restriction T |X : X  m is not one-to-one.

Proof: We know that the rowspace of T is the orthogonal complement of the nullspace of T,
which is also known as kerT. But we also saw from Section 4.1 that for any W  n,
W W  0n . This means that:
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rowspaceT  kerT  0n .

But this means that if u  U  rowspaceT and Tu  0m, then u  0n. Thus, kerT |U   0n

and T is one-to-one on U.
Now, let rankT  k. Then nullityT  n  k. Suppose X  n such that dimX  k. If we apply
The Dimension Theorem to the restricted transformation:

T |X : X  m,
then we will get:

rankT |X   nullityT |X   dimX.
Suppose that T |X is one-to-one. Then nullityT |X   0. By the Dimension Theorem, we get:

rankT |X   dimX  k.
However, we also know from the previous Theorem that:

rangeT |X   rangeT,
and so we get rankT |X   rankT  k. We get a contradiction. Thus, T |X is not one-to-one. 

Note: It is possible for X to be a subspace with dimX  rankT, but X is not the rowspace of T,
and T |X is still one-to-one. Thus, although the rowspace has the biggest possible dimension where the
restriction of T is one-to-one, it is not necessarily a unique subspace of biggest possible dimension
where the restriction of T is one-to-one. Notice that we have analogous phenomena in algebra — we
can also restrict y  x2 to , 0, where this function is one-to-one, but we prefer x to be positive.

Example: Let T : 3  4 be from our previous Example, given by:

T 

3 2 5
2 1 1
4 1 5

1 1 4

, with rref

1 0 3
0 1 7
0 0 0
0 0 0

.

Notice that there is a free variable, so T is not one-to-one on all of 3. A basis for the rowspace is:

B   1, 0,3, 0, 1, 7.
and T is one-to-one when restricted to the rowspace U  SpanB. Notice that since U is
2-dimensional, it is a plane through the origin in 3. The cross product of the two vectors in B is easily
computed to be 3,7, 1, and so U has Cartesian equation:

3x  7y  z  0.
However, looking back to the previous Example, we saw there that if T is restricted to the plane:

3x  5y  2z  0,
then T is also one-to-one on this other plane. Thus the rowspace is not the only subspace of 3 where T
is one-to-one.

As a bonus, we can now find the inverse of a restriction once it is one-to-one on the smaller domain.
The proof of the following is straightforward and is left as an Exercise:
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Theorem: Let T : n  m be a linear transformation, and let U be any subspace of n

such that T |U is one-to-one. Then:

T |U : U  rangeT |U 

is an isomorphism. Moreover, if B  u1, u2, . . . , uj is a basis for U, then
B /  Tu1 , Tu2 , . . . , Tuj is a basis for rangeT |U .
In particular, if U  rowspaceT, or U is any subspace of such that dimU  rankT
and T is one-to-one when restricted to U, then rangeT |U   rangeT.

Example: Let us find a matrix for the restricted linear transformation T |U in our previous Example, as
well as its inverse. Notice that T is 4  3, so it is definitely not invertible.
We already found a basis for the rowspace U, namely: B   1, 0,3, 0, 1, 7.
Since T is one-to-one on U, rangeT |U   rangeT  colspaceT. We can see from the rref for
T in the previous Example that the first two columns of T form a basis for B / for colspaceT:

B /   3,2,4, 1, 2,1,1, 1.
Now, let us find TB,B / . We compute:

T1, 0,3 

3 2 5
2 1 1
4 1 5

1 1 4

1
0
3



12
1

19
11

, and

T0, 1, 7 

3 2 5
2 1 1
4 1 5

1 1 4

0
1
7



37
8
34
29

.

Now, to find the coordinates of both of these vectors with respect to B / at the same time, we assemble
the augmented matrix:

3 2 | 12 37
2 1 | 1 8
4 1 | 19 34

1 1 | 11 29

with rref

1 0 | 10 21
0 1 | 21 50
0 0 | 0 0
0 0 | 0 0

.

Thus:

T |U B,B / 
10 21
21 50

.

Notice that the matrix of the restriction is now square and invertible. Its inverse is:

T |U1 B /,B  1
59

50 21
21 10

. 
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More generally, if T : V  W is a linear transformation with dimV  n and dimW  m, we can
use a basis B for V and a basis B / for W to construct TB,B / . If we find the rref of this matrix and
decode the resulting non-zero rows into a basis S for a subspace U of V, then T will be one-to-one
when restricted to U as before. Notice that the rowspace itself is meaningless without this decoding
process. From this point, we can find a basis S / for TU, the most convenient of which would be
S /  TS. If rankT  k, we can finally construct the k  k matrix TS,S/ .

Before we leave this Section, we want to point out that we actually saw the concept of a restricted
linear transformation. In Chapter 3, we saw the linear transformation T : 3  4 given by:

Tpx  p2, p3, p /1, p //1.

This is the restriction of the linear transformation T : C2I  4 on the space 3, with exactly the
same formula, where px  C2I for any open interval I containing 2, 3. Thus, we can find Tex 
and Tsinx and the image of any other function whose second derivative is continuous. Of course, it
helps to restrict T on a finite-dimensional vector space if we want to find its matrix.

4.2 Section Summary

Let T : V  W be a linear transformation, and U a subspace of the domain V. The restriction of T to
U, denoted T |U and pronounced “T restricted to U, ” is the linear transformation:

T |U : U  W, given by
T |U u  Tu for all u  U.

Let us define:

kerT |U   u  U | Tu  0W , and

rangeT |U   w  W | w  Tu for some u  U .

Then: kerT |U   kerT  U and rangeT |U   rangeT.
Thus, we can regard T |U as a linear transformation: T |U : U  rangeT |U .

Let T : n  m be a linear transformation, with standard matrix T.
Let U  rowspaceT  n. Then: the restriction T |U : U  m is one-to-one.

Furthermore, for any subspace W of n such that dimW  dimU  rankT, the restriction
T |W : W  m is not one-to-one.
Let U be any subspace of n such that T |U is one-to-one. Then:

T |U : U  rangeT |U 

is an isomorphism. Moreover, if B  u1, u2, . . . , uj is a basis for U, then
B /  Tu1 , Tu2 , . . . , Tuj is a basis for rangeT |U .
In particular, if U  rowspaceT, or U is any subspace of such that dimU  rankT and T is
one-to-one when restricted to U, then rangeT |U   rangeT.
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4.2 Exercises

For Exercises 1 to 16: For the following linear transformations T : n  m with standard
matrices T and corresponding rref R: (a) find a basis B for the rowspace of T using its rref, (b) find
a basis B / for the range of T consisting of original columns of T, (c) find T |U B,B / , where
U  rowspaceT, and (d) show that the matrix you found in (c) is indeed invertible by computing
its inverse.

1. T : 3  4, with T 

3 2 2
5 3 1
4 2 2
1 1 3

, R 

1 0 4
0 1 7
0 0 0
0 0 0

.

2. T : 3  4, with T 

2 6 7
3 9 1
4 12 9

5 15 3

, R 

1 3 0
0 0 1
0 0 0
0 0 0

.

3. T : 3  4, with T 

2 6 7
3 9 1
4 12 9

5 5 3

, R 

1 0 0
0 1 0
0 0 1
0 0 0

.

Note that only one entry in T was changed from the previous Exercise.

4. T : 4  3, with T 
3 5 4 1
2 3 2 1
2 1 2 3

, R 

1 0 2 2
0 1 2 1
0 0 0 0

.

Note that this is the transpose of the matrix from Exercise 1.

5. T : 3  3, with T 
3 5 1
2 3 1
2 1 3

, R 

1 0 2
0 1 1
0 0 0

.

Note that this matrix was obtained from the previous Exercise by deleting the 3rd column.

6. T : 4  3, with T 
2 10 5 7
3 15 7 9
4 20 9 11

, R 

1 5 0 4
0 0 1 3
0 0 0 0

.
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7. T : 4  3, with T 
2 10 5 7
3 15 7 9
4 20 9 8

, R 

1 5 0 0
0 0 1 0
0 0 0 1

.

Note that only one entry in T was changed from the previous Exercise.

8. T : 5  4, with

T 

5 20 4 1 2
3 12 2 27 12
2 8 3 8 5
4 16 1 26 11

, R 

1 4 0 5 2
0 0 1 6 3
0 0 0 0 0
0 0 0 0 0

.

9. T : 4  4, with T 

5 20 4 1
3 12 2 27
2 8 3 8
4 16 1 26

, R 

1 4 0 5
0 0 1 6
0 0 0 0
0 0 0 0

.

Note that this matrix was obtained from the previous Exercise by deleting the last column.

10. T : 5  4, with:

T 

5 10 30 3 5
2 4 12 3 23
3 6 18 2 22
4 8 24 5 41

, R 

1 2 6 0 4
0 0 0 1 5
0 0 0 0 0
0 0 0 0 0

.

11. T : 5  4, with:

T 

2 6 3 5 27
3 9 7 4 6
4 12 1 2 2
5 15 2 3 3

, R 

1 3 0 0 2
0 0 1 0 4
0 0 0 1 7
0 0 0 0 0

.

12. T : 5  4, with:

T 

2 6 3 5 7
3 9 7 4 6
4 12 1 2 2
5 15 2 3 3

, R 

1 3 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

.

Note that only one entry in T was changed from the previous Exercise.
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13. T : 4  5, with T 

2 10 1 10
4 20 1 14
3 15 1 0
5 25 3 28
6 30 2 24

, R 

1 5 0 2
0 0 1 6
0 0 0 0
0 0 0 0
0 0 0 0

.

14. T : 4  5, with T 

2 10 1 9
4 20 1 14
3 15 1 0
5 25 3 28
6 30 2 24

, R 

1 5 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

.

Note that only one entry in T was changed from the previous Exercise.

15. T : 4  5, with T 

2 1 1 2
5 1 1 8
1 1 1 6
2 2 1 7
1 1 1 0

, R 

1 0 0 2
0 1 0 3
0 0 1 5
0 0 0 0
0 0 0 0

.

16. T : 4  5, with T 

2 1 1 3
5 1 1 8
1 1 1 6
2 2 1 7
1 1 1 0

, R 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

.

Note that only one entry in T was changed from the previous Exercise.

17. Let T : V  W be a linear transformation, and U any subspace of the domain V. Prove that:

a. kerT |U   kerT  U. Reminder: to show that two sets are equal, you must show that the
first is a subset of the second, and the second is a subset of the first.

b. rangeT |U   rangeT.
18. Let U be any subspace of n such that T |U is one-to-one.

a. Show that T |U : U  rangeT |U  is an isomorphism.
b. Prove that if B  u1, u2, . . . , uj is a basis for U, then B /  Tu1 , Tu2 , . . . , Tuj is

a basis for rangeT |U . Hint: this is essentially the same idea as Exercise 26 in Section 3.7.

19. Prove that if a linear transformation T : V  W is one-to-one, and U is any subspace of the
domain V, then T |U is also one-to-one.

20. Is the statement in the previous Exercise still true if both occurrences of the phrase “one-to-one”
are replaced with the word “onto”? If so, prove this new statement, but if not, give a
counterexample.
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4.3 The Image and Preimage of Subspaces

In this Section, we will see that a linear transformation T essentially preserves subspaces. This means
that subspaces of the domain are transformed by T into subspaces of the codomain. Similarly, vectors
in the domain that are sent to a subspace of the codomain form a subspace of the domain:

Preservation of Subspaces

The Additivity and Homogeneity Properties of linear transformations allow us to prove that linear
transformations on abstract vector spaces map a subspace of the domain into a subspace of the
codomain, and vice versa:

Theorem — The Preservation of Subspaces Theorem:
Suppose that T : V  W is a linear transformation. Then, for any subspace U  V:

TU  w  W | w  Tu  for some u  U ,
called the image of U under T, is a subspace of the codomain W.

 

. .
..

.
. .
.

.
.

T(U)U

T
V W

.

.

TU is the Image Under T of a Subspace U of V

Similarly, for any subspace Z  W:
T 1Z  v  V | Tv   z for some z  Z ,

called the pre-image of Z under T, is a subspace of the domain V.

. .
..

.
. .
.

.
. T

V W

.

.

Z(Z)T

T 1Z is the Pre-Image Under T of a Subspace Z of W
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We note that TU and T 1Z, in general, are both sets of vectors, not just single vectors. In fact, as
soon as one of them contains a non-zero vector, it becomes an infinite set of vectors.
Also, notice that the two diagrams are virtually identical, except for the labelling. However, TU
represents where U goes to in W, and T1Z represents which vectors in V go to Z.

Proof: We will show that TU is a subspace of m if U is a subspace of n, and leave T1Z as an
Exercise. We must show that if w 1 and w 2 are members of TU and k is any scalar, then:

w 1  w 2  TU, and kw 1  TU
Both properties will follow directly from the linearity property of T and the closure property of a
subspace. By definition, w 1  Tv1  and w 2  Tv2  for some vectors v1, v2  V. Thus:

w 1  w 2  Tv1   Tv2   Tv1  v2 .

Since U is a subspace of V, v1  v2  U, and therefore w 1  w 2  TU as well.
Similarly, since kv1  U:

kw 1  kTv1   Tkv1   TU. 

In Chapters 2 and 3, we saw two simple examples of the image and pre-image of subspaces. If
T : V  W is any linear transformation, then we call TV the range of T. Similarly, T 1 0W is
the kernel of T. In the case where V and W are finite-dimensional vector spaces, we already saw how
to find a basis for these two subspaces using the matrix of T with respect to a basis B for V and a basis
B / for W. Let us now see how to do this for more general subspaces.

The Image of a Subspace

The following Theorem tells us how to find a basis for TU given a basis for U when T is a
transformation of Euclidean spaces. The idea can be generalized if the domain or codomain are finite
dimensional abstract vector spaces by using coordinate vectors and a basis for each space.

Theorem: Let T : n  m be a linear transformation, and suppose that U is any subspace
of n. Suppose that B  u1, u2,  , uk is a basis for U.
Then: TB  Tu1 , Tu2 ,  , Tuk  Spans TU.

Thus, the output of The Minimizing Theorem applied to TB will be a basis for TU.

The proof of this Theorem is easy and is left as an Exercise. Again, we are not insisting that TB is a
basis for TU, but by our Theorem in Section 4.2, this is true if T is one-to-one when restricted to U.

Example: Let us consider T : 3  4 from the previous Section, given by:

T 

3 2 5
2 1 1
4 1 5

1 1 4

.
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Let U  SpanB, where B   2,5,4, 0, 1,14.
Clearly, B is linearly independent. We compute:

T2,5,4 

3 2 5
2 1 1
4 1 5

1 1 4

2
5
4



24
5
23
19

, and

T0, 1,2 

3 2 5
2 1 1
4 1 5

1 1 4

0
1
14



72
15
69
57

.

Thus TU is Spanned by  24, 5,23,19, 72, 15,69,57. A quick check reveals that these
two vectors are in fact parallel (by a factor of 3), so TU is only 1-dimensional, and:

TU  Span24, 5,23,19. 

The Preimage of a Subspace

We know that if T : V  W is a linear transformation, and if U is a subspace W, then the preimage
T 1U is a subspace of V. However, it is not an easy task to find a basis for the preimage of U, even if
we are given a basis for U. Let us look at the issues involved in this task and see how we can go about
finding a basis for this preimage.

Let us look at an arbitrary member u  U. We must find all vectors v  V such that Tv  u. But
then, by definition, Tv  TV  rangeT also, and thus u  Tv  TV also. Thus, we only need
to think about the vectors in the intersection U  TV. It is therefore natural to focus our attention on
the restricted transformation:

T |T 1U : T 1U  U  TV,

as illustrated by the following diagram:

 

U..
. . . .. .

.

T

T (V)

V W

.

.. .
. ..T  ( U )

The Image Under T of T 1U is the Intersection of U and TV

Next, remember that the zero vector is a member of any subspace, and thus 0W  U  TV. Thus

414 Section 4.3 The Image and Preimage of Subspaces



kerT  T 1 0W must be a subspace of T 1U. We can find a basis k1, k2, . . . , ks for
kerT, where s  nullityT, and we reiterate that this is a subset of T 1U.
We note that if T is one-to-one, then s  0 and this step in the algorithm just gives us the empty set.

 

ker ( T )

..
. . ... .

.

T
V W

.

T  ( U )
U  T ( V )

0W

.

T 1U Contains The Kernel of T

Thus, this basis for kerT will be part of our basis for T 1U. Obviously, there could be other
members of T 1U that are not members of kerT, as shown above, so we must think some more
about how to find a full basis for T 1U.
The Dimension Theorem for Linear Transformations say that:

rank T |T 1U  nullity T |T 1U  dimT 1U.

Since kerT  T 1U, nullity T |T 1U  nullityT. Also, by definition, T |T 1U is onto
U  TV, and thus we have:

dimU  TV  nullityT  dimT 1U.

We saw in the previous Section how to find a basis for the intersection of two subspaces, so suppose
B  u1, u2, . . . , ur is a basis for U  TV, where r  dimU  TV. By definition, for every
ui  B, we can find a vector vi  T 1U such that Tvi   ui. Hence we produce a set of vectors
v1, v2, . . . , vr  T 1U.

We note that if U  TV  0W , then r  0 and this step just gives us the empty set.

Let us put the two sets we constructed together and consider:

B /  v1, v2, . . . , vr, k1, k2, . . . , ks  T 1U.

This set has r  s  dimU  TV  nullityT  dimT 1U members, and thus we have a good
candidate for a basis for T 1U. We note that if r  s  0, then we get that T 1U  0V so
T 1U has no basis.
By the Two-for-One Theorem, we can prove that B / is a basis for T 1U by showing that it is
linearly independent. Consider the dependence test equation:

c1v1  c2v2   crvr  d1k1  d2k2   dsks  0V.

We have to show that all of the coefficients are zero. Let us apply T to both sides of this equation:

T c1v1  c2v2   crvr  d1k1  d2k2   dsks  T 0V  0W, so

c1Tv1   c2Tv2    crTvr   T d1k1  d2k2   dsks  0W.
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But d1k1  d2k2   dsks  kerT and Tvi   ui, so this last equation can be rewritten as:

c1u1  c2u2   crur  0W.
However, u1, u2, . . . , ur is a basis for U  TV, so c1 through cr must all be zero. Thus, our
original dependence test equation reduces to:

d1k1  d2k2   dsks  0V.

But this time, since k1, k2, . . . , ks is a basis for kerT, d1 through ds must all be zero. Thus B / is
linearly independent and is a basis for the preimage of U.
We summarize this discussion in the following Theorem, and to simplify our computations, we focus
on the case when the domain and codomain are Euclidean spaces. Again the ideas can be generalized
to arbitrary vector spaces with the use of coordinate vectors:

Theorem: Let T : n  m be a linear transformation, and U  m.
The following algorithm will produce a basis for T 1U, given as its input the standard
matrix T and a basis B for U:

Step 1. Find the rref of T.
Step 2. Use the rref of T to find a basis for Tn  colspaceT

and a basis k1, k2, . . . , ks for kerT.

Step 3. Find a basis u1, u2, . . . , ur for U  Tn using the techniques from Section 4.1.
Step 4. For each ui, find any vector vi  T 1U such that Tvi   ui.

We can accomplish this simultaneously by solving the system:

 T | u1 | u2 | . . . | ur .

Step 5. The combined set B /  v1, v2, . . . , vr, k1, k2, . . . , ks is a basis for T 1U.

We note that if r  0 or s  0, the corresponding set is empty.

Example: Let us go back to our previous Example, T : 3  4, given by:

T 

3 2 5
2 1 1
4 1 5

1 1 4

with rref

1 0 3
0 1 7
0 0 0
0 0 0

.

Let us find a basis for the preimage of U  SpanS  4, where:

S   2, 1, 7, 5, 0, 3, 11, 7.

S is clearly a basis because the two vectors are not parallel to each other.
We see from the rref of T that T3   rangeT has basis consisting of the first two columns of T:

 3,2,4, 1, 2,1,1, 1,
and a basis for kerT is  3,7, 1.
Next, we must find a basis for U  T3 , so we assemble separately into the rows of two matrices
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our two bases above:

C 
2 1 7 5
0 3 11 7

and D 
3 2 4 1
2 1 1 1

.

Their rrefs are:

1 0 5
3

4
3

0 1 11
3

7
3

and
1 0 2 1
0 1 5 1

.

From these, the two nullspaces are:
Span,  5,11, 3, 0, 4,7, 0, 3 and

Span 2,5, 1, 0, 1,1, 0, 1.

We assemble these two bases into the rows of a single matrix:

5 11 3 0
4 7 0 3
2 5 1 0
1 1 0 1

with rref

1 0 0 4/3
0 1 0 1/3
0 0 1 1
0 0 0 0

.

Thus U  T3  is only 1-dimensional, with basis 4,1, 3, 3. To find a preimage for this single
vector, we need to solve the augmented system using T:

3 2 5 | 4
2 1 1 | 1
4 1 5 | 3
1 1 4 | 3

with rref

1 0 3 | 2
0 1 7 | 5
0 0 0 | 0
0 0 0 | 0

.

Thus, one particular preimage could be 2, 5, 0.
Finally, a basis for T 1U consists of this final vector, and our single basis vector for the kernel:

T 1U  Span 2, 5, 0, 3,7, 1 ,

Thus, T 1U is a 2-dimensional subspace of 3. 

4.3 Section Summary

Theorem — The Preservation of Subspaces Theorem:
Suppose that T : V  W is a linear transformation. Then, for any subspace U  V:

TU  w  W | w  Tu  for some u  U ,

called the image of U under T, is a subspace of the codomain W. Similarly, for any subspace Z  W:
T 1Z  v  V | Tv   z for some z  Z ,
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called the pre-image of Z under T, is a subspace of the domain V.
Let T : n  m be a linear transformation, and suppose that V is any subspace of n. Suppose that B
is a basis for V. Then TB Spans TV. Thus, the output of The Minimizing Theorem applied to
TB will be a basis for TV.
Let T : n  m be a linear transformation, and U  m.
The following algorithm will produce a basis for T 1U, given as its input the standard matrix T and
a basis B for U:
Step 1. Find the rref of T.
Step 2. Use the rref of T to find a basis for Tn  colspaceT

and a basis k1, k2, . . . , ks for kerT.

Step 3. Find a basis u1, u2, . . . , ur for U  Tn using the techniques from the previous Section.
Step 4. For each ui, find any vector vi  T 1U such that Tvi   ui.

We can accomplish this simultaneously by solving the system:

 T | u1 | u2 | . . . | ur .

Step 5. The combined set B /  v1, v2, . . . , vr, k1, k2, . . . , ks is a basis for T 1U.

We note that if r  0 or s  0, the corresponding set is empty.

4.3 Exercises

For Exercises 1 to 15: The following linear transformations T : n  m, each with indicated
standard matrices T and rref R, are the same ones in the corresponding Exercises from Section 4.2.
For each of them: (a) find a basis for TV, where V is the indicated subspace of n, and (b) find a
basis for T 1U, where U is the indicated subspace of m. Aside from the basis for the range of T
that you found in Section 4.2, you will also need to find a basis for kerT. It is highly recommended
that technology be used to find the rrefs needed in the computations.

1. T : 3  4, with T 

3 2 2
5 3 1
4 2 2
1 1 3

, R 

1 0 4
0 1 7
0 0 0
0 0 0

,

V  Span 2, 7, 9, 3, 7, 5, and U  Span5, 8, 6,2.

2. T : 3  4, with T 

2 6 7
3 9 1
4 12 9

5 15 3

, R 

1 3 0
0 0 1
0 0 0
0 0 0

,

V  Span 2,1, 0, 6, 2, 5, and U  Span3,7, 1, 13.
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3. T : 3  4, with T 

2 6 7
3 9 1
4 12 9

5 5 3

, R 

1 0 0
0 1 0
0 0 1
0 0 0

,

V  Span 2,1, 0, 6, 2, 5, and U  Span 5,4, 5, 8, 0, 0, 0, 1.

4. T : 4  3, with T 
3 5 4 1
2 3 2 1
2 1 2 3

, R 

1 0 2 2
0 1 2 1
0 0 0 0

,

V  Span 3,1, 1,1, 3,2,4,2, 1, 0, 1, 1, and U  Span 2, 1, 1, 11, 7,5.

5. T : 3  3, with T 
3 5 1
2 3 1
2 1 3

, R 

1 0 2
0 1 1
0 0 0

,

V  Span 3,1,1, 1, 0, 0, and U  Span 2, 1, 1, 1, 0, 0.

6. T : 4  3, with T 
2 10 5 7
3 15 7 9
4 20 9 11

, R 

1 5 0 4
0 0 1 3
0 0 0 0

,

V  Span 2, 3, 0, 2, 5, 1, 2,6, 2, 0, 2,1, and U  Span3, 4,5.

7. T : 4  3, with T 
2 10 5 7
3 15 7 9
4 20 9 8

, R 

1 5 0 0
0 0 1 0
0 0 0 1

,

V  Span 3,1, 1,1, 4,3, 4, 1, 3, 2, 5, 4, and U  Span 3, 4,5, 2,1, 7.

8. T : 5  4, with

T 

5 20 4 1 2
3 12 2 27 12
2 8 3 8 5
4 16 1 26 11

, R 

1 4 0 5 2
0 0 1 6 3
0 0 0 0 0
0 0 0 0 0

,

V  Span 2, 5,6,4, 2, 1, 4, 4, 1, 0, 6, 4,7,10, 5, and U  Span1,5, 1, 5.

9. T : 4  4, with T 

5 20 4 1
3 12 2 27
2 8 3 8
4 16 1 26

, R 

1 4 0 5
0 0 1 6
0 0 0 0
0 0 0 0

,

V  Span 3, 5, 1, 1, 6, 4,7,10, 2, 5,5, 2, and U  Span9, 1, 5,3.
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10. T : 5  4, with

T 

5 10 30 3 5
2 4 12 3 23
3 6 18 2 22
4 8 24 5 41

, R 

1 2 6 0 4
0 0 0 1 5
0 0 0 0 0
0 0 0 0 0

,

V  Span 2,4, 12, 3, 7, 2, 15,35,14,20, and U  Span2, 5,5, 9.

11. T : 5  4, with

T 

2 6 3 5 27
3 9 7 4 6
4 12 1 2 2
5 15 2 3 3

, R 

1 3 0 0 2
0 0 1 0 4
0 0 0 1 7
0 0 0 0 0

,

V  Span 1, 3, 1, 1, 1, 1, 3,3, 8, 0, 4,2,1,1,1, and U  Span2, 5,5, 9.

12. T : 5  4, with

T 

2 6 3 5 7
3 9 7 4 6
4 12 1 2 2
5 15 2 3 3

, R 

1 3 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

,

V  Span 2,2, 3, 7, 4, 4, 7,3, 5, 2, 5,1, 3, 7, 4, and

U  Span 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1.

13. T : 4  5, with T 

2 10 1 10
4 20 1 14
3 15 1 0
5 25 3 28
6 30 2 24

, R 

1 5 0 2
0 0 1 6
0 0 0 0
0 0 0 0
0 0 0 0

,

V  Span 3, 2, 0,1, 3, 5,6,1, 2, 0,5, 7, 4, 0, 13, 4, and

U  Span3,7, 7, 7,10.

14. T : 4  5, with T 

2 10 1 9
4 20 1 14
3 15 1 0
5 25 3 28
6 30 2 24

, R 

1 5 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

,

V  Span 10, 2, 3, 2, 15,3, 8, 5, 0, 0, 4, 3, and

U  Span 3,5, 2, 8,8, 11, 16, 2,34, 28, 2, 1, 1,3, 2.
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15. T : 4  5, with T 

2 1 1 2
5 1 1 8
1 1 1 6
2 2 1 7
1 1 1 0

, R 

1 0 0 2
0 1 0 3
0 0 1 5
0 0 0 0
0 0 0 0

,

V  Span 3,3, 5,1, 2,2, 5, 4, 2,2, 6,1, and

U  Span 1, 5, 1,2,1, 1, 0, 1,2, 1, 1, 1,1, 1, 1.

16. Suppose that T : V  W is a linear transformation. Prove that for any subspace Z  W, the
preimage of Z under T:

T 1Z  v  V | Tv   z for some z  Z ,

is a subspace of the domain V.

17. Let T : n  m be a linear transformation, and suppose that U is any subspace of n. Suppose
that B is a basis for U. Then TB Spans TU. Thus, the output of The Minimizing Theorem
applied to TB will be a basis for TU.

18. Let us construct the following subspaces of n:

W1  Spane1,

W2  Spane1, e2,  ,

Wk  Spane1, e2,  , ek,  ,

Wn  Spane1, e2,  , en  n.

These subspaces form an ascending sequence of subspaces or flag:

W1  W2  W3    Wn.
Show that T : n  n is a linear transformation whose matrix is upper triangular if and only if
TWk   Wk for all k  1. . n. In other words, the condition says that Tek  can be expressed as

a linear combination of only e1 through ek, without involving ek1 through en.

19. This Exercise is the analog of the previous one for lower triangular matrices. We construct the
following subspaces of n:

Vn  Spanen,

Vn1  Spanen1, en,  ,

Vk  Spanek,  , en1, en,  ,

V1  Spane1, e2,  , en1, en  n.

These subspaces form a decreasing sequence of subspaces or reverse flag:

V1  V2  V3  Vn1  Vn.
Show that T : n  n is a linear transformation whose matrix is lower triangular if and only if
TVk   Vk  for all k  1. . n. In other words, the condition says that Tek  can be expressed as
a linear combination of only ek through en, without involving e1 through ek1.
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4.4 Cosets and Quotient Spaces

This Section gives the background material that will be used in the next Section where we will see The
Three Isomorphism Theorems. All these Theorems refer to what are called quotient spaces, and the
members of these spaces are called cosets, so we begin with the following:

Definition: Let W be a subspace of a vector space V. A coset X of W is another word for a
translate of W:

X  v  W  v  w | w  W ,

for some fixed vector v  V. We call v a representative of the coset v  W, or say that the
coset v  W is represented by v.

Cosets, therefore, are nothing new to us. Cosets appear most commonly as any line in the Cartesian
plane or Cartesian space, or any plane in Cartesian space: they are all translates of lines or planes that
pass through the origin, which are of course the non-trivial subspaces of 2 and 3.

 

x

y

z

z1

z2

.

<  0, 0, z1 >  W

<  0, 0, z2 >  W

<  0, 0, z3 >  W

W

z3

.

L

y

y1

y2

y3

< 0, y1 >  L

< 0, y2 >  L

< 0, y3 >  L

x

The Cosets of a Line L in 2 The Cosets of a Plane W in 3

Which Passes through the Origin Which Passes through the Origin

Notice also that since 0V  W, then v  0V  v  X, so a representative for X must be a member of
X. The coset 0V  W is also written as W.

Suppose that Ax  b is a non-homogeneous system of linear equations, where A is the m  n
coefficient matrix of the system. Cosets appear as the set of all solutions X to this system:

X  xp  nullspaceA,

where nullspaceA is a subspace of n, and xp is a particular solution to this system. This means
that any solution x to this system must have the form x  xp  xh, where Axh  0n.
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x

y

z
< x2, y2, 0 >  L

< x1, y1, 0 >  L L

< x4, y4, 0 >  L
< x3, y3, 0 >  L

.

.

The Cosets of a Line L in 3 Which Passes through the Origin

We can find xp by using the rref of the augmented matrix A | b and setting all the free variables to 0.
However, there are many ways to describe all the solutions: if x2  xp  xh is another solution to the
non-homogeneous system, as described above, then we can also say X  x2  nullspaceA. But
notice that x2  xp  x0  nullspaceA. This is exactly the idea we need to decide when two cosets
are actually the same set:

Theorem: Let X  v  W and Y  u  W be cosets of W  V. Then:
X  Y if and only if v  u  W.

In particular:
v  W  0V  W  W if and only if v  W.

We will refer to this last statement as The Absorption Rule.

Proof:  Suppose X  Y. This means that every member of X is also a member of Y, and vice
versa. Thus, a member v  w 1 of X must also be of the form u  w 2, where w 1 and w 2 are two
(possibly different) members of W. In other words:

v  w 1  u  w 2.
However, the closure property of W tells us that:

v  u  w 2  w 1  W.
 Suppose v  u  w 1  W. Then v  u  w 1, and thus:

X  v  W
 v  w | w  W 

 u  w 1  w | w  W 

 u  w 2 | w 2  W 

 Y,

where again, we used the closure property of W by renaming the sum w 1  w as the vector w 2  W.
Notice that since w is any vector in W, then w 1  w is likewise any vector in W. 
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Notice also that we deliberately used subscripted notation to avoid confusion: the w in the definition of
the coset X is allowed to be any member of W but the w 1 in the equation v  u  w 1 is a fixed member
w 1  W.

Example: Let W be the plane in 3 with Cartesian equation 3x  5y  2z  0. W passes through the
origin, so indeed it is a subspace of 3. As mentioned above, every coset:

X  a, b, c  W

is a translate of W, in this case a plane parallel to W that passes through the point a, b, c in Cartesian
space. Thus the coset:

X  0, 0,6  W

is the plane parallel to W with z-intercept at 6. Its equation must be:

3x  5y  2z  0  0  26  12.

Notice that the x-intercept of this plane is 12/3  4, so this coset must be exactly the same as:

X  4, 0, 0  W.

In other words, shifting W down by 6 units yields exactly the same plane as shifting W left by 4 units.
By our Theorem above, we must have:

0, 0,6  4, 0, 0  4, 0,6  W,

and we can indeed check that:

34  50  26  0,

proving that 4, 0,6 is a vector on the plane 3x  5y  2z  0. 

This last Theorem also gives us a democratic consequence, whose proof we leave as an Exercise:

Theorem: Let W be a subspace of a vector space V. Then:

x  v  W if and only if x  W  v  W.

In other words, any member of v  W can serve as a representative for v  W, and any representative
of v  W must also be a member of v  W.

Quotient Spaces

The Three Isomorphism Theorems, as they apply to Linear Algebra, all involve what are called
quotient spaces:

Definition: Let W be a subspace of a vector space V. The quotient space V/W, pronounced
“V modulo W, ” is the set of all cosets of W:

V/W  X  v  W | v  V .
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We saw in our Example above that a single coset can be written in many different ways. Let us see
how we can, in practice, systematically understand all the cosets of a single subspace:

Example: Let us generalize our previous Example, and suppose that W is any plane in 3 through the
origin but does not the z-axis. Equivalently, its Cartesian equation has the form:

ax  by  cz  0 where c  0.
Every coset of this plane is a plane parallel to it, so it has Cartesian equation:

ax  by  cz  d.
This plane has a unique z-intercept, namely 0, 0, d/c. Since d/c  z0  , we can write V/W as:

V/W   0, 0, z0   W | z0   .
In other words, we can say that every coset of V/W is represented by a unique z intercept. We can
also say that V/W is parametrized by the z-axis. Of course, there is nothing special about the z-axis. As
long as L is any line that is not on W and passes through the origin, say with direction vector d, then
we can write:

V/W  kd  W | k   ,

and so L likewise parametrizes V/W. 

Example: Let V be any vector space. We know that V has two trivial subspaces, namely V itself and
0V , the subspace consisting only of the zero vector. Let us see what the two corresponding

quotient spaces look like:
V/V  v  V | v  V .

But since v  V, we get v  V  V by the Absorption Principle. Thus there is exactly one coset, and
V/V  V .

On the other hand: V/ 0V  v  0V | v  V .

Since the subspace 0V contains only one vector: v  0V  v.
Thus, each coset also contains only one vector, and we can rewrite our quotient space above as:

V/ 0V  v | v  V .

Thus, it “looks like” V/ 0V is just V. We will revisit this Example in Exercise 30 of Section 4.5 and
phrase this conclusion more precisely.

As the name implies, and as you have probably suspected, the quotient space V/W is a vector space,
and indeed there is a natural way to define the necessary vector arithmetic:

Theorem: Let W be any subspace of a vector space V. The quotient space V/W is also a
vector space, where we define addition of cosets and scalar multiplication as follows:
If X  u  W and Y  v  W are two cosets of V/W and k  , then:

X  Y  u  W   v  W   u  v   W, and
kX  ku  W   ku  W.
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You might be thinking that the equations above don’t quite look right, that is, we should get
u  v  2W and ku  kW respectively, if the “normal rules” of arithmetic prevail. However, recall that
W is a subspace of V, so we can think of 2W and kW as scalar multiples of the vectors of W, which
we know by closure to be W (unless of course k  0).

Proof of the Theorem: Before we even begin to show that the Ten Axioms of a vector space are
satisfied, we first have to show that both addition and scalar multiplication are well-defined. This is
because there are many ways that we can express a coset, as we have seen above, so we must make
sure that these operations do not depend on the particular choice of a representative. Thus, suppose:

X  u1  W  u2  W, and Y  v1  W  v2  W.
By our Theorem on the equality of cosets, we must have:

u1  u2  w 1  W, and v1  v2  w 2  W.
In other words, we have:

u1  u2  w 1 and v1  v2  w 2.
Now let us compute X  Y in two different ways:

X  Y  u1  W   v1  W 

 u1  v1   W.

But also:
X  Y  u1  W   v1  W 

 u2  w 1  W   v2  w 2  W 

 u2  W   v2  W  (by the Absorption Rule)
 u2  v2   W.

Thus, u1  v1   W  X  Y  u2  v2   W, so addition is well defined. Similarly, scalar
multiplication is well defined, as you will prove in the Exercises.
Verifying the Ten Axioms is now fairly easy. The two closure properties are satisfied by our
computations above, and the commutative and associative properties are inherited from the properties
of addition in V. The zero vector of V/W should naturally be the coset:

0V/W  0V  W  W,
since we get:

u  W  0V  W  u  0V  W  u  W.

for all u  V. Similarly, the additive inverse of u  W is naturally u  W. The rest of the properties
are also inherited from the vector operations of V. 

Example: Let us go back to our generic example of a plane W in 3 that does not pass through the
z axis. Using the z intercepts as our representatives, we can “add” two planes using our definition:

0, 0, z1   W  0, 0, z2   W  0, 0, z1   0, 0, z2   W  0, 0, z1  z2   W.

Geometrically, this operation makes perfect sense, assuming that z1 and z2 are positive: if we translate
W up by z1, then up again by z2, then we effectively translate W up by z1  z2.
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We can of course generalize this interpretation for negative intercepts. Similarly:

k0, 0, z1   W  k0, 0, z1   W  0, 0, kz1   W.

This time, the geometric effect is to scale the z-intercept z1 by k. 

Basis and Dimension for V/W

Now that we know that V/W is actually also a vector space, a natural question to ask would be: how
can we find a basis for V/W, and consequently, determine its dimension? Let us motivate this process
with our example above, where W is any plane in 3 that contains the origin but does not pass through
the z-axis. Every translate of W is determined uniquely by the z-intercept z0. Thus, there is exactly one
coset for one real number, so it would seem that V/W is 1-dimensional. That is indeed the case as we
shall see below.

We will restrict our analysis to finite-dimensional vector spaces. Recall that if V has dimension n, then
by repeated applications of The Extension Theorem, any linearly independent set S can be extended to
a basis for V by including vectors one at a time while still maintaining independence (by choosing the
next vector to be outside the Span of the previous vectors). Thus we have:

Theorem: Let W be an m-dimensional subspace of an n-dimensional vector space V, where
0  m  n. Suppose that B  w 1, w 2, . . . , wm is a basis for W (where B is empty if
W  0V ). Since B is linearly independent, it can be extended to a basis B / for all of V,
say:

B /  w 1, w 2, . . . , wm, vm1, vm2, . . . , vn,
using the Extension Theorem. Then, the set of cosets:

B //  vm1  W, vm2  W, . . . , vn  W 

forms a basis for V/W, and thus dimV/W  n  m  dimV  dimW.
In the case when W  V, and so m  n, the coset space V/W  V/V consists of the single
coset V, and thus dimV/V  0.
The formula above for dimV/W is therefore true in general.

Proof: Let B  w 1, w 2, . . . , wm be a basis for W, and extend B to a basis:

B /  w 1, w 2, . . . , wm, vm1, vm2, . . . , vn

for V, as indicated above. (If we allow W to be the zero subspace, B is the empty set.) We must show
that the set of cosets:

B //  vm1  W, vm2  W, . . . , vn  W 

forms a basis for V/W, that is, this set Spans V/W and is linearly independent in V/W.

Let us prove the Spanning property: Suppose v  W is a coset in V/W. Since B / is a basis for V, we can
write:

v  c1w 1  c2w 2   cmwm  cm1vm1  cm2vm2   cnvn.

Now, using the definitions of coset addition and scalar multiplication, we have:
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v  W  c1w 1  c2w 2   cmwm  cm1vm1  cm2vm2   cnvn   W
 c1w 1  W   c2w 2  W    cmwm  W  

cm1vm1  W   cm2vm2  W    cnvn  W 

 cm1vm1  cm2vm2   cnvn   W
 cm1vm1  W   cm2vm2  W    cnvn  W 

by the Absorption Rule and the definitions of coset addition and scalar multiplication in V/W. Thus B //

indeed Spans V/W.
Similarly, we prove linear independence in V/W by considering the dependence test equation:

cm1vm1  W   cm2vm2  W    cnvn  W   0V/W  W.

Then, again using the definitions of coset addition and scalar multiplication in V/W, we have:
W  cm1vm1  W   cm2vm2  W    cnvn  W 

 cm1vm1  cm2vm2   cnvn   W,

which would imply that v  cm1vm1  cm2vm2   cnvn  W by the Absorption Rule. Thus, we
can express v as a linear combination from B:

v  cm1vm1  cm2vm2   cnvn  d1w 1  d2w 2   dmwm.
However, this now yields the equation:

 d1w 1  d2w 2   dmwm  cm1vm1  cm2vm2   cnvn  0V,
and since B / is a basis for V, all the coefficients have to be 0. In particular, cm1, cm2, . . . , cn must all
be 0. Thus B // is linearly independent, and is a basis for V/W.

Note: We use the notation V/W because this is the notation that is used in Group Theory, the area of
mathematics where the Isomorphism Theorems are stated in full generality. However, the fact that
dimV/W  dimV  dimW tells us that a more suitable notation in the context of Linear Algebra
would be V W instead of V/W, and this should be called the difference space instead of the quotient
space. However, even this context, we still refer to V/W as a quotient space.

Example: Suppose that W is any plane in 3 through the origin, with no other restrictions. Let us
apply the theorem above to this situation. Since W is 2-dimensional, we can construct a basis for W:

B  w 1, w 2,

consisting of any two non-zero vectors on W that are not parallel to each other, as we saw back in
Chapter 1. Since we already have two vectors, the algorithm in the Theorem says that all we have to do
is include one other vector that is not in W. The most natural vector to include would be a normal
vector n for this plane. Thus:

B /  w 1, w 2, n 
is a basis for 3. But according to our theorem, the set:

B //  n  W 

consisting of this single coset, is a basis for 3/W, hence the quotient space is 1-dimensional. This
should not come as a surprise because we already mentioned that V/W is parametrized by any line L
that is not on W and passes through the origin, and we know that a line is 1-dimensional.
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4.4 Section Summary

Let W be a subspace of a vector space V. A coset X of W is a translate of W:
X  v  W  v  w | w  W 

for some fixed vector v  V. We call v a representative of the coset v  W, or say that the coset v  W
is represented by v.
Equality of cosets: Let X  v  W and Y  u  W be cosets of W  V. Then:

X  Y if and only if v  u  W.

The Absorption Rule: v  W  W  0V  W if and only if v  W.
Membership in a coset is equivalent to representing the same coset:

x  v  W if and only if x  W  v  W.

The quotient space V/W, pronounced “V mod W, ” is the set of all cosets of W:
V/W  X  v  W | v  V .

V/W is also a vector space, where we define addition of cosets and scalar multiplication as follows: If
X  u  W and Y  v  W are two cosets of V/W and k  , then:

X  Y  u  W   v  W   u  v   W, and kX  ku  W   ku  W.

Basis for V/W: Let W be an m-dimensional subspace of an n-dimensional vector space V, where
0  m  n. Suppose that:B  w 1, w 2, . . . , wm is a basis for W (where B is empty if W  0V ).

Since B is linearly independent, it can be extended to a basis B / for all of V, say:
B /  w 1, w 2, . . . , wm, vm1, vm2, . . . , vn.

Then, the set of cosets: B //  vm1  W, vm2  W, . . . , vn  W  is a basis for V/W.
Thus: dimV/W  n  m  dimV  dimW.
In the special case when W  V, the coset space V/W  V/V consists of the single coset V, and thus
dimV/V  0. The formula above for dimV/W is therefore true in general.

4.4 Exercises

For Exercises 1 to 5: Use the Absorption Rule to decide whether or not each indicated coset v  W
is equal to the subspace W.

1. 10, 6  W, where W is the line y  3
5 x in 2.

2. 21, 12  W, where W is the line y   4
7 x in 2.

3. 6,1, 4  W, where W is the plane 3x  2y  5z  0 in 3.
4. 1, 3, 7  W, where W is the plane 2x  7y  3z  0 in 3.
5. 2,8, 5, 14  W, where:

W  Span 4,3, 2, 7, 0,1, 3, 5, 3, 2, 0,1   4

For Exercises 6 to 10: Decide whether or not v  W and u  W are equal.
6. 7, 2  W and 3,5  W, where W is the line y  3

5 x in 2.
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7. 3, 12  W and 17, 4  W, where W is the line y   4
7 x in 2.

8. 6,4, 9  W and 27,10,6  W, where W is the plane 3x  2y  5z  0 in 3.
9. 3, 0, 7  W and 8,4, 0  W, where W is the plane 2x  7y  3z  0 in 3.
10. 2,5, 1, 4  W and 9,10, 8, 22  W, where:

W  Span 4,3, 2, 7, 0,1, 3, 5, 3, 2, 0,1   4.

11. Find the values of x0 and z0 such that the coset 0,6, 0  W is the same as the cosets
x0, 0, 0  W and 0, 0, z0   W, where W is the plane 2x  7y  3z  0 in 3.

12. Find the values of x0, y0 and z0 such that the coset 7,2, 13  W is the same as the cosets
x0, 0, 0  W, 0, y0, 0  W and 0, 0, z0   W, where W is the plane 3x  2y  5z  0 in 3.

For Exercises 13 to 17: For each indicated subspace W of the corresponding n: (a) Use the
standard basis, in the order e1, . . . , en, to extend the given basis for W to a basis for n;
(b) Use (a) to find a basis for n/W; (c) State the dimension of n/W;
(d) Verify that dimn/W  dimn  dimW.

13. W  Span 3,1, 2, 0   4;
14. W  Span 3, 5, 2,2, 2, 1, 2,2   4;
15. W  Span 3, 0,2, 0, 7   5;
16. W  Span 2, 0, 7, 3, 0, 0, 5,14,6, 0   5;
17. W  Span 4,3, 0, 0, 5, 2,3, 0, 0, 5, 2, 1, 0, 0, 5   5;

18. Let W be a subspace of a vector space V. Prove that x  v  W if and only if x  W  v  W.

19. Prove that the operation of scalar multiplication is well defined on V/W.
This means that if X  u1  W  u2  W, and k  , then ku1  W  ku2  W.
Hint: you must directly apply the definition of equality of cosets twice.

20. Verify that the last four Axioms of a vector space are satisfied by the quotient space V/W.

21. Let  be the plane ax  by  cz  0 in 3, with normal vector n  a, b, c.
a. Prove that every coset of  has the form: X  ka, b, c  , for some k  .

Hint: any coset of  has the form ax  by  cz  d. Show how d is related to k.
b. Use (a) to show that T1 : 3/  , where: T1ka, b, c    k,

is an isomorphism from 3/ to .
c. Conclude that dim3/  1.

22. Analogously, let L be the line Spann, where n  a, b, c, as in the previous Exercise, is a
normal to the plane  with Cartesian equation ax  by  cz  0.

a. Prove that every coset of L can be written in the form: Y  x0, y0, z0   L,
where x0, y0, z0  is a point on . Hint: any coset of L has the form x1, y1, z1   L where
x1, y1, z1  is any point in Cartesian space. Show how to obtain a point x0, y0, z0  on 
using x1, y1, z1 . It will be useful to think in terms of parametric equations.

b. In the notation of part (a), show that T2 : 3/L  , where:
T2x0, y0, z0   L  x0, y0, z0 ,

is an isomorphism from 3/L to .
c. Conclude that dim3/L  2.
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4.5 The Three Isomorphism Theorems

We will now see a capstone topic of Linear Algebra: The Three Isomorphism Theorems by arguably
the greatest female mathematician of all time, Amalie Emmy Noether (1882-1935).

Through most of her professional career in her native Germany, Noether faced discrimination both for
being a woman and being a Jew, working for several years without pay or recognition. Despite this, she
is known for many major results in various fields, including Noether’s Theorem from theoretical
physics and the development of Module Theory in Abstract algebra, where she developed the
structures that will later be known as Noetherian Rings (a vector space is an example of a module).
She was eventually dismissed from her professorship at the University of Göttingen in 1933, during the
Nazi era. She went to Bryn Mawr College in Pennsylvania (whose undergraduate population was and
remains all-female) to continue her work. Sadly, she would die two years later at the age of 53 due to
complications from surgery to remove an ovarian cyst. This Section is a tribute to her memory and her
mathematical legacy.

The Isomorphism Theorems are stated in general using Group Theory, a subject that all mathematics,
physics and lately, electrical engineering and computer science majors, must be familiar with.
However, we can state them in the language of Linear Algebra using the concept of a quotient space
that we saw in the previous Section.

The First Isomorphism Theorem

In a sense, the First Isomorphism Theorem is a stronger version of The Dimension Theorem. Let us
recall what the latter says: Suppose that T : V  U is a linear transformation where V is a
finite-dimensional vector space. Then:

rankT  nullityT  dimV  dim domain of T .

We can rewrite this equation as: dimV  dimkerT  dimrangeT.
However, we know from the previous Section that: dimV/kerT  dimV  dimkerT.
Thus the Dimension Theorem allows us to conclude that: dimV/kerT  dimrangeT.
Since two vector spaces are isomorphic if and only if they have the same dimension, we see that:

V/kerT  rangeT.
But the bonus is that the First Isomorphism Theorem explicitly tells us how to construct an
isomorphism between these two vector spaces using T:

The First Isomorphism Theorem:
Let T : V  U be a linear transformation of vector spaces, with V a finite-dimensional
vector space. Then: kerT is a finite-dimensional subspace of V, rangeT is a finite
dimensional subspace of U, and:

V/kerT  rangeT,

with an isomorphism induced by T via:

T : V/kerT  rangeT, given by:


Tv  kerT   Tv.
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Note: The squiggly symbol above T is called a “tilde”, so

T is pronounced “T til-deh.” Also, notice that

the codomain U could be infinite dimensional, but under our assumptions, rangeT is a finite
dimensional subspace of U. We say that T induces


T because we are using T to create a new linear

transformation on the related quotient space V/kerT.
Proof of the Theorem: Before we verify that


T is additive and homogeneous, we first need to verify

that

T as described above is actually well-defined, just as we first verified that coset addition and scalar

multiplication were well defined in the previous Section. In other words, we have to check that:

If v1  kerT  v2  kerT, then

Tv1  kerT  


Tv2  kerT .

But if v1  kerT  v2  kerT, then v1  v2  z  kerT. Thus v1  v2  z, hence:

Tv1  kerT   Tv1   Tv2  z

 Tv2   Tz

 Tv2   0U (since z  kerT)
 Tv2  


Tv2  kerT .

Thus

T is well defined. Now, it is easy to verify the linearity properties of


T, as they are inherited from

the linearity properties of T:

Tu  kerT   v  kerT 



Tu  v   kerT (by definition of coset addition)

 Tu  v  (by definition of

T)

 Tu  Tv (by the additivity of T)


Tu  kerT  


Tv  kerT  (by definition of coset addition).

Similarly, Tk  v  kerT   k 

Tv  kerT  will be proven in the Exercises. Thus


T is linear.

Next, we have to prove that

T is one-to-one, that is, ker(


T ) consists only of the zero vector of

V/kerT, which is the subspace kerT.
So suppose that


Tv  kerT   0U. But


Tv  kerT   Tv, so therefore v  kerT  ker(


T )

if and only if Tv  0U, that is, if and only if v  kerT. Thus the only member of ker(

T ) is the

single coset kerT. Thus

T is one-to-one.

Finally, we have to prove that

T is onto, that is, range


T  rangeT.

But again by definition,

Tv  kerT   Tv, and since v can be any member of V, Tv is a

member of rangeT. Thus, range

T  rangeT and


T is onto.

We can therefore conclude that

T is an isomorphism.

Example: Let T : 4  3 be given by:

T 
3 6 2 3
2 4 3 11
1 2 5 14

with rref
1 2 0 1
0 0 1 3
0 0 0 0

.

Thus x2 and x4 are free variables, and kerT has basis:

B   2, 1, 0, 0, 1, 0,3, 1.
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The leading 1’s are in columns 1 and 3 of the rref, so a basis for rangeT  colspaceT is:
S  c1, c3   3, 2,1, 2, 3, 5.

Thus rangeT is a plane  in 3, and we get:

4/kerT  .
Let us use the First Isomorphism Theorem to make this isomorphism explicit. We will first need to
construct a basis for the quotient space 4/kerT using the ideas from the previous Section. To do
this, we will extend the basis B for kerT above to a basis B / for all of 4. What two vectors can we
add to B? Recall that


Tv  kerT  Tv, so it would be nice if we can find v1 and v2 so that:

Tv1   c1 and
Tv2   c3.

But from the definition of matrix multiplication, we need v1  e1 and v2  e3. Thus, let us extend B
to B /   2, 1, 0, 0, 1, 0,3, 1, e1, e3 and verify that:

2 1 1 0
1 0 0 0
0 3 0 1
0 1 0 0

has rref

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 I4.

Thus 4/kerT has basis:
B //  e1  kerT, e3  kerT,

according to the last Theorem of the previous Section. By the First Isomorphism Theorem, we have:

Te1  kerT  Te1   c1 and

Te3  kerT  Te3   c3,

giving us an elegant and explicit correspondence between the basis for 4/kerT and the basis for
rangeT. 

Let us examine further our clever choices for vectors to extend B to B /. We will show that it is not a
coincidence that e1 and e3 completed our basis for 4. Since x2 and x4 are free variables, we find a
basis for kerT by solving for x1 and x3 in terms of x2 and x4. Thus, notice that our two basis vectors:

B  2, 1 , 0, 0 , 1, 0 ,3, 1

have matching pairs of 0’s and 1’s in the 2nd and 4 th coordinates respectively, which we boxed above.
Now, if we assemble the matrix:

2 1 1 0

1 0 0 0

0 3 0 1

0 1 0 0

,
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with e1 and e3 in the last two columns, notice that we have a boxed 1 in every row and in every
column. We can use Type 3 column operations to obtain the column equivalent matrix

e2 e4 e1 e3 . Thus this matrix is invertible and we successfully complete a basis for 4. We can
generalize this argument and so we state the following:

Theorem — Addendum to the First Isomorphism Theorem:
Let T : n  m be given by the m  n matrix T  c1 |c2 | |cm , with rref R. Suppose
the leading columns of R are columns i1, i2, . . . , ir, where r  rankT. Then: we can find a
basis for n/kerT using only standard basis vectors of n, via:

B  ei1  kerT, ei2  kerT, . . . , eir  kerT .

Furthermore, under the induced transformation

T in the First Isomorphism Theorem:


T eij  kerT  cij ,

for all j  1. . r.

Example: Let us clarify this Theorem by considering a linear transformation:
T : 5  8,

with 8  5 standard matrix T  c1 c2 c3 c4 c5 whose rref is R. Suppose the leading 1’s of R are in
columns 1, 3 and 4. Then rankT  3 and nullityT  2, so kerT is 2-dimensional and
dim5/kerT  5  2  3. By the Theorem above, a basis for 5/kerT is given by:

B  e1  kerT, e3  kerT, e4  kerT.

Under T, we have:
Te1  kerT   c1,
Te3  kerT   c3, and
Te4  kerT   c4. 

The Second Isomorphism Theorem

There is no general agreement as to which of the next two Isomorphism Theorems is the Second and
which is the Third, so we choose to present them in the following order:

The Second or Double-Quotient Isomorphism Theorem:
Let V be a finite dimensional vector space, and let U and W be nested subspaces of V, that is:

U  W  V.
Then: W/U is a subspace of V/U, and V/W is isomorphic to the double-quotient space:

V/U / W/U  V/W.

Notice that the conclusion is similar to the rule for dividing fractions:

a/c/b/c  a/b, where b, c  0.
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In the Theorem, though, there is nothing stopping U or W or both from being 0V . We traditionally
visualize this Theorem by the following diagram:

 V

U

V / UW

V / W

W / U

.

.

The Double Quotient Isomorphism Theorem: V/U / W/U  V/W

Notice that lines are used to indicate that U is a subspace of W as well as V, and W is a subspace of V.
These lines are labeled with the corresponding quotient space. Not shown in this diagram is the double
quotient space V/U / W/U. However, it is there in spirit because we will show that it is isomorphic
to V/W.
Proof of the Theorem: It is easy to show that W/U is a subspace of V/U. The members of W/U are
cosets of the form w  U for some w  W, and since W  V, w  U  V/U as well. Thus W/U is a
subset of V/U. It is not empty because it contains the coset U. Now we prove closure under vector
addition. Suppose w 1  U and w 2  U  W/U. Since W is a subspace of V, we get:

w 1  U   w 2  U   w 1  w 2   U  W/U.

Thus W/U is closed under addition. Similarly it is easy to see it is closed under scalar multiplication and
we leave that as an Exercise.
Now for the rest of the Theorem. The First Isomorphism Theorem says that if T : V  W, then
V/kerT  rangeT. The idea is to apply this in a creative way to a linear transformation T. We look
at the desired conclusion in order to find the right T:

V/U / W/U  V/W.
The left side tells us that the domain of T should be V/U and the kernel of T should be W/U. The right
side tells us that the range of T should be V/W. In other words, we need to construct a linear
transformation:

T : V/U  V/W

such that T is onto, and the kernel of T is W/U. Now, the members of V/U are the cosets v  U, where
v  V. Similarly, the members of V/W are the cosets v  W, where v  V as well. Thus, the linear
transformation that we need appears to be:

Tv  U   v  W.

(Note that even though T leaves v untouched, this is not the identity transformation, since v  U and
v  W are cosets of different subspaces U and W.) However, as before, we first need to verify that this
linear transformation is well defined, that is:

If v1  U  v2  U, then v1  W  v2  W as well.
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Suppose v1  U  v2  U. Then v1  v2  u for some vector u  U. But since U  W, we also have
u  W, and thus:

v1  W  v2  u  W  v2  W

by the Absorption Rule, so our linear transformation T is well defined.
Now, T is clearly onto because if v  W  V/W, then v  U  V/U, so there exists a vector in V/U
whose image under T is v  W. Thus, rangeT  V/W.
Finally, let us look at the kernel of T. We want to find all cosets v  U such that:

Tv  U   0V/W.

In other words, v  W  W.
But according to the Absorption Rule, v  W  W if and only if v  W. Thus v  U  kerT if and
only if v  U  W/U. We can therefore conclude that:

kerT  W/U.
Since we saw above that rangeT  V/W, by the First Isomorphism Theorem, we get:

V/U /kerT  rangeT, or
V/U / W/U  V/W. 

Note: The members of V/U have the form v  U, and therefore the members of the double-quotient
space V/U / W/U have the form v  U  W/U. This expression cannot be simplified any further.

Example: Let V  4 and let:
S1  v1  1, 5,2, 3, and
S2  v1, v2   1, 5,2, 3, 2, 1, 4,6.

Let U  SpanS1  and W  SpanS2 .
Clearly U  W  V, dimU  1, dimW  2 and dimV  4. Let us first investigate the
dimensions of the quotient spaces involved:

dimV/U  dimV  dimU  4  1  3,
dimW/U  dimW  dimU  2  1  1, and
dimV/W  dimV  dimW  4  2  2.

The dimension of our double-quotient space is:

dimV/U / W/U  dimV/U  dimW/U  3  1  2,
which equals dimV/W. Thus, V/U / W/U should indeed be isomorphic to V/W.
Now, let us explicitly construct the linear transformation T : V/U  V/W and the induced isomorphism
T. We start by finding a basis for kerT  W/U. Notice that v1 is in both S1 and S2, so clearly:

W/U  Spanv2  U .

Next, let us find a basis for rangeT  V/W. We need to extend our basis S2 for W to a basis for
V  4. To use the Extension Theorem most efficiently, let us assemble the set of vectors
v1, v2, e1, e2, e3, e4 into the columns of a matrix:
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1 2 1 0 0 0
5 1 0 1 0 0
2 4 0 0 1 0

3 6 0 0 0 1

with rref

1 0 0 2/11 0 1/33
0 1 0 1/11 0 5/33
0 0 1 0 0 1/3
0 0 0 0 1 2/3

.

Notice that e2  W. The leading 1’s in the rref are in columns 1, 2, 3 and 5, and therefore we obtain a
basis for 4:

S3  v1, v2, e1, e3.

This basis is useful in three ways. According to the last Theorem of Section 4.4, we have the following
bases for the corresponding quotient spaces:

V/U  Spanv2  U, e1  U, e3  U,
V/W  Spane1  W, e3  W, and

V/U / W/U  Span e1  U   W/U, e3  U   W/U.

The linear transformation we want, T : V/U  V/W, is given by its action on the basis vectors of V/U:

Tv2  U   v2  W  W,
Te1  U   e1  W, and
Te3  U   e3  W,

and extends by linearity to all of V/U.
Notice that since v2  W, we have v2  W  W  0V/W. Thus v2  U  kerT, and the isomorphism
T that we are looking for is:


T : V/U / W/U  V/W, given by:

Te1  U   W/U   e1  W and

Te3  U   W/U   e3  W,

and extends by linearity to all of V/U / W/U. Again, e1 and e3 are essentially unchanged, but

T is

not the identity operator because we have different coset spaces. We also remark that there is nothing
special about e1 and e3. They can easily be replaced by any two vectors v3 and v4 such that
v1, v2, v3, v4 is a basis for 4.

The Third Isomorphism Theorem

The final Isomorphism Theorem involves the construction of the join and intersection of two
subspaces that we saw in Section 4.1. Recall that if V and W are subspaces of a finite dimensional
vector space U, then:

V W  u  U | u  V and u  W and

V W  u  U | u  v  w, for some v  V and some w  W

are both subspaces of U. Thus we come full circle and end this Chapter with the same topics we
started with, linked together by the concept of quotient spaces, as stated in the following jewel:
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The Third or Diamond Isomorphism Theorem:
Let V and W be finite dimensional subspaces of a vector space U. Then:

V W  /W  V / V W , and V W  /V  W / V W .

 

V

W

( V  V W ) / V

.

.

.

V  V W 
( V  V W ) / W

W V  W )

V  W

V V  W )

.

V

W

.

.

V  V W 

V  W

( V  V W ) / W  V V  W )

( V  V W ) / V  W  V  W )

.

The Diamond Isomorphism Theorem

Notice that the conclusions of this Theorem do not mention U at all, but only the two subspaces V and
W. In other words, we only use U as an ambient space for these two subspaces. Since U is closed
under addition and scalar multiplication, the join V W is also a subspace of U. Furthermore, V W is
finite dimensional.

Proof of the Theorem: For the sake of brevity and clarity of notation, let us name:

X  V W, and Y  V W.
Thus, our first goal is to prove that Y/V  W/X. The proof that Y/W  V/X follows by exchanging the
roles of V and W.
Again, the idea is to creatively use the First Isomorphism Theorem by constructing a linear
transformation T. This time, the domain of T should be Y, the kernel of T should be V, the codomain
should be W/X, and T should again be onto. So we must construct:

T : Y  W/X
with the above conditions. Although this is a good beginning of our analysis, it is hardly clear exactly
what T should be computing. Let us try to make a smart guess. Since Y  V W, the members of Y
are of the form v  w for some v  V and some w  W. From this, we want Tv  w  to be from the
coset space W/X. But the members of this coset space have the form w  X for some w  W. Thus, it
appears that we should compute T as:

Tv  w   w  X.

In other words, we ignore v and only use w.
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Once again, we need to verify next that this function is well-defined, that is:

If v1  w 1  v2  w 2, then w 1  X  w 2  X.
But notice that the first equation above can be rearranged as:

v1  v2  w 2  w 1.
But since V and W are subspaces of U, the left side of this equation is a member of V, and the right
side is a member of W. Thus, this (single) vector is a member of the intersection V W  X. Thus we
can now see that:

w 2  X  v1  v2  w 1   X
 v1  v2   X   w 1  X 
 X  w 1  X  (by the Absorption Rule)
 w 1  X

so T is well-defined.
The two linearity properties are easily verified and are left as Exercises.
Since w can be any vector of W, T is clearly onto W/X. The last thing we have to check is that
kerT  V. So we need to ask: for what vectors v  w do we get:

Tv  w   w  X  X  0W/X

But again by the Absorption Law, this is true if and only if w  X  V W. This means that w is a
member of both V and W. But this means that v  w is a member of V. Thus kerT  V, and by The
First Isomorphism Theorem, we get:

Y/V  W/X. 

Example: We saw an Example in Section 4.1 where we went through many computations before we
found a basis for the intersection of two subspaces. Let us consider a much simpler example. Suppose
U  4, and:

V  Span 3, 5,2, 7, 4, 0, 2, 1 , and
W  Span 3, 5,2, 7, 2,1, 5,3 .

Clearly V and W are 2-dimensional subspaces. They have the vector 3, 5,2, 7 in common, so V W
is at least 1-dimensional. However, by assembling the three distinct vectors above into the columns of
a matrix:

3 4 2
5 0 1
2 2 5

7 1 3

whose rref is

1 0 0
0 1 0
0 0 1
0 0 0

,

we see that these three vectors are linearly independent. Thus dimV W  3, and:
V W  Span 3, 5,2, 7, 4, 0, 2, 1, 2,1, 5,3.

By the Dimension Theorem for the Join and Intersection:
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dimV W  dimV  dimW  dimV W, so we get:
3  2  2  dimV W,

and thus dimV W  1. Therefore:

V W  Span3, 5,2, 7.
Let us examine the isomorphism: V W /W  V / V W. We have:

dimV W /W  dimV W  dimW  3  2  1, and
dimV / V W  dimV  dimV W  2  1  1.

As expected, these dimensions are equal. Let us recap the bases that we have for our spaces so far:
V W  Span 3, 5,2, 7, 4, 0, 2, 1, 2,1, 5,3,

V  Span 3, 5,2, 7, 4, 0, 2, 1,
W  Span 3, 5,2, 7, 2,1, 5,3, and

V W  Span 3, 5,2, 7 .

According to the last Theorem of Section 4.4, we have the following bases for the corresponding
quotient spaces:

V W /W  Span 4, 0, 2, 1  W, and
V / V W  Span 4, 0, 2, 1  V W

Thus, we obtain the isomorphism:

T : V W /W  V / V W, given by:

T 4, 0, 2, 1  W   4, 0, 2, 1  V W.

Again, the vector 4, 0, 2, 1 is essentially unchanged, although as before,

T is not the identity

operator.

4.5 Section Summary

The First Isomorphism Theorem: Let T : V  U be a linear transformation of vector spaces, with V
a finite-dimensional vector space. Then kerT is a finite-dimensional subspace of V, rangeT is a
finite dimensional subspace of U, and V/kerT  rangeT, with an isomorphism induced by T via:


T : V/kerT  rangeT, given by:

Tv  kerT   Tv.

The Second or “Double-Quotient” Isomorphism Theorem: Let V be a finite dimensional vector
space, and let U and W be nested subspaces of V, that is: U  W  V. Then: W/U is a subspace of
V/U, and V/W is isomorphic to the double-quotient space: V/U / W/U  V/W.
The Third or “Diamond” Isomorphism Theorem: Let V and W be subspaces of a finite
dimensional vector space U. Then:

V W  /W  V / V W , and
V W  /V  W / V W .
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Addendum to the First Isomorphism Theorem: Let T : n  m be given by the m  n matrix
T  c1 |c2 | |cm , with rref R. Suppose the leading columns of R are columns i1, i2, . . . , ir,
where r  rankT. Then we can find a basis for n/kerT using only standard basis vectors of n,
via:

B  ei1  kerT, ei2  kerT, . . . , eir  kerT
Furthermore, under the induced transformation


T in the First Isomorphism Theorem:


T eij  kerT  cij for all j  1. . r.

4.5 Exercises

For Exercise 1 to 14: The following linear transformations T : n  m were seen in the
Exercises of Sections 4.2 and 4.3 (but not necessarily with the same Exercise number). For each of
them: (a) find a basis for rangeT, (b) find a basis for kerT, (c) use the Addendum to the First
Isomorphism Theorem to find a basis for n/kerT using only the standard basis vectors for n, and
(d) explicitly construct the isomorphism


T : n/kerT  rangeT in the First Isomorphism Theorem

by specifying it on the basis vectors from (c).
You may of course use work from Section 4.2 and 4.3 to answer parts (a) and (b).

1. T : 3  4, with T 

3 2 2
5 3 1
4 2 2
1 1 3

, R 

1 0 4
0 1 7
0 0 0
0 0 0

.

2. T : 3  4, with T 

2 6 7
3 9 1
4 12 9

5 15 3

, R 

1 3 0
0 0 1
0 0 0
0 0 0

.

3. T : 4  3, with T 
3 5 4 1
2 3 2 1
2 1 2 3

, R 

1 0 2 2
0 1 2 1
0 0 0 0

.

4. T : 3  3, with T 
3 5 1
2 3 1
2 1 3

, R 

1 0 2
0 1 1
0 0 0

.

5. T : 4  3, with T 
2 10 5 7
3 15 7 9
4 20 9 11

, R 

1 5 0 4
0 0 1 3
0 0 0 0

.
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6. T : 4  3, with T 
2 10 5 7
3 15 7 9
4 20 9 8

, R 

1 5 0 0
0 0 1 0
0 0 0 1

.

7. T : 5  4, with T 

5 20 4 1 2
3 12 2 27 12
2 8 3 8 5
4 16 1 26 11

, R 

1 4 0 5 2
0 0 1 6 3
0 0 0 0 0
0 0 0 0 0

.

8. T : 4  4, with T 

5 20 4 1
3 12 2 27
2 8 3 8
4 16 1 26

, R 

1 4 0 5
0 0 1 6
0 0 0 0
0 0 0 0

.

9. T : 5  4, with T 

5 10 30 3 5
2 4 12 3 23
3 6 18 2 22
4 8 24 5 41

, R 

1 2 6 0 4
0 0 0 1 5
0 0 0 0 0
0 0 0 0 0

.

10. T : 5  4, with T 

2 6 3 5 27
3 9 7 4 6
4 12 1 2 2
5 15 2 3 3

, R 

1 3 0 0 2
0 0 1 0 4
0 0 0 1 7
0 0 0 0 0

.

11. T : 5  4, with T 

2 6 3 5 7
3 9 7 4 6
4 12 1 2 2
5 15 2 3 3

, R 

1 3 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

.

12. T : 4  5, with T 

2 10 1 10
4 20 1 14
3 15 1 0
5 25 3 28
6 30 2 24

, R 

1 5 0 2
0 0 1 6
0 0 0 0
0 0 0 0
0 0 0 0

.
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13. T : 4  5, with T 

2 10 1 9
4 20 1 14
3 15 1 0
5 25 3 28
6 30 2 24

, R 

1 5 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

.

14. T : 4  5, with T 

2 1 1 2
5 1 1 8
1 1 1 6
2 2 1 7
1 1 1 0

, R 

1 0 0 2
0 1 0 3
0 0 1 5
0 0 0 0
0 0 0 0

.

For Exercises 15 to 21: For the indicated nested subspaces U and W of the corresponding
V  n, find a basis for: (a) W/U, (b) V/W, (c) V/U, and (d) V/U / W/U. Next: (e) explicitly
construct the isomorphism:


T : V/U / W/U  V/W

in the Second Isomorphism Theorem. Use the standard basis vectors in the order e1, . . ., en to
extend the basis for W to a basis for n. Notice the subtle differences from one Exercise to the
next.

15. U, W  3; U  Span1,1, 1; W  Span 1,1, 1, 2,1, 1.

16. U, W  4; U  Span1,1, 1, 2; W  Span 1,1, 1, 2, 1, 1, 1, 2.

17. U, W  4; U  Span1,1, 1, 2;

W  Span 1,1, 1, 2, 1, 1, 1, 2, 3,1, 1, 2.

18. U, W  4; U  Span 1,1, 1, 2, 1, 1, 1, 2;

W  Span 1,1, 1, 2, 1, 1, 1, 2, 3,1, 1, 2.

19. U, W  5; U  Span1,1, 1, 2,3;

W  Span 1,1, 1, 2,3, 1, 1, 1, 2,3, 3,1, 1, 2,3.

20. U, W  5; U  Span 1,1, 1, 2,3, 1, 1, 1, 2,3;

W  Span 1,1, 1, 2,3, 1, 1, 1, 2,3, 3,1, 1, 2,3.

21. U, W  5; U  Span 1,1, 1, 2,3, 1, 1, 1, 2,3;

W  Span 1,1, 1, 2,3, 1, 1, 1, 2,3, 3,1, 1, 2,3, 3,1, 1,1,3.

For Exercises 22 to 26: The following subspaces for the corresponding n are the same ones
from Exercise 1 through 5 of Section 4.1. Use your answers from this Section in order to find a
basis for: (a) V W, (b) V W, (c) V W /W, (d) V / V W, (e) V W /V, and (f)
W / V W. The Minimization Theorem will be useful for (d) and (f). Next, explicitly construct
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the isomorphisms (g):

T1 : V W /W  V / V W,

and (h):

T2 : V W /V  W / V W,

by specifying their action on the basis vectors of the domains.

22. V, W  4; V  Span 1,1,12, 6, 11,16, 13, 1,

W  Span 1, 1,16, 10, 7,11, 5, 1.

23. V, W  4; V  Span 3, 5,2, 4, 1, 2, 7,3,

W  Span 0, 2, 1,5, 2,3, 1, 6.

24. V, W  4; V  Span 3,2, 7,4, 2, 13,12,2, 2, 3,5, 1,

W  Span 3,5, 6,11, 1, 16,8, 8, 1,3, 2,4.

25. V, W  5; V  Span 3, 4,1, 4, 6, 6, 8, 5, 15,13, 1,2, 0,5, 3,

W  Span 1, 3,2, 7, 2, 4,1, 7,7,6.

26. V  Span 1, 7, 5,6, 6, 1,8, 2,4, 2, 1, 0, 3,4, 3, 5, 3,2, 7,4  5,

W  Span 6, 9,2, 0, 0, 5, 1,3,3,2, 3, 2,1,2, 0  5.

27. Complete the proof of the First Isomorphism Theorem by showing that:

Tk  v  kerT   k 

Tv  kerT ,

in the notation used in the proof.

28. Complete the proof of the Second Isomorphism Theorem by showing that W/U is closed under
scalar multiplication, and thus it is a subspace of V/U.

29. Complete the proof of the Diamond Isomorphism Theorem by showing that the linear
transformation T defined in the proof is both additive and homogeneous.

30. In one of the Examples of Section 4.4, we said the for any vector space V, the coset space
V/ 0V “looks like” V. Use the First Isomorphism Theorem to prove that indeed:

V/ 0V  V.

Hint: Use the identity transformation IV for T.

31. Use the First Isomorphism Theorem to prove that:
V/V  0V .

Which (very trivial) operator T : V  V should you use?

32. Use the Diamond Isomorphism Theorem to prove The Dimension Theorem for Joins and
Intersections: Let V and W be finite-dimensional subspaces of a vector space U. Then: V W is
also finite dimensional, and:

dimV W  dimV  dimW  dimV W.

Hint: use the formula for the dimension of a quotient space from the previous Section.
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A Summary of Chapter 4

Let V and W be two subspaces of some ambient vector space U. We define the join of these two
subspaces as the set of all vectors of U that can be written as the sum of one vector from V and one
vector from W, and it is denoted: V W  u  U | u  v  w for some v  V and some w  W .

V W is a subspace of U, and if B is a basis for V and B / is a basis for W, then B  B / Spans V W.
The intersection of V and W: V W  u  U | u  V and u  W , is likewise a subspace of U.

Let B  v1, v2, . . . , vn be a basis for V and let B /  w 1, w 2, . . . , wm be a basis for W, where V
and W are subspaces of some k. Form the matrix C, with rows v1, v2, . . . , vn, and D, with rows
w 1, w 2, . . . , wm. Next, find a basis for the nullspace of each matrix. Assemble these two sets of basis
vectors together as the rows of a matrix G. The nullspace of G is V W.

Let W be any subspace of some Euclidean space n. Then, W W  0n .

Let T : V  W be a linear transformation, and U a subspace of the domain V. The restriction of T to
U, denoted T |U and pronounced “T restricted to U, ” is the linear transformation:

T |U : U  W, given by T |U u  Tu for all u  U.

Let us define:

kerT |U   u  U |Tu  0W , and rangeT |U   w  W |w  Tu for some u  U .

Then: kerT |U   kerT  U and rangeT |U   rangeT.
Thus, we can regard T |U as a linear transformation: T |U : U  rangeT |U .
Let T : n  m be a linear transformation, with standard matrix T.
Let U  rowspaceT  n. Then: the restriction T |U : U  m is one-to-one.
Furthermore, for any subspace W of n such that dimW  dimU  rankT, the restriction
T |W : W  m is not one-to-one.
Let U be any subspace of n such that T |U is one-to-one. Then: T |U : U  rangeT |U  is an
isomorphism. Moreover, if B  u1, u2, . . . , uj is a basis for U, then
B /  Tu1 , Tu2 , . . . , Tuj is a basis for rangeT |U .
In particular, if U  rowspaceT, or U is any subspace of such that dimU  rankT and T is
one-to-one when restricted to U, then rangeT |U   rangeT.
The Preservation of Subspaces Theorem: Suppose that T : V  W is a linear transformation.
Then, for any subspace U  V: TU  w  W | w  Tu  for some u  U ,
called the image of U under T, is a subspace of the codomain W.
Similarly, for any subspace Z  W: T 1Z  v  V | Tv   z for some z  Z ,
called the pre-image of Z under T, is a subspace of the domain V.
Let T : n  m be a linear transformation, and suppose that V is any subspace of n. Suppose that B
is a basis for V. Then TB Spans TV. Thus, the output of The Minimizing Theorem applied to
TB will be a basis for TV.
Let T : n  m be a linear transformation, and U  m. The following algorithm will produce a
basis for T 1U, given as its input the standard matrix T and a basis B for U:
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1. Find the rref of T, and use it to:
2. Find a basis for colspaceT and a basis k1, k2, . . . , ks for kerT.
3. Find a basis u1, u2, . . . , ur for U  Tn using the techniques from Section 4.1.
4. For each ui, find any vector vi  T 1U such that Tvi   ui.

We can accomplish this simultaneously by solving the system:  T | u1 | u2 | . . . | ur .
5. The combined set B /  v1, v2, . . . , vr, k1, k2, . . . , ks is a basis for T 1U.

Let W  V. A coset X of W is a translate of W: X  v  W  v  w | w  W , for some fixed
vector v  V. We call v a representative of the coset v  W, or say that v  W is represented by v.
Equality of cosets: Let X  v  W and Y  u  W. Then: X  Y if and only if v  u  W.

The Absorption Rule: v  W  W  0V  W if and only if v  W.
Membership in a coset is equivalent to representing the same coset:

x  v  W if and only if x  W  v  W.
The quotient space V/W, (“V mod W”) is the set of all cosets of W: V/W  X  v  W | v  V .
V/W is also a vector space, where we define addition of cosets and scalar multiplication as follows: If
X  u  W and Y  v  W are two cosets of V/W and k  , then:

X  Y  u  W   v  W   u  v   W, and kX  ku  W   ku  W.

Basis for V/W: Let W be an m-dimensional subspace of an n-dimensional vector space V, where
0  m  n. Suppose that B  w 1, w 2, . . . , wm is a basis for W (where B is empty if W  0V ).
Since B is linearly independent, it can be extended to a basis B / for all of V, say:

B /  w 1, w 2, . . . , wm, vm1, vm2, . . . , vn.

Then, the set of cosets: B //  vm1  W, vm2  W, . . . , vn  W  is a basis for V/W.
Thus: dimV/W  n  m  dimV  dimW.
In the special case when W  V, the coset space V/W  V/V consists of the single coset V, and thus
dimV/V  0. The formula above for dimV/W is therefore true in general.
The First Isomorphism Theorem: Let T : V  U be a linear transformation of vector spaces, with V
a finite-dimensional vector space. Then kerT is a finite-dimensional subspace of V, rangeT is a
finite dimensional subspace of U, and V/kerT  rangeT, with an isomorphism induced by T via:


T : V/kerT  rangeT, given by:


Tv  kerT   Tv.

The Second or “Double-Quotient” Isomorphism Theorem: Let V be a finite dimensional vector
space, and let U and W be nested subspaces of V, that is: U  W  V. Then: W/U is a subspace of
V/U, and V/W is isomorphic to the double-quotient space: V/U / W/U  V/W.
The Third or “Diamond” Isomorphism Theorem: Let V and W be subspaces of a finite
dimensional vector space U. Then: V W  /W  V / V W , and V W  /V  W / V W .
Addendum to the First Isomorphism Theorem: Let T : n  m be given by the m  n matrix
T  c1 |c2 | |cm , with rref R. Suppose the leading columns of R are columns i1, i2, . . . , ir,
where r  rankT. Then we can find a basis for n/kerT using only standard basis vectors of n,
via: B  ei1  kerT, ei2  kerT, . . . , eir  kerT.

Furthermore, under the induced transformation

T in the First Isomorphism Theorem:


T eij  kerT  cij for all j  1. . r.
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Chapter 5
From Square to Scalar:

Permutation Theory and Determinants
In this Chapter, we will concentrate our attention on n  n or square matrices A, and analogously, on
operators T : n  n.
We will study the determinant function, that returns a scalar detA that depends on the n  n matrix
A. Consequently, if T : n  n is an operator, we can also compute a determinant for T. The
determinant has a nice geometric significance in the case of 2  2 and 3  3 matrices. If a and b are
non-parallel vectors from 2, and we assemble the 2  2 matrix:

A  a b ,

then |detA | gives us the area of the parallelogram determined by a and b in standard position:

 
.

a

b

.

u

w
v

.

Similarly, if u, v and w are non-coplanar vectors from 3, and we assemble the 3  3 matrix:

B  u v w ,

then |detB | gives us the volume of the parallelepiped determined by u, v and w. These formulas
remain valid if we assemble the vectors into the rows of A or B instead of columns.
The most important property of the determinant function is its ability to test for the invertibility of a
square matrix: an n  n matrix A is invertible if and only if detA is not 0.
We are used to linear transformations being additive. However, we will see that the determinant
function is instead multiplicative: detAB  detA  detB, where A and B are both n  n matrices.
In order to motivate and construct the determinant function, though, we first need to introduce the
concept of permutations or rearrangements of the numbers 1 through n. The determinant formula is
basically a summation involving all the permutations of the rows or columns of A, where each term
involves an entry from every row and every column of A.
We will see practical strategies for computing the determinant of A using row and column operations,
and a technique called cofactor expansion. The idea behind cofactors will also give us an alternative,
albeit impractical formula for the inverse of A. We will also use determinants to develop Cramer’s
Rule, an alternative method to solve an invertible square system of equations.
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5.1 Permutations and The Determinant Concept

In Section 2.6, we studied 2  2 matrices and found that the matrix:

A 
a b
c d

is invertible if and only if the number ad  bc is non-zero. This expression is important and goes by a
special name:

Definition: Let A 
a b
c d

be a 2  2 matrix. The determinant of A is defined by:

detA  ad  bc.

Other common notations for detA are |A | or
a b
c d

.

Example: Let A 
5 3
4 2

. Then:

detA  52  34  10  12  22. 

We can rephrase our Theorem from Section 2.6 as:

Theorem: A 2  2 matrix A is invertible if and only if detA  0.

Naturally, we want to generalize this Theorem by defining the determinant of a 3  3 matrix and for
square matrices of any dimension.
We begin this generalization process by looking at the 2  2 determinant in terms of the row and
column numbers of the four individual entries:

If A 
a1,1 a1,2

a2,1 a2,2
, then:

detA  a1,1a2,2  a1,2a2,1.

The first observation is that there are two terms, and each term has two factors. Furthermore, one term
has a positive coefficient, and one term has a negative coefficient. Notice also that we listed the factors
in the order of the row number, so we see a factor from row 1 followed by a factor from row 2 in both
terms. In other words, the row numbers are in ascending order.
However, the column numbers are “1” followed by “2” in the first term, and “2” followed by “1” in the
second term. Notice that 2  1. This is called an inversion, wherein the column number of the first
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factor is bigger than the column number of the second factor. It is because of this inversion that the
second factor a1,2a2,1 has a negative coefficient.
Let us use the observations above to define the determinant of a 3  3 matrix. Every term will now
contain three factors. Again, we will list the factors in such a way that the row numbers are in
ascending order, so a typical term will look like:

 a1,_a2,_a3,_.

We will fill in the column numbers with the numbers 1, 2 and 3, in any order that we wish. There are
three ways to decide the first column number, and for each of these three ways, there are two ways
remaining to decide the second column number, and once these have been decided, there is only one
way remaining to fill the third column number. Thus, there are 3  2  1  6 terms in our determinant.
Now we need to decide if a term will have a positive or a negative coefficient. This will be determined
by the total number of inversions that appear in the list of column numbers. Since there are three
columns involved, we will say that an inversion occurs every time a column number on the left is
bigger than a column number on its right. If the number of inversions is even, the resulting term will
have a positive coefficient. If the number of inversions is odd, the resulting term will have a negative
coefficient.
We list our six terms in a table below, and decide which have a positive coefficient and which have a
negative coefficient. Notice that we get 3 positive coefficients and 3 negative coefficients:

The Six Terms of a 3  3 Determinant

Term Columns Inversions
Number of
Inversions

Coefficient Final Term

a1,1a2,2a3,3 1, 2, 3 none 0  a1,1a2,2a3,3

a1,1a2,3a3,2 1, 3, 2 3  2 1  a1,1a2,3a3,2

a1,2a2,1a3,3 2, 1, 3 2  1 1  a1,2a2,1a3,3

a1,2a2,3a3,1 2, 3, 1 2  1; 3  1 2  a1,2a2,3a3,1

a1,3a2,1a3,2 3, 1, 2 3  1; 3  2 2  a1,3a2,1a3,2

a1,3a2,2a3,1 3, 2, 1 3  2; 3  1; 2  1 3  a1,3a2,2a3,1

We are now ready to write out the formula for a 3  3 determinant:

Definition: If A 

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

, then:

detA  a1,1a2,2a33  a1,2a2,3a3,1  a1,3a2,1a3,2

 a1,3a2,2a3,1  a1,1a2,3a3,2  a1,2a2,1a3,3.
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These six terms can also be visualized below:

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

a1,1a2,2a3,3 a1,2a2,3a3,1 a1,3a2,1a3,2

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

a1,1a2,3a3,2 a1,2a2,1a3,3 a1,3a2,2a3,1

Notice that each term contains exactly one factor from every row, and from every column. This is a
general property of the general determinant formula, which we will see very soon.

There is an easy way to remember how to compute a 3  3 determinant. Copy the first two columns of
the given matrix on the right side of the matrix:

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

a1,1 a1,2

a2,1 a2,2

a3,1 a3,2

Next, multiply the entries diagonally downward, in triples, as if we were weaving a basket:

 
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,3a3,2a3,1

a1,1 a1,2

a2,1 a2,2

a3,2a3,1

   

.

.

The products going left to right contribute positively, whereas the products going right to left contribute
negatively. Unfortunately, this pattern does not generalize to larger matrices.

Example: Let us find the determinant of A 

5 2 3
7 4 6
8 5 2

.
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Copying the first two columns on the right, we get:

5 2 3
7 4 6
8 5 2

5 2
7 4
8 5

Thus:
detA  5  4  2  2  6  8  3  7  5

 3  4  8  5  6  5  2  7  2

 40  96  105  96  150  28  75. 

Permutation Theory

We saw above that the rearrangement of the column numbers appearing in each term of our
determinant formula is crucial in determining whether the term has a positive or a negative coefficient.
These rearrangements are very important in their own right in Mathematics, so we now give them
special attention, establish some notation, and discover some of their properties:

Definitions: A permutation of the set of integers 1, 2, . . . , n , is an ordered list consisting
of these numbers, with each number appearing exactly once. In other words, a permutation
is a rearrangement of these numbers. We will label permutations with lowercase Greek
letters such as  or , and write them as:

   i1, i2, . . . , in .
We call ik the k th component of .

Examples: There are exactly two permutations of 1, 2, and these are:

1  1, 2 and 2  2, 1.

There are exactly six permutations of 1, 2, 3, and these are:

1  1, 2, 3, 2  1, 3, 2, 3  2, 1, 3,

4  2, 3, 1, 5  3, 1, 2, and 6  3, 2, 1. 

More generally, we can make the following easy observation:

Theorem: The number of permutations of 1, 2, . . . , n is:

n!  n  n  1  n  2    3  2  1.

Example: The number of permutations of the set 1, 2, 3, 4, 5, 6, 7 is exactly 7! or 5040.

In order to create a completely general definition of the determinant function, we will introduce the
following terminology:
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Definition: An inversion occurs in a permutation  every time a component on the left is
bigger than a component to its right.
We say that  is even if there are an even number of inversions in , and  is odd if there are
an odd number of inversions in .
We define the sign of , denoted sgn, to be 1 if  is even, and 1 if  is odd.

Examples: Let us consider the permutation:

  4, 7, 5, 6, 2, 3, 1.

This is a permutation of the set 1, 2, 3, 4, 5, 6, 7, of which there are 7!  5040 such permutations.
Clearly there is nothing to gain by listing all of these permutations. Instead, let us find all the inversions
in , by keeping one finger fixed at an entry and scanning to its right to find all numbers that are
smaller than the number on our finger:

4  2, 3 and 1,
7  5, 6, 2, 3 and 1,
5  2, 3 and 1,
6  2, 3 and 1,
2  1, and
3  1.

Thus, there are 3  5  3  3  1  1  16 inversions,  is even, and sgn  1.
The permutation   1, 2, 3,  , n  1, n, the identity permutation, has no inversions whatsoever (
is the Greek letter iota). Thus,  is an even permutation, and sgn  1. 

Permutations as Bijections

Let us think of a permutation  of the set S  1, 2, . . . , n as a function  : S  S, by defining i
to be the i th component of . However, since the numbers 1, 2, . . . , n appear exactly once in , we
can view  as a one-to-one and onto function. Thus,  is a bijection of S. As such, we can construct
the inverse permutation 1, which is also a bijection of S, and   1  1    .

Example: Suppose   3, 5, 6, 1, 4, 2. We can see the action of  in the table on the left:

i  i

1  3
2  5
3  6
4  1
5  4
6  2

i 1 i

1  3
2  5
3  6
4  1
5  4
6  2

The Actions of  and 1
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The inverse of , denoted 1, has the usual property that if x  y, then 1y  x. By simply
reversing the arrows, we can see the action of 1 on the table on the right, although i is not in
ascending order. We list the values of 1i in the (correct) ascending order for i:

11  4, 12  6, 13  1, 14  5, 15  2, and 16  3.

Thus we obtain the inverse permutation 1  4, 6, 1, 5, 2, 3. 

Now, here’s something interesting: Let us count the inversions in  and 1. We get:

2  3  3  0  1  9 for  and

3  4  0  2  0  9 for 1 as well.

This is not a coincidence, and we will investigate it next by detecting inversions in a different way.

Counting Inversions Using Bipartite Graphs

The following construction is due to Dr. Lyman Chaffee, my friend and colleague at Pasadena City
College, who has my sincerest respect and gratitude.

We can visualize a permutation as a directed bipartite graph. A graph is a set of vertices, some pairs
of which are connected by a set of edges. To represent a permutation of 1, 2, . . . , n, we will use two
copies of this set, one on top of the other, to serve as our vertices. If i  j, we will have a directed
edge (an arrow) from i on the top row to j on the bottom row.

This is called a bipartite graph because edges only go from the top vertices to the bottom vertices
(there are no edges connecting a top vertex to another top vertex, and similarly there are no edges from
one bottom vertex to another). Let us illustrate this idea using our previous Example:

Example: For the permutation   3, 5, 6, 1, 4, 2, we have the equivalent bipartite graph:

 

.

21 3 4 5 6
.

.21 3 4 5 6

. ...
.. . ..

The Permutation   3, 5, 6, 1, 4, 2 as a Bipartite Graph

For instance, since 3  6, we have an arrow 3  6, and so on.

Now, here’s the key benefit of this diagram: We have shown with dots how two arrows intersect each
other. Each of these dots represents an inversion, and we can verify that there are 9 dots in the graph
corresponding to our 9 inversions. In general:
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Theorem: Suppose we represent , a permutation of S  1, 2, . . . , n, as a directed graph
in the convention shown above. If a  b  S, a  c, and b  d, then c is an
inversion with respect to d (that is, c  d) if and only if the edge a  c intersects the edge
b  d between our two lines of numbers.

Proof: Suppose that a  b and c  d. We must show that the edge a  c intersects b  d.

Case 1: If a  c, then a  c will pass over the vertex d on the bottom row. Since b  a, the edge
b  d must intersect a  c.

Case 2: If a  c, then b  c as well. Thus, the edge b  d must pass over the vertex c on the bottom
row. Consequently a  c must intersect b  d.

 
.

.

a  b

d c

. .

 

 a b

c cd d

a b

 

 

Case 1 a  c Case 2 a  c No Intersection c  d

Conversely, if a  b and c  d. then a  c will not intersect b  d between the two lines (if we
extend these arrows, they will intersect above the top line, or below the bottom line, but that is
irrelevant). 

We must warn, though, that we do not want more than two edges intersect at one point. As a simple
example, consider the permutation 3, 2, 1:

 
.

21 3

21 3
.

1 3

1 3
.

...
2

2

  3, 2, 1 with Overlapping Intersections and with Distinct Intersections

It appears that there is only one point of intersection among the three edges, but in actuality, there are
three inversions: 3  2, 3  1 and 2  1. By repositioning the vertices slightly, we can see that there
are indeed 3 distinct pairwise intersection points.

And now for the punch line: in order to draw the graph for 1, all we have to do is reverse the arrows
and flip the graph upside-down! In our previous example, we saw that 1  4, 6, 2, 5, 1, 3:
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.21 3 4 5 6

.21 3 4 5 6

.. .. .. . ..
.

.

The Permutation 1  4, 6, 1, 5, 2, 3 as a Bipartite Graph

Since the number of intersections among the edges of  and among the edges of 1 are exactly the
same, this construction immediately proves the following:

Theorem: If  is a permutation of 1, 2, . . . , n, then  and 1 have the same number of
inversions. Hence,  and 1 have the same sign — they are either both even or both odd.

The Effect of a Switch

A funny thing happens when you exchange the location of any two numbers in a permutation:

Theorem: Let  be a permutation of 1, 2, 3, . . , n, and let  / be the permutation obtained
from  by exchanging any two components of . Then:

sgn /   sgn.

Proof: Let us begin the proof by looking at the case where the two components are adjacent to each
other. To see the idea behind the proof, let us look at the permutation:

  8, 5, 3, 2 , 7 , 1, 4, 6

of 1, 2, . . . , 8. Suppose we exchange the 4 th and 5 th components, which contain 2 and 7, as shown.
We obtain the permutation:

 /  8, 5, 3, 7 , 2 , 1, 4, 6 .

Now, 2  7, so there was no inversion involving both 2 and 7 in , but there is now an inversion
7  2 in  /. However, any inversion in  involving 2 but not 7 (such as 8  2 and 2  1 is also found
in  /, and vice versa. Similarly, any inversion in  involving 7 but not 2 (such as 8  7 and 7  4 is
also found in  /. And of course if an inversion in  does not involve 7 or 2, such as 8  1 or 5  4, it
is still found in  /. Thus,  / has one more inversion than .
The general argument follows from this demonstration: suppose we exchange the entries in component
i and component i  1 of  to produce the permutation  /. If i  i  1, then  / will have one
new inversion. All other inversions that were found in  will again be found in  /, and vice versa.
Thus the number of inversions increases by 1. Similarly, if i  i  1, the number of inversions
decreases by 1. In either case, sgn /   sgn.
Now, let us generalize further to the case when the components are not adjacent to each other. Let us
illustrate the idea with an example. Consider the same permutation:
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  8, 5 , 3, 2, 7, 1 , 4, 6 .

This time, let us switch the 2nd and 6 th components, as shown, to get a new permutation:

 /  8, 1 , 3, 2, 7, 5 , 4, 6 .

But we can produce  / by performing consecutive exchanges, starting with , involving only adjacent
components:

  8, 5 , 3, 2, 7, 1 , 4, 6 switch 5 and 3:

 8, 3, 5 , 2, 7, 1 , 4, 6 switch 5 and 2:

 8, 3, 2, 5 , 7, 1 , 4, 6 switch 5 and 7:

 8, 3, 2, 7, 5 , 1 , 4, 6 switch 5 and 1:

 8, 3, 2, 7, 1 , 5 , 4, 6 switch 1 and 7 (5 is now in the right place):

 8, 3, 2, 1 , 7, 5 , 4, 6 switch 1 and 2:

 8, 3, 1 , 2, 7, 5 , 4, 6 switch 1 and 3:

 8, 1 , 3, 2, 7, 5 , 4, 6   /.

Note that there are a total of 7 exchanges involving adjacent components: 4 exchanges to bring 5 to the

6 th component, and 3 exchanges to bring 1 to the 2nd component. Since 7 is an odd number,
17  1, so again, sgn /   sgn.
The general argument can thus be stated as follows: if we want to exchange i1  and i2 , where
i1  i2, then we will need k  i2  i1 exchanges involving only adjacent components to bring i1  to
the component i2. Going backwards, we will need k  1 exchanges involving only adjacent
components to bring i2  — which is now in component i2  1 — to the component i1. Since
k  k  1  2k  1 is an odd number, sgn /   12k1sgn  sgn. 

The Balance of Even and Odd Permutations

We also saw in the formula for the 3  3 determinant that there were 3 terms with coefficient 1 and
also 3 terms with coefficient 1. This is not a coincidence either:

Theorem: Exactly half of the n! permutations of 1, 2, 3, . . , n are even, and half are odd.

Proof: Let    i1, i2, i3, . . . , in  be a permutation. If we switch the first two components, we get a
new permutation:

 /   i2, i1, i3, . . . , in 
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From the previous Theorem, we know that sgn  sgn / . Thus, one of them is even, and one of
them is odd. These are the only permutations that contain i3 through in in the last n  2 components. If
we change the values of i3 through in and again put them in the last n  2 components, then there will
again be exactly two permutations that look like this, and one will be even and the other odd. Thus, the
n! permutations come in pairs, where one permutation in each pair is even, and the other permutation
in the pair is odd. 

To help you understand this proof better, we list in the table below all the even permutations of
1, 2, 3 on the left column, then we switched the first two components to produce the corresponding
odd permutation on the right column:

Even Permutations Odd Permutations
1, 2, 3 2, 1, 3
2, 3, 1 3, 2, 1
3, 1, 2 1, 3, 2

5.1 Section Summary

If A 
a1,1 a1,2

a2,1 a2,2
, then: detA  a1,1a2,2  a1,2a2,1.

If A 

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

, then: detA 
a1,1a2,2a3,3  a1,2a2,3a3,1  a1,3a2,1a3,2

a1,3a2,2a3,1  a1,1a2,3a3,2  a1,2a2,1a3,3.

An ordered list consisting of the numbers 1, 2, . . . , n, with each number appearing exactly once, is
called a permutation of the set 1, 2, 3, . . , n. There are n! permutations of 1, 2, 3, . . , n. We
denote a permutation by a lowercase Greek letter like  or .

An inversion occurs in  if a number on the left is bigger than a number to its right.
A permutation  is even if it has an even number of inversions, and  is odd if it has an odd number of
inversions. The sign of , denoted sgn, is 1 if  is even, and 1 if  is odd.
A permutation  is also a bijection of the set 1, 2, 3, . . , n, and as such possesses an inverse, 1.

Permutations can be represented by a directed bipartite graph. We will use two copies of the set
1, 2, 3, . . , n, one on top of the other, to serve as our vertices. If i  j, we will have a directed
edge (an arrow) from i on the top row to j on the bottom row. An inversion occurs when two of these
edges intersect.

The graph representing 1 is the same as that of , only with the arrows reversed. Thus, the number
of inversions in  and 1 are the same, so sgn  sgn1 .
If  / is obtained from  by exchanging any two components, then sgn /   sgn.
Consequently, half of the n! permutations of 1, 2, 3, . . , n are even, and half are odd.
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5.1 Exercises

For Exercises 1 to 12: Compute the determinant using the 2  2 and 3  3 formulas:

1.
7 5
5 4

2.
2 5

3 4
3.

1/2 5/3
3/2 7/3

4.
6 7

 3 2
5.

4 ln3
7 ln2

6.
sin 

8 cos 
8

 sin 
24 cos 

24

7.
3 8 2
1 5 3

4 7 6

8.
5 2 3

2 1 3
3 8 7

9.
3/2 1 3/2

5/2 1/4 7/2
7/2 2 1/2

10.
5/3 2/3 4/3

2/5 3/5 7/5
7/2 9/2 3/2

11.
5 2 2 3 3 6
7 2 4 3 6
 2 9 3 5 6

12.
5 ln2 8 ln3 7 ln5

3 1 6
2 3 4

For Exercises 13 to 21: (a) Find the determinants of the following matrices in terms of a, b,  and
, where appropriate, (b) determine under what conditions the matrix is invertible, and (c) when the
matrix is invertible, find the inverse of the matrix.

13.
a 0
0 b

14.
a b
b a

15.
a b
b a

16.
a a
b b

17.
1 a
1 b

18.
e2a ea

e2a ea

19.
cos  sin
sin cos

20.
cosha sinha
sinha cosha

21.
cos  sin
cos sin

For Exercises 22 to 26: Sketch the directed bipartite graph representing each permutation. Use it to
find the inverse of the permutation, and the number of inversions in the permutation.

22. 3, 1, 4, 2
23. 5, 3, 2, 4, 1
24. 4, 6, 2, 5, 1, 3
25. 6, 3, 7, 2, 5, 1, 4
26. 6, 8, 3, 5, 1, 7, 2, 4
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For Exercises 27 to 31: These are the same permutations that appear in 22 to 26. For
each of these: (a) exchange the two boxed components, (b) count the number of inversions in the
new permutation, and (c) check that the new permutation has the opposite sign as the original
permutation.

27. 3 , 1, 4, 2

28. 5 , 3, 2 , 4, 1

29. 4, 6 , 2, 5, 1 , 3

30. 6, 3, 7 , 2, 5, 1, 4

31. 6, 8 , 3, 5, 1, 7, 2 , 4

32. Suppose that v  a, b is a unit vector in 2, L is the line Spanv, and L is the orthogonal
complement of L. We found the matrices of projL, projL and reflL in Section 2.2. Find their
determinants.

a. projL  
a2 ab
ab b2

b. projL  
b2 ab
ab a2

c.  reflL  
a2  b2 2ab

2ab b2  a2

Give an explanation as to why some of these matrices are invertible, but some are not.

33. Suppose that n  a, b, c is a unit vector in 3,  is the plane in 3 with equation
ax  by  cz  0, and L is the line Spann , the normal line to . We found the matrices of
projL, proj and refl in Section 2.2. Find their determinants.

a. projL  

a2 ab ac
ab b2 bc
ac bc c2

b. proj  
1  a2 ab ac
ab 1  b2 bc
ac bc 1  c2

c.  refl  
1  2a2 2ab 2ac
2ab 1  2b2 2bc
2ac 2bc 1  2c2
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34. Find a formula for the determinant of the matrix:
1 a a2

1 b b2

1 c c2

.

Show that the determinant can be factored into the product of three linear factors.
35. What is the maximum number of inversions that can happen in a permutation  of 1, 2, . . . , n ?

What  will produce the maximum number of inversions?
36. List all the 4!  24 permutations of 1, 2, 3, 4 in a table. On the left side, write the even

permutations. Then switch the first two components of each permutation and write the new
permutation on the right side. Check that the new permutation is odd. There should be 12 even
permutations on the left and 12 even permutations on the right.

37. Revisiting The Cross Product: If u  u1, u2, u3  and v  v1, v2, v3  are vectors from 3, we
defined the vector:

u  v  u2v3  u3v2  i u1v3  u3v1  j u1v2  u2v1 k,

as the cross product of u with v in Exercise 14 of Section 1.3. In that Exercise, we showed that
u  v is orthogonal to both u and v.
a. Show that we can write the formula above as a determinant:

u  v 
i j k

u1 u2 u3

v1 v2 v3

(Strictly speaking, since i, jand k are not scalars, we call this a formal determinant.)
b. Prove that u  v2  u2  v2  u  v2. Note: the left side is just a messy expansion.
c. Use the previous part to prove that u  v  uv sin, where as usual,  is the angle

between u and v. Hint: recall the formula for u  v that involves .
d. Use (c) to prove that u and v are parallel to each other if and only if u  v  03. Don’t

forget to include the case when one of the vectors is already 03.
e. Prove that if u and v are orthogonal unit vectors, then u  v is also a unit vector.
f. Draw the parallelogram in space formed by u and v in standard position, and use (c) to

prove that u  v is the area of the parallelogram that they determine.
g. Now, suppose a  a1, a2  and b  b1, b2  are vectors from 2. Construct the vectors

u  a1, a2, 0 and v  b1, b2, 0, , and the 2  2 matrix A  a b .

Prove that u  v  |detA |. Explain why this formula, together with part (e), tells us
that |detA | is the area of the parallelogram determined by the vectors a and b in standard
position, as shown on the cover page of Chapter 5.

h. Suppose u, v and w are from 3. Form the matrix B with these vectors as rows in this
order (the result is the same if we use the vectors as columns, but the standard definition of
the cross product is expressed in rows). Prove that u  v  w  detB. Using the formula
that the volume of a parallelepiped is its base area multiplied its height, and the properties
above, show that |detB | is the volume of the parallelepiped determined by u, v and w.
Hint: you will need both the statement and the idea behind part (e).
Parts (f) and (h) are illustrated on the cover page of Chapter 5.
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5.2 A General Determinant Formula

We are now ready to present a general formula for the determinant of any n  n matrix. Our definition
will extend the pattern that we saw for 2  2 and 3  3 matrices.
There will be n! terms in the determinant formula for an n  n matrix. Each term will correspond to a
permutation  of 1, 2, . . . , n. Each term in our formula will contain n factors. As before, we will
write the typical term with the row numbers in the correct order, so the typical term will look like:

 a1,_a2,_a3,_an,_.

For the term corresponding to , the column numbers will be 1, 2, , n. The term will
have a positive coefficient if the permutation is even, and it will have a negative coefficient if the
permutation is odd. We summarize this in the following:

Definition: Let A be an n  n matrix with entry a i,j in row i, column j, as usual Then:

detA  
all permutations  of 1, 2, ..., n

sgn  a1,1  a2,2    an1,n1  an,n.

Recall that we can also write |A| instead of detA. We will also replace the matrix brackets with
vertical bars to denote a determinant instead of a matrix.

Example: Let us pretend that we are finding the determinant of a 5  5 matrix. There are 5!  120
terms in this determinant. Let us consider only the term:

 a1,3a2,5a3,4a4,1a5,2.

This single term can be visualized like we did for 3  3 matrices:

a1,1 a1,2 a1,3 a1,4 a1,5

a2,1 a2,2 a2,3 a2,4 a2,5

a3,1 a3,2 a3,3 a3,4 a3,5

a4,1 a4,2 a4,3 a4,4 a4,5

a5,1 a5,2 a5,3 a5,4 a5,5

.

The columns numbers were produced by the permutation:
  3, 5, 4, 1, 2,

The inversions in  are:

3  1, 3  2, 5  4, 5  1, 5  2, 4  1, and 4  2,

so there are 7 inversions. Thus,  is odd and the coefficient of this term is 1. The final signed term is:

 a1,3a2,5a3,4a4,1a5,2. 

The previous diagram shows an important property of each term in the determinant formula:

Section 5.2 A General Determinant Formula 461



Every term contains exactly one factor from each row, and from each column.

Clearly, we do not want to do this 120 times, each time computing the product of five numbers after
which we have to add them all together. Soon we will find more practical methods to compute the
determinant. Before that, though, there are some easy properties we can show.

Basic Properties of detA

The first property tells us when we can compute detA with almost no effort:

Theorem: Let A be an n  n matrix with a row of zeroes. Then detA  0.

Proof: Suppose row k contains all zeroes. The determinant formula says that each term has exactly one
factor from row 1, one factor from row 2, and so on. Thus we will have one factor from row k, and
thus the entire product will be 0. Since all the terms are 0, detA  0. 

We defined the determinant by requiring that the n factors that appear for each term have their row
numbers in the correct ascending order. Why didn’t we require the column numbers to be in ascending
order instead, and use the sign of the resulting permutation on the rows? The answer is . . . for no
particular reason. The truth is, we could also have defined the determinant with the columns in the
correct order, and we still would have gotten the exact same answer. Let us see why:

Example: Consider a 5  5 determinant and the term we saw above:
 a1,3a2,5a3,4a4,1a5,2.

Let us rearrange the factors so that the columns are in ascending order:
a4,1a5,2a1,3a3,4a2,5.

The resulting permutation of the rows is   4, 5, 1, 3, 2. But notice that this is the inverse
permutation of the original permutation   3, 5, 4, 1, 2. Since a permutation and its inverse have
the same sign, this term will likewise have a coefficient of 1.

This is indeed true in general for any of the terms. Thus, we also get the formula:

detA  
all permutations
 of 1, 2, ..., n

sgn  a1,1  a2,2    an1,n1  an,n.

This observation leads us to the following:

Theorem: Let A be an n  n matrix. Then detA  detA .

Proof: Let us demonstrate the idea behind the proof on a 4  4 matrix A:
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A 

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

, with A 

a1,1 a2,1 a3,1 a4,1

a1,2 a2,2 a3,2 a4,2

a1,3 a2,3 a3,3 a4,3

a1,4 a2,4 a3,4 a4,4

.

For convenience and to avoid confusing notation, let us call A simply B.
Consider the term from detA, whose factors we boxed above:

a1,3a2,2a3,4a4,1,

This corresponds to the permutation   3, 2, 4, 1. Its inversions are:

3  2, 3  1, 2  1, and 4  1.
Thus,  is even. We have also boxed the identical numbers in B which appear in the corresponding
term for detB. They are found in different entries of B, though, so we must understand the
permutation that produces this term from detB. Since a i,j  b j,i for all i, j, we have:

a1,3a2,2a3,4a4,1  b3,1b2,2b4,3b1,4  b1,4b2,2b3,1b4,3.

But the permutation corresponding to this term from detB results once again from the inverse
permutation 1  4, 2, 1, 3. Since sgn  sgn1 , the coefficient of this term is also 1.
More generally, this idea tells us that if B  A, and:

sgn  a1,1  a2,2    an1,n1  an,n

is a typical term from detA corresponding to the permutation , then the same entries in A can be
found in B as b1,1, b2,2, , bn,n. These terms are in increasing column order. But these terms
can be listed instead so that the rows are in increasing order, as b1,11, b2,12, , bn,1n. Since
sgn1   sgn, this term from detB will have the same sign as the original term from detA.
Since all the terms in detA are in a one-to-one correspondence with an equal term in detB, the two
determinants are equal.

This Theorem has the effect of enabling us to state any future observations in terms of rows as well as
columns. Thus, for example, we can also say:

Theorem: Let A be an n  n matrix with a column of zeroes. Then detA  0.

We also have another useful, though not so obvious result:

Theorem: Let A be an n  n matrix with two proportional rows (or, in particular, two equal
rows). Then detA  0. Similarly, a matrix with proportional columns also has zero
determinant.

Proof: Again, let us first see the idea behind the proof by looking at a 4  4 matrix where the second
row is a multiple of the fourth row:
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A 

a1,1 a1,2 a1,3 a1,4

ka4,1 ka4,2 ka4,3 ka4,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

Once again, we have boxed the term corresponding to the even permutation   3, 2, 4, 1. However,
another term appearing in detA corresponds to the boxed entries below:

A 

a1,1 a1,2 a1,3 a1,4

ka4,1 ka4,2 ka4,3 ka4,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

This term has exactly the same factors as the original term, but now corresponds to the permutation
 /  3, 1, 4, 2, that is, where the 2nd and 4th entries of  are switched. But we know that
sgn /   sgn, so this second term now corresponds to an odd permutation. Therefore, these two
terms will add up to zero. Notice that the 2nd and 4th rows are parallel, and we switched the 2nd and
4th components of .
Let us now generalize this argument. Suppose that row j of A is k times row i of A (and assume
without loss of generality that i  j. Thus, a j,j  k  a i,j. Notice that it is the column numbers
that are the same. A typical term in the determinant formula for A will look like:

sgn  a1,1  a2,2    a i,i    a j,j    an1,n1  an,n

 sgn  a1,1  a2,2    a i,i    k  a i,j    an1,n1  an,n

 k  sgn  a1,1  a2,2    a i,i    a i,j    an1,n1  an,n

However, if we consider the permutation  / obtained from  by exchanging the i and j coordinates, we
get a second term that appears in the determinant, namely:

sgn /   a1,/1  a2,/2    a i,/i    a j,/j    an1,/n1  an,/n

 sgn  a1,/1  a2,/2    a i,/i    k  a i,/j    an1,/n1  an,/n

 k  sgn  a1,/1  a2,/2    a i,/i    a i,/j    an1,/n1  an,/n

 k  sgn  a1,1  a2,2    a i,j    a i,i    an1,n1  an,n.

Notice that all the factors in the original term appear, except for the order of appearance of a i,j and
a i,i. However, this term now has the opposite sign of the original term. Thus, these two terms add
up to zero. Since all terms in detA can be put into pairs that add up to zero, detA must be zero.

This proof also demonstrates the usefulness of the Theorem that we proved regarding the effect of
switching any two coordinates in a permutation.
Let us now look at a non-trivial case where we only need to compute one term to compute the
determinant:

464 Section 5.2 A General Determinant Formula



Determinants of Triangular Matrices

We can easily compute the determinant of the triangular matrices introduced in Section 2.9:

Theorem: Let A be an upper or a lower triangular matrix, that is, a i,j  0 for all i  j, or
a i,j  0 for all i  j. Then:

detA  a1,1  a2,2    an1,n1  an,n,

that is, the product of the diagonal entries. In particular:

if D  Diagd1, d2, . . . , dn , then detD  d1  d2    dn.

Proof: Let us see the idea of the proof by looking at an upper triangular 4  4 matrix:

A 

a1,1 a1,2 a1,3 a1,4

0 a2,2 a2,3 a2,4

0 0 a3,3 a3,4

0 0 0 a4,4

.

The determinant formula says that we have to choose an entry from every row and from every column,
without repeating a row or column. But as soon as we pick one of the zeroes in column 1, that entire
term will be zero. Thus, we must choose the term a1,1 from column 1 in order to have any chance of
producing a non-zero term. But now that we have chosen a1,1, we cannot use any other term from row
1 to go with this term. Thus, we cannot choose a1,2 from column 2. Again, if we choose any of the
zeroes appearing in column two, the term we produce is automatically zero. Thus, the only term we
can choose from column 2 that has any chance of producing a non-zero term will be a2,2. Continuing
with this argument, we now cannot use any entry from row 1 or row 2 when we choose an entry from
column 3. Thus, the only term we can choose from column 3 that has any chance of producing a
non-zero term will be a3,3. Similarly, we must choose a4,4 in order to have any chance of producing a
non-zero term.
We can easily see that this argument applies in general to an n  n upper triangular matrix. The only
term that has any chance of being non-zero would be the term:

 a1,1  a2,2    an1,n1  an,n.
The permutation that corresponds to this term is   1, 2,  , n  1, n , the identity permutation, with
sgn  1. This completes our proof.

Example: Consider the matrix:

A 

5 12 753 212

0 3  0
0 0 2 1/e
0 0 0 1/10

.

Then A is an upper triangular matrix, and so detA  5  3  2  1/10  3. 

Section 5.2 A General Determinant Formula 465



Now that we appreciate how difficult it is to directly apply the definition in order to compute the
determinant, in general, we want to develop techniques that will simplify the process. The first involves
row operations, so we proceed by reviewing elementary matrices.

Determinants of Elementary Matrices

Recall that an elementary matrix E is produced by performing a single elementary row operation on the
identity matrix In. We also saw in Chapter 2 that if A is any n  m matrix, then we can compute the
product E  A by performing exactly the same row operation on A that was used to produce E from In.
The determinant properties let us compute the determinant of elementary matrices very easily:

Theorem: Suppose E is an elementary matrix. If E is obtained from In by:
1. multiplying row i by k  0, then detE  k.
2. exchanging row i and row j, then detE  1.
3. adding k times row i to row j, then detE  1.
Consequently, the determinant of every elementary matrix is non-zero.

Proof: The Type 1 elementary matrix obtained from In by multiplying row i by k  0 is already a
diagonal matrix, with all 1’s on the diagonal except for a single k. By our formula, detE  k.
Similarly, a Type 3 elementary matrix obtained from In by adding k times row i to row j is either lower
or upper triangular, with all 1’s on the diagonal. Thus detE  1. Finally, if E is obtained from In by
exchanging row i and row j, then the only non-zero term of detE involves the entries which are all
1’s. But the resulting permutation is 1, 2, 3, . . . , n , except i and j are exchanged. Since this
permutation is obtained from the identity permutation  by switching two components, the sign of this
permutation is 1, and thus detE  1. 

Example: Shown below are examples of a Type 1, 2 and 3 elementary 4  4 matrix, respectively, and
their determinants:

1 0 0 0
0 5 0 0
0 0 1 0
0 0 0 1

 5,

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 1, and

1 0 7 0
0 1 0 0
0 0 1 0
0 0 0 1

 1.

The Effect of Row Operations

Now we are ready to study how elementary row operations affect the value of the determinant.

Theorem: Let A be an n  n matrix. Suppose B is obtained from A by:
1. multiplying row i of A by k  0. Then: detB  k  detA.
2. exchanging row i and row j of A. Then: detB  detA.
3. adding k times row i of A to row j of A. Then: detB  detA.

466 Section 5.2 A General Determinant Formula



Analogous statements can be made by replacing the word row with the word column.
Consequently if E is the elementary matrix corresponding to the row operation performed,
then B  E  A, and so: detE  A  detE  detA.
In particular: detk  A  kn  detA.

Proof: Let us see the ideas behind the proof by considering a general 4  4 matrix A:

A 

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

.

Again, we boxed that four entries that produce the term in detA corresponding to the even
permutation   3, 2, 4, 1. Suppose now that we obtain B1 from A by the Type 1 operation where we
multiply row 3 of A by the non-zero number k:

B1 

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

k  a3,1 k  a3,2 k  a3,3 k  a3,4

a4,1 a4,2 a4,3 a4,4

.

We boxed the entries in B1 which correspond to the four entries in A. The resulting term is exactly the
same as the original, with an extra factor of k. Since every term of detB1  will have an extra factor of
k in the corresponding term from detA, we get the desired result that detB1   k  detA. We can
see that this argument works in general for any n  n matrix: a typical term in detA will look like:

sgn  a1,1  a2,2    a i,i  a i1,i1    an1,n1  an,n

If B1 is obtained from A by multiplying every entry in row i of A by a non-zero number k, then the
corresponding term in detB1  will be:

sgn  a1,1  a2,2    ka i,i   a i1,i1    an1,n1  an,n.

Since each term in detB1  will have an extra factor of k, detB1   k  detA.
Now, suppose we obtain B2 from A by exchanging rows 2 and 4 of A:

B2 

a1,1 a1,2 a1,3 a1,4

a4,1 a4,2 a4,3 a4,4

a3,1 a3,2 a3,3 a3,4

a2,1 a2,2 a2,3 a2,4

,

where we have boxed the same numbers that appear in B2. Notice, though, that two of them are now
found in different locations. The corresponding permutation that will yield this term will be
 /  3, 1, 4, 2, which is the permutation obtained from  by exchanging the 2nd and 4th components.
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Thus, sgn /   sgn. Since every term of detB2  will have an extra factor of 1 compared to the
corresponding term from detA, we get the desired result that detB2   detA. Again, this
argument works in general, and we leave it as an Exercise to write a general proof for Type 2 row
operations.

Finally, in order to see the idea for a Type 3 operation, we need the following more general result:

Lemma: Let A, B and C be n  n matrices that have all entries equal except for the entries in
row i. However, row i of C is the sum of row i of A and row i of B. Then:

detC  detA  detB.

Warning: This Theorem is not saying that C  A  B, nor is it saying that
detA  B  detA  detB. In fact, in general, this equation is false. Most of the time:

detA  B  detA  detB.

Proof of the Lemma: Let us look at how A, B and C might look like for a 4  4 matrix. We have
chosen all rows to be the same, except for the 3rd row, and so the three matrices are:

A 

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

, B 

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

b3,1 b3,2 b3,3 b3,4

a4,1 a4,2 a4,3 a4,4

, and

C 

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1  b3,1 a3,2  b3,2 a3,3  b3,3 a3,4  b3,4

a4,1 a4,2 a4,3 a4,4

.

The term from detC corresponding to the boxed entries above will be:

sgn  a1,3  a2,2  a3,4  b3,4   a4,1

 sgn  a1,3  a2,2  a3,4  a4,1 

sgn  a1,3  a2,2  b3,4  a4,1,

where   3, 2, 4, 1, as before. We can easily see that the term on the second line corresponds to a
term in detA and the term on the third line corresponds to a term in detB Since every term in
detC can be distributed into the sum of a term in detA and a term in detB, the conclusion of the
Lemma follows for this example. More generally, if all three matrices are n  n and row k of C is the
sum of row k of A and row k of B, with all other rows equal, a typical term in detC will be:
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sgn  a1,1  a2,2    ak1,k1  ak,k  bk,k   ak1,k1    an,n

 sgn  a1,1  a2,2    ak1,k1  ak,k  ak1,k1    an,n 

sgn  a1,1  a2,2    ak1,k1  bk,k  ak1,k1    an,n.

Again, the term on the second line corresponds to a term in detA and the term on the third line
corresponds to a term in detB, and so the Lemma follows in general.

Now we can go back to the Theorem to see the idea to prove the formula involving a Type 3 row
operation. Suppose we obtain B3 from A by adding k times row 1 to row 3 for our arbitrary 4  4
matrix A:

B3 

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1  k  a1,1 a3,2  k  a1,2 a3,3  k  a1,3 a3,4  k  a1,4

a4,1 a4,2 a4,3 a4,4

We can now apply the Lemma: B3 has exactly the same entries as the matrices:

A 

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

, and B 

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

k  a1,1 k  a1,2 k  a1,3 k  a1,4

a4,1 a4,2 a4,3 a4,4

,

except that row 3 of B3 is the sum of row 3 of A and row 3 of B. But notice that row 1 and row 3 of B
are proportional. Thus, detB  0. We can now apply our Lemma to conclude:

detB3   detA  detB  detA  0  detA.

We leave it as an Exercise to generalize these ideas to a proof for any n  n elementary matrix E and
any n  n matrix A. 

Finding det(A) Using Row and Column Operations

The previous Theorem allows us to perform row or column operations (keeping track only of Type 1
and Type 2 operations) until we obtain a triangular matrix. If we factor out a non-zero number k
from a row or column using a Type 1 operation, we need to multiply the final determinant by k to
account for this row operation. Also, we count the total number t of row exchanges that we perform,
and multiply our final determinant by 1 t to account for all the Type 2 operations. Alternatively, you
can also keep track of swaps by pairs, switching signs back and forth. The Type 3 row operations do
not change our determinant, so we need not keep track of them.
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Example: Let us compute the determinant of:

A 

5 8 3 7
3 6 4 8

1 2 1 5
7 9 2 6

using row reduction. We see a “1” in row 3, column 1, so let us swap row 1 and row 3 first, but in so
doing, we get a sign change:

detA  

1 2 1 5
3 6 4 8

5 8 3 7
7 9 2 6

.

Now, we clear the rest of column 1 using three Type 3 row operations, to get:

detA  

1 2 1 5
0 12 1 7
0 2 8 18
0 23 5 41

.

The easiest way to produce a leading 1 in row 2, column 2 is to factor out 2 from row 3, and switch
row 3 with row 2. The beauty of this move is that we can forget about the first switch, since it now
cancels with this second one. However, we still need to remember the “2” factor. Clearing the rest of
column 2 below row 2, we get:

detA  2 

1 2 1 5
0 1 4 9
0 0 49 101
0 0 87 166

.

This matrix is almost upper triangular, except for the 87. Now, we can leave the 49 alone and use a
Type 3 operation by adding 87

49 of row 3 to row 4, getting:

detA  2 

1 2 1 5
0 1 4 9
0 0 49 101

0 0 0 653
49

.

We get as our final answer:
detA  2  1  1  49  653

49  1306. 
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5.2 Section Summary

Let A be an n  n matrix with entry a i,j in row i, column j. Then:

detA  
all permutations
 of 1, 2, ..., n

sgn  a1,1  a2,2    an1,n1  an,n

 
all permutations
 of 1, 2, ..., n

sgn  a1,1  a2,2    an1,n1  an,n.

A and A have the same determinant.

If A has a row or a column of zeroes, then detA  0.

If A has two proportional rows or columns, then detA  0.

If A is an upper or a lower triangular matrix, then detA  a1,1  a2,2    an,n.

In particular, if D  Diagd1, d2, . . . , dn , then detD  d1  d2    dn.

Suppose E is an elementary matrix. If E is obtained from In by:
1. multiplying row i by k  0, then detE  k.
2. exchanging row i and row j, then detE  1.
3. adding k times row i to row j, then detE  1.
Consequently, the determinant of every elementary matrix is non-zero.

Let A be an n  n matrix. Suppose B is obtained from A by:
1. multiplying row i of A by k  0. Then: detB  k  detA.
2. exchanging row i and row j of A. Then: detB  detA.
3. adding k times row i of A to row j of A. Then: detB  detA.
Analogous statements can be made by replacing the word “row” with the word “column.”

Consequently if E is the elementary matrix corresponding to the row operation performed, then
B  E  A, and so: detE  A  detE  detA.

In particular: detk  A  kn  detA.

The determinant of A can be computed by performing row or column operations on A until we get a
triangular matrix B. The determinant of A is obtained by multiplying the determinant of B by all the
non-zero numbers k that were factored out of rows and columns using Type 1 operations, and by
1 t, where t is the total number of Type 2 operations. Type 3 operations do not affect the value of
the determinant.
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5.2 Exercises

For Exercises 1 to 6: Determine if the term has a positive or negative coefficient in the determinant
formula for the corresponding matrix:

1. a1,3a2,1a3,4a4,2

2. a1,2a2,4a3,3a4,1

3. a1,4a2,1a3,5a4,2a5,3

4. a1,5a2,3a3,2a4,4a5,1

5. a1,4a2,6a3,1a4,5a5,2a6,3

6. a1,6a2,3a3,4a4,1a5,2a6,5

For Exercises 7 to 12: Pseudo-ku! Find the missing subscript/s in the determinant term, and
decide if the resulting term has a positive or negative coefficient in the determinant formula:

7. a1,3a2,4a3,1a4,?

8. a1,5a2,3a3,?a4,2a5,1

9. a5,4a3,1a1,5a2,?a4,2

10. a1,?a2,3a3,6a4,2a5,1a6,4

11. a3,2a5,4a?,6a1,3a4,?a6,1

12. a6,3a3,5a1,?a8,6a5,1a2,8a?,2a7,4

For Exercises 13 to 20: Find the following determinants without using the original determinant
formula. Explain your answers.

13.
8 ln1 47

100 sin5 982
e500 cos/2 537

14.
3 5 8

157 375 402
12 20 32

15.
3 61 3125
0 5 742
0 0 2

16.
2/3 1/5 3/5

0 6/5 3/8
0 0 7/4

17.

6 0 0 0
4 8 0 0
7 20 11 0
3 9 33 5

18.

6 7 109 0. 005

0 3 4 

0 0 5 e5

0 0 0 8
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19.

4 54 1 7 39
0 5 3 42 6
0 0 9 8 9
0 0 0 3 4
0 0 0 0 7

20.

2/3 0 0 0 0
7 6/11 0 0 0

e 800 5/9 0 0
53 e 0 33/4 0
4 40 400 99 3/20

For Exercises 21 to 24: Explain why there is only one non-zero term in each of the following
determinants. Compute that term, and hence the determinant. As part of your solution, find the only
permutation that yields this term, and find the sign of this permutation.

21.

0 7 0 0
0 0 0 8
5 0 0 0
0 0 2 0

22.

0 0 6 0
0 0 0 4
0 3 0 0
5 0 0 0

23.

0 0 6 0 0
0 0 0 0 3
0 2 0 0 0
4 0 0 0 0
0 0 0 5 0

24.

0 0 0 2/3 0
0 5/4 0 0 0
0 0 0 0 6/25

15 0 0 0 0
0 0 7/6 0 0

25. Suppose A is a 3  3 matrix, and detA  5. Find the determinant of the following matrix
products:

a.
0 0 1
0 1 0
1 0 0

A b.
1 0 3
0 1 0
0 0 1

A

c.
1 0 0
0 4 0
0 0 1

A d.

1 0 0
0 1 0

0 0 1
15

A

26. Suppose A  c1 c2 c3 c4 is a 4  4 matrix, partitioned into its four columns, and
detA  20.

Find the determinant of the following matrices:

a. 7c1 3c2
1
2 c3  1

5 c4

b. c3 c4 c2 c1

c. 5c4  3c1 4c3 9c2

d. c1  4c3 c2  5c4 2c3  c4
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27. Suppose you are told that
a1 b1 c1

a2 b2 c2

a3 b3 c3

 9.

Find the value of the following determinants, and provide an explanation. Hint: Think of the
properties of determinants. Do not perform a brute-force computation.

a.
c3 b3 a3

c1 b1 a1

c2 b2 a2

b.
5a1 5a2 5a3

3b1 3b2 3b3

2c1 2c2 2c3

c.
2a1  3c1 7b1  4c1 2c1

2a2  3c2 7b2  4c2 2c2

2a3  3c3 7b3  4c3 2c3

d.
a1  b1 b1  c1 c1  a1

a2  b2 b2  c2 c2  a2

a3  b3 b3  c3 c3  a3

28. Suppose A 

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

, and detA  14.

Find the determinants of the following matrices:

a.

a1 a2 a3 a4

b1  3d1 b2  3d2 b3  3d3 b4  3d4

c1  4a1 c2  4a2 c3  4a3 c4  4a4

5d1 5d2 5d3 5d4

b.

10b2 10d2 10c2 10a2

b4/35 d4/35 c4/35 a4/35
3b1 3d1 3c1 3a1

b3/2 d3/2 c3/2 a3/2

c.

10a2 5a1 5a3 20a4

6b2 3b1 3b3 12b4

4c2 2c1 2c3 8c4

2
7 d2

1
7 d1

1
7 d3

4
7 d4

d.

6a4  18b4 a2  3b2 a3  3b3  a2  3b2 a1  3b1

42b4 7b2 7b3  7b2 7b1

6c4  12b4 c2  2b2 c3  2b3  c2  2b2 c1  2b1

6d4  30b4 d2  5b2 d3  5b3  d2  5b2 d1  5b1
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For Exercises 29 to 40: Compute the following determinants by using row and/or column
operations:

29.
3 6 15
4 5 2

2 7 3

30.
4 1 5
8 2 7
9 3 6

31.

7 9 3 2
4 0 9 3
5 2 8 6
4 1 3 7

32.

2 1 5 1
0 4 1 2
5 2 3 6
1 3 2 4

33.

3 2 4 1
2 1 0 3

5 3 2 1
2 5 3 6

34.

2 1 7 1
5 0 2 2
7 2 3 8
4 6 2 9

35.

1 3 1 3 2
0 2 3 1 2
2 1 2 3 1

0 2 1 1 0
3 4 0 2 5

36.

2 5 1 3 2
3 2 3 1 2
2 1 2 3 1

1 2 1 1 0
3 4 0 2 5

37.

2 5 1 3 2
3 2 7 1 8

5 1 2 3 6
4 0 1 1 0
0 4 3 2 5

38.

7 5 1 3 2
2 2 3 1 9
3 1 2 3 1
6 0 1 5 1
3 1 4 2 2

39.

2 5 1 8 3 2
3 2 3 2 1 2
7 9 4 3 0 2
2 1 2 2 3 1

1 2 1 1 1 0
3 4 0 4 2 5

40.

7 3 4 2 0 9
3 8 1 4 1 3
2 4 5 2 3 2
1 0 4 3 2 7
4 6 3 1 6 8
5 3 2 5 4 2
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41. Let A 

5 3 7
4 2 6
1 2 2

, B 

5 9 7
4 9 6
1 3 2

, and C 

5 6 7
4 7 6
1 5 2

.

a. Find detA, detB and detC.
b. Look closely at the three matrices. How are A, B and C related to each other?

c. State the relationship among detA, detB and detC.
d. Write a statement, analogous to the Lemma in the text, that is suggested by this Exercise.

Prove this statement using the properties of the determinant.

42. Let A be an n  n matrix.

a. Suppose that B2 is the matrix obtained from A by exchanging row i and row j of A. Prove
that detB  detA.

b. Suppose that B3 is the matrix obtained from A by adding k times row i of A to row j of A.
Prove that detB  detA.

Suggestion: Review the general proof in the text for Type 1 row operation. Mimic the proof and
use the notation in that proof.

43. More Properties of The Cross Product: In the last Exercise of Section 5.1, we saw some
properties of the cross product of two vectors in 3. Use the properties of the determinant
function that we saw in this Section to prove the following statements (do not expand the
determinants by brute force). Assume that u, v and w  3 and k  .

a. u  k  v  k   u  v   k  u  v.
b. u   v  w   u  v  u  w.
c.  u  v   w  u  w  v  w.
d. u  v   v  u .
e. u   v  w   u v w (the matrix with u, v, and w in the columns).

f. Use (e) and the properties of the determinant to prove that:

u   v  w   v   w  u   w   u  v .

(Recall that in the last Exercise of Section 5.1, we saw that the absolute value of all of these
expressions is the volume of the parallelepiped determined by the three vectors.)

g. Suppose that u and v are non-parallel (therefore non-zero) vectors, and w  ru  sv, where
r and s are both non-zero scalars. Prove that w is also a non-zero vector which is not
parallel to u or to v, and furthermore: u  v, u  w, and v  w are all non-zero vectors
which are parallel to each other.

h. Suppose that A  x1, y1, z1 , B  x2, y2, z2 , and C  x3, y3, z3 , are three
non-collinear points in space. In other words, they form a triangle in space, and therefore,
there is a unique plane  containing these three points. Use the previous part to show that:

AB  AC, BA  BC, and CA  CB

are all (non-zero) normal vectors to .
Thus, it does not matter which of the three points we choose as an anchor to find two
vectors to cross in order to produce a normal vector to .
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5.3 Properties of Determinants and Cofactor Expansion

We are now in a position to show that the determinant provides a litmus test for invertibility:

Theorem: Let A be an n  n matrix. Then A is invertible if and only if detA is non-zero.

Proof: Suppose that A is an n  n matrix, and let R be the rref of A. Since A is square, we know from
Chapter 1 that either R is In (which happens if and only if A is invertible), or R contains a row of
zeroes (which happens if and only if A is not invertible). We also know from Chapter 2 that R can be
obtained by a series of row operations, which we can simulate as a matrix product:

R  E t    E2  E1  A,
for some sequence of elementary matrices E1, E2, . . . , E t. In the previous Section, though, we
proved that if E is an elementary n  n matrix, then detEA  detE  detA. Thus, by repeated
application of this principle, we get:

detR  detE t    E2  E1  A  detE t     detE2   detE1   detA.

Notice that all of the elementary matrices in this sequence have a non-zero determinant. Thus detR
and detA are either both zero or both non-zero. Now, let us analyze the two cases for R:
Case 1. If R  In, then detR  detIn   1, and we get two conclusions: A is invertible, and detA
is non-zero.
Case 2. If R has a row of zeroes, then detR  0, and our two conclusions are: A is not invertible,
and detA is zero.
Thus, by these two cases, A is invertible if and only if detA is non-zero. 

We said in the previous Section that the determinant function is not additive in general. However, the
great miracle is that the determinant is in fact multiplicative:

Theorem: Let A and B be n  n matrices. Then: detA  B  detA  detB.

Proof: Let us divide our proof into two possibilities:
Case 1. A is invertible. Thus A is a product of elementary matrices, say A  E t    E2  E1. But by
our Theorem on products with elementary matrices, we have:

detA  detE t    E2  E1   detE t     detE2   detE1 .

But by the same token, we also have:

detA  B  detE t    E2  E1  B

 detE t     detE2   detE1   detB  detA  detB.

Case 2. A is not invertible. Then detA  0, by our Theorem above. However, we saw in Chapter 2
that A  B is invertible if and only if both A and B are invertible. Thus, in this Case, A  B is also not
invertible (otherwise both A and B would be invertible). Thus detA  B  0 also, and so we also get:

detA  B  0  detA  detB. 
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As a bonus, we get the next Theorem, the proof of which is left as an Exercise:

Theorem: Let A be any n  n matrix. Then for any positive integer k:

detAk   detAk.

Furthermore, if A is invertible, then:

detA1   1
detA

 detA1.

Thus, if A is invertible, then for any integer power k :

detAk   detAk.

Minors and Cofactor Expansion

We saw that the determinant of the 3  3 matrix:

detA 
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3


a1,1a2,2a33  a1,2a2,3a3,1  a1,3a2,1a32

a1,3a2,2a3,1  a1,1a2,3a3,2  a1,2a2,1a3,3.

If we collect the terms that contain a1,1, a1,2 and a1,3, respectively, we get:

detA  a1,1a2,2a33  a2,3a3,2   a1,2a2,3a3,1  a2,1a3,3   a1,3a2,1a32  a2,2a3,1 .

The terms in parentheses should look familiar, and that’s because they represent determinants of 2  2
matrices. Notice that the first and third expressions in the parentheses can be written as:

a2,2a33  a2,3a3,2 
a2,2 a2,3

a3,2 a3,3
, and

a2,1a32  a2,2a3,1 
a2,1 a2,2

a3,1 a3,2
.

The first 2  2 determinant is associated with the factor a1,1, and notice that we see this determinant if
we erase row 1 and column 1 of our original 3  3 matrix A. Similarly, the third 2  2 determinant is
associated with the factor a1,3, and we see this determinant if we erase row 1 and column 3 of A.
However, something is not quite right with the 2  2 determinant in the middle term. The two terms are
backwards! We can correct this by factoring out 1:

a1,2a2,3a3,1  a2,1a3,3   a1,2a2,1a3,3  a2,3a3,1 ,

and we see the corresponding 2  2 determinant:

a2,1a3,3  a2,3a3,1 
a2,1 a2,3

a3,1 a3,3

is obtained by erasing row 1 and column 2 of A.
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This observation is not exclusively associated to row 1. In fact, it is not even exclusive only to rows,
but, as in any democratic society, applies also to the columns of a 3  3 matrix. For example, if we
collect terms associated to the three entries in column 2, namely, a1,2, a2,2 and a3,2, in such a way that
we get 2  2 determinants in the correct order, we get:

detA  a1,1 a2,2 a33  a1,2 a2,3a3,1  a1,3a2,1 a3,2  a1,3 a2,2 a3,1  a1,1a2,3 a3,2  a1,2 a2,1a3,3

 a1,2 a2,1a3,3  a2,3a3,1 a2,2 a1,1a33  a1,3a3,1 a3,2 a1,1a2,3  a1,3a2,1 .

Notice that the three 2  2 determinants that we get are obtained from A by erasing the 2nd column
entirely, and, one at a time, the 1st row, the 2nd row and the 3rd row respectively, getting us:

a2,1 a2,3

a3,1 a3,3
,

a1,1 a1,3

a3,1 a3,3
and

a1,1 a1,3

a2,1 a2,3
.

How do we know that we need to factor out 1? The answer lies in the row and column numbers of the
coefficient beside the group. Notice that when they total an even number, such as for a1,1 and a1,3, we
did not need to factor out 1. But when the row and column numbers total an odd number, such as for
a1,2 and a3,2, we had to factor out 1. These observations lead us to the following:

Definition: Let A be an n  n matrix. The determinant of the submatrix obtained from A by
erasing its ith row and jth column is called the i,j-minor of A, denoted:

M i,jA.
The i,j-cofactor of A is the number:

C i,jA  1 ij  M i,jA.

Note: One way to visually remember the factor 1 ij is to think of a chessboard:

 






 







.

.

















The Signs of the Cofactors

The process that we saw above of rewriting the 3  3 determinant in terms of the entries of a chosen
row or column can thus be written as:

detA  a1,1M1,1A  a1,2M1,2A  a1,3M1,3A

 a1,1C1,1A  a1,2C1,2A  a1,3C1,3A,

by using row 1. However, if we use column 2, we likewise have:
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detA  a2,1M2,1A  a2,2M2,2A  a2,3M2,3A
 a2,1C2,1A  a2,2C2,2A  a2,3C2,3A.

More generally, this “cofactor expansion” process works along any row or any column of a determinant
of any size. However, the proof of this involves some heavy permutation theory, and so we omit it:

Theorem: Let A be an n  n matrix. We can compute the determinant of A
by a cofactor expansion along row i:

detA  a i,1C i,1  a i,2C i,2   a i,nC i,n,

or a cofactor expansion along column j:
detA  a1,jC1,j  a2,jC2,j   an,jCn,j.

The best choice for a row or column to expand along would obviously be one that contains the most
zeroes, because in that case the corresponding cofactor is irrelevant.

Example: Consider the matrix:

A 

7 4
2 5

0 9
3 4

0
3
5

0

2
8
7
6

.

We have highlighted the 3rd column, because it contains two zeroes, and thus it is the best choice for a
cofactor expansion. The formula tells us:

detA  0  1  3 
7 4 2
0 9 7
3 4 6

 5 
7 4 2
2 5 8
3 4 6

 0.

Notice that we need 1 for a2,3 but not a3,3. Now, we can compute the 3  3 determinants using the
formula, but we can also expand the first 3  3 determinant along the first column or second row,
thanks to the 0 entry. This first determinant becomes:

7 
9 7
4 6

 3 
4 2

9 7
 754  28  328  18  436.

To compute the second determinant, notice that the third column has entries 2, 8 and 6, so let us use
Type 3 row operations to produce zeroes in the 3rd column: add 4 times row 1 to row 2, and add 3
times row 1 to row 3. These do not change the determinant, and so:

7 4 2
2 5 8
3 4 6



7 4 2
30 21 0

18 8 0

 2
30 21

18 8
 230  8  18  21  276.
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Plugging in these results into the first line, our final determinant is:

detA  3436  5276  2688. 

The Best of Both Worlds

The two techniques that we saw —– performing row or column reductions, and cofactor expansion
along a row or column —– can be combined creatively to make short work of a determinant
calculation.

Example: Consider the matrix:

A 

7 4 9 8
2 5 3 0

5 9 5 2
3 4 2 0

.

A good beginning strategy would be to exploit the zeroes in column 4. However, we can first eliminate
the “8” by adding 4 times row 3 to row 1. This is a Type 3 row operation, so it doesn’t affect the
determinant. We get:

detA 

13 32 11 0
2 5 3 0

5 9 5 2
3 4 2 0

.

Now we can expand along column 4. That single row operation saved us from computing a 3  3
minor. We only need one cofactor:

detA  2
13 32 11
2 5 3
3 4 2

.

We don’t see any proportional rows or columns, but if we subtract row 3 from row 2 (again, a Type 3
row operation), we get:

detA  2
13 32 11

1 1 1
3 4 2

.

To get a row with two zeroes, we can subtract column 1 from columns 2 and 3 (Type 3 column
operations) and get:

detA  2
13 19 24

1 0 0
3 7 5

.
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Now we expand along row 2:

detA  211
19 24

7 5
 219  5  24  7  526. 

In practice, of course, there can be more than one good way to compute the determinant, but since it is
a function, there will be only one correct final answer.

5.3 Section Summary

Let A and B be n  n matrices. Then:

 A is invertible if and only if detA is non-zero.

 detA  B  detA  detB.
 For any positive integer k: detAk   detAk.

 If A is invertible, then: detA1   1/detA  detA1.

Thus, in this case, detAk   detAk for all integers k.

The determinant of the submatrix obtained from A by erasing its ith row and jth column is called the
i,j-minor of A, denoted M i,jA. The i,j-cofactor of A is the number: C i,jA  1 ij  M i,jA.

We can compute detA by a cofactor expansion along row i:

detA  a i,1C i,1  a i,2C i,2   a i,nC i,n,

or a cofactor expansion along column j:

detA  a1,jC1,j  a2,jC2,j   an,jCn,j.

Determinants can be computed by using a combination of two strategies — row and/or column
operations and cofactor expansion along a row or column.

5.3 Exercises

1. Let A 
5 8
3 2

and B 
6 4
1 7

.

a. Compute detA and detB.
b. Compute AB and detA  B.
c. Check that detA  B  detA  detB
d. Compute A  B and detA  B.
e. Show that detA  B  detA  detB.
f. Compute 3B and det3B.
g. What is the relationship between det3B and detB?
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2. The goal is to compute the determinant of the following matrix. Follow the instructions.

A 

2 3 7 2
1 3 0 4

2 8 0 3
6 5 2 7

a. Expand detA using column 3. You should have two 3  3 determinants in your set-up.
b. Compute the two 3  3 determinants in your set-up. Check the answer key first.
c. Plug in your answers to (b) to complete the computation of detA.

3. The goal is to compute the determinant of the following matrix. Follow the instructions.

A 

5 3 7 2
1 3 6 4

2 8 2 3
6 0 4 0

a. Expand detA using row 4. You should have two 3  3 determinants in your set-up.
b. Compute the two 3  3 determinants in your set-up. Check the answer key first.
c. Plug in your answers to (b) to complete the computation of detA.

4. The goal is to compute the determinant of the following matrix. Follow the instructions.

A 

4 2 3 8
7 8 5 4

2 3 2 3
3 0 9 5

a. Use row 1 and a Type 3 elementary row operation to turn the 8 in row 2 into a 0. Does this
change the value of detA?

b. Use row 3 and a Type 3 elementary row operation to turn the 2 in row 1 into a 1. Does this
change the value of detA?

c. Use (the new) row 1 and a Type 3 elementary row operation to turn the 3 in row 3, column
2, into a 0. Does this change the value of detA?

d. Expand detA using column 2. You should have a single 3  3 determinant in your set-up.
e. Compute this 3  3 determinant and complete the computation of detA.

For Exercises 5 to 7: find the following determinants by cofactor expansion along a
convenient row or column.

5. a.
5 0 4
2 3 2
7 0 9

b.
7 4 2

2 3 9
6 0 0
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6. a.

3 0 7 2
1 3 0 4

2 8 1 3
0 5 2 0

b.

5 2 0 3
3 0 8 5
7 9 1 0

6 0 3 2

7. a.

5 1 5 0 3
4 0 3 2 2
3 2 1 0 3
7 0 3 0 4
2 1 4 3 2

b.

7 8 3 2 4
5 1 1 4 0
3 0 7 0 5
0 6 0 0 7
2 4 1 3 0

For Exercises 8 and 9: A matrix is called sparse when many of the entries are zeroes (you
may be the judge as to what “many” is supposed to mean). Find the determinants of the following
sparse matrices by cofactor expansions.

8. a.

3 5 0 7
0 0 1 2
2 3 0 0

0 4 1 2

b.

0 5 0 3
7 0 1 0
2 3 0 0

0 0 1 2

9. a.

0 0 4 0 3
0 2 0 3 0
7 0 0 0 5
0 0 1 0 0
4 0 0 1 6

b.

4 9 0 0 5
0 2 0 3 0
3 0 3 0 5

0 0 1 0 2
6 0 0 1 6

10. For any positive integer k, prove that detAk   detAk.
11. Prove that if A is invertible, then detA1   1/detA  detA1.
12. We know in general that A  B  B  A for two n  n matrices. However, prove that:

detA  B  detB  A.

13. Suppose that X and Y are n  n matrices, where Y is invertible, and we define Z by:
Z  Y  X  Y1. Prove that detX  detZ.

14. Suppose that A is a 5  5 matrix with detA  60, and E1 through E4 are elementary 5  5
matrices obtained from I5 in the following ways, respectively: E1: exchange rows 2 and 4 of I5;
E2: multiply row 5 of I5 by 7; E3: divide row 1 of I5 by 3; E4: add 6 times row 3 of I5 to row 4.
Find detB, where B  E1  E2  E3  E4  A.

15. Matrices in Block Diagonal Form: Suppose that A1, A2, , Ak are all square matrices, not
necessarily of the same size, with k  2. We defined the direct sum of these matrices:

A  A1  A2   Ak

in the Exercises of Section 2.8. Prove that: detA  detA1 detA2 detAk .
Hint: Use Induction. Start by showing that if A  A1  A2, then detA  detA1 detA2 .
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16. The Vandermonde Determinant: We saw the matrix:

EaB,B / 

1 4 16 64
1 1 1 1
1 2 4 8
1 3 9 27

in Section 3.8, which we used to find a polynomial px with specified y-coordinates at
x  4,1, 2 and 3 (notice these are the entries in the 2nd column). We said that Ea is invertible
because of the Fundamental Theorem of Algebra, so detEa cannot be zero. In this Exercise, we
will prove an elegant formula for this determinant.
We define the Vandermonde Determinant, denoted Va1, a2, . . . , an , as:

Va1, a2, . . . , an  

1 a1 a1
2  a1

n1

1 a2 a2
2  a2

n1

1 a3 a3
2  a3

n1

    

1 an an
2  an

n1

.

Notice that the 3rd and 4th columns of our first matrix EaB,B / indeed contain the squares and
cubes of our four x coordinates, respectively, so the determinant of this matrix is an example of a
Vandermonde Determinant.
We will guide you through a proof by Mathematical Induction to show that:

Va1, a2, . . . , an   
1ijn

a j  a i .

Notice this formula is a product, not a sum. For example:

Va1, a2, a3   a3  a1 a3  a2 a2  a1 .

a. Warm-up: Use row reduction to compute V4,1, 2, 3, i.e., the determinant above.
b. Use the formula to compute V4,1, 2, 3, and check it with your answer to part a .
c. State and prove the formula for n  2.
d. Write down what the formula says for n  k, and assume that this formula is true.
e. Write down what the formula says for n  k  1. This is the formula you need to prove to

complete the induction. Go to the next step.
f. Show that if we perform k Type 3 column operations by adding a multiple  i of column i,

where i  1. . k, to the last column, then the Vandermonde determinant of size
k  1  k  1 can be written as:

1 a1 a1
2  ra1 

1 a2 a2
2  ra2 

1 a3 a3
2  ra3 

    

1 ak1 ak1
2  rak1 

,
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where rx is a polynomial with largest term xk. Hint: write the determinant for Va1, a2, a3 
and see what column 3 would look like if you add a multiple of column 1 and a multiple of
column 2.

g. Now, the big mental leap: what polynomial rx, of degree k, can be used to make all the
entries in the last column zero, except for the bottom entry? What would this bottom entry
be? Hint: what polynomial has roots a1, a2, . . . , ak?

h. Complete the induction process by performing a cofactor expansion along the new last
column.

i. Explain why the formula proves that if a1, a2, . . . , an are distinct real numbers, then the
matrix EaB,B / that we saw above, in general, is invertible as we claimed. This gives us
another proof that we can always find a unique polynomial of degree at most n if we specify
its y-coordinates at n  1 distinct x-coordinates.

17. The Group SLn: The set of all n  n matrices with determinant 1 whose entries consist of
integers and whose inverses also consist of integer entries is called SLn, which stands for the
Special Linear Group of n  n Matrices over  (Reminder: the letter  stands for “Zahlen,” the
German word for number, as mentioned in Chapter Zero).
A group is a non-empty set G, together with a binary operation  on G, such that:
1.  is associative: for all a, b, c  G: a  b  c  a  b  c;
2. there exists an identity element e, such that e  a  a  a  e for all a  G; and
3. for every a  G, there exists an inverse a 1  G, such that a  a 1  e  a 1  a.
For SLn,  is matrix multiplication, which we know is associative, e  In, and the inverse of
A is obviously the matrix inverse A1.

a. Consider the two matrices: S 
0 1
1 0

and T 
1 1
0 1

.

Show that S and T are both members of SL2, that is, both have determinant 1, both are
invertible and their inverses are also integer matrices. What are their inverses?

b. Compute S 2, S 3 and S 4. What do you notice?
c. Compute T 2, T 3, T 4 and T 5. What do you notice?
d. Guess a general formula for T n and prove it by Induction.
e. Find the matrix product U  ST.
f. Compute U 2, U 3, U 4, U 5 and U 6. What do you notice?
g. Prove that SLn is closed under matrix multiplication (for any positive integer n). In other

words, prove that the product of two matrices from SLn is also a member of SLn.
Hint: You must check three properties.

h. Is it also true that SLn is closed under matrix addition? Either prove that it is true or
provide a counterexample to show that it is false.
The purpose of the rest of this Exercise is to prove the following elegant statement:
Theorem: Let A  SL2. Then A can be expressed as a finite product of S, T, S 1 and
T 1, in some order.
This Theorem says that the two matrices S and T (and their inverses) generate the group
SL2. For example, A might be written as:

A  STTS 1TTTST 1T 1S 1TST 1.
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To begin the proof of this Theorem, let us suppose that: A 
a b
c d

 SL2.

i. Find a formula for SA.

j. Find a formula for TA and for T 1A.

k. Let us go back to the matrix A. Suppose that |a |  |c|. Show that by repeatedly multiplying
A by T or T 1, we will eventually obtain a matrix:

A / 
a / b /

c / d /
,

where |a / |  |c / |. As a warm-up, you might want to apply this idea to the matrix:

A 
55 23
12 5

,

How many times will you have to multiply A by T or T 1, and which should you use? What
is your final matrix A /?

l. Now, use your formula for SA to show that SA /  A //, where:

A // 
a // b //

c // d //
,

and |a // |  |c // | and |c // |  |c| (recall that c is the lower left entry of the original matrix A. In
other words, A // has exactly the same property as A, but with a smaller number on the lower
left entry. What is A // in your numerical example?

m. Recall that all the entries in these matrices, at every step, are integers. Show that by
repeatedly performing the last two steps, we finally obtain a matrix where the lower left
entry is 0. In other words, we get an upper triangular matrix.

n. Show that an upper triangular matrix in SL2 has the form:

either
1 k
0 1

or
1 k
0 1

,

for some integer k. In other words, the matrix that we obtain at the end of Step (m) has one
of these forms.

o. Show that either matrix above can be expressed as a product of one or more copies of S, T,
S 1 and T 1. As a warm-up, you might want to show how to express the matrices:

1 5
0 1

and
1 7
0 1

in this form. This completes the proof, since each step above is performed by multiplying by
S, T, S 1 or T 1.

p. Show how to express the numerical matrix in part (k) as a product of copies of S, T, S 1

and T 1.
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5.4 The Adjugate Matrix and Cramer’s Rule

In this section, we will see how to assemble the cofactors of a matrix A into a new matrix called the
adjugate matrix of A. We will see that this new matrix can be used to find the inverse of A, when A is
in fact invertible. We will also see an alternative although largely impractical way to solve an invertible
system.

The Cofactor and Adjugate Matrices

Definition: Let A be an n  n matrix. The cofactor matrix of A, denoted cof A, is the
matrix whose entries are the corresponding cofactors of each entry of A:

cof A  C i,jA.
We recall that:

C i,jA  1 ij  M i,jA,

where M i,jA, is the determinant of the submatrix obtained from A by erasing its ith row and
jth column of A. The adjugate matrix of A is the transpose of the cofactor matrix, and is
written as:

adjA  cof A  C j,iA.

Note: Some older books refer to the adjugate matrix as the adjoint or classical adjoint of A. However,
the word “adjoint” now usually refers to the Hermitian adjoint of A, which we will be defining in
Chapter 8. In keeping with modern terminology, we will use the word “adjugate” in this book.

Example: Consider an arbitrary 2  2 matrix:

A 
a b
c d

.

The cofactor matrix of A is:

cof A 
d c
b a

,

where we included the positive signs for emphasis. The adjugate matrix of A is:

adjA 
d b
c a

.

Notice that this matrix suspiciously reminds us of the inverse of A :

A1  1
ad  bc

d b
c a

,

assuming of course that ad  bc  0. This is not a coincidence, as we shall soon see.
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Example: Let us look at a 3  3 matrix, say:

A 

5 2 3
4 1 7
6 4 9

.

Let us systematically construct cof A, again emphasizing the signs of the corresponding cofactors:

cof A 


1 7
4 9


4 7
6 9


4 1
6 4


2 3

4 9


5 3
6 9


5 2
6 4


2 3

1 7


5 3
4 7


5 2
4 1



37 78 10
6 27 8
17 47 3

.

Taking the transpose, we obtain the adjugate matrix:

adjA 
37 6 17
78 27 47
10 8 3

.

This time, let us see what happens when we multiply our original matrix by its adjugate:

A  adjA



5 2 3
4 1 7
6 4 9

37 6 17
78 27 47
10 8 3



59 0 0
0 59 0
0 0 59

 59I3.

A quick computation will tell us that detA  59, so this equation again tells us that:

A  adjA  detA  I3.

In other words:
A  1

detA
adjA  I3,

and thus A is invertible, with:

A1  1
detA

adjA   1
59

37 6 17
78 27 47
10 8 3

. 

Our next goal, of course, is to prove this fact in general.
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A New Formula for the Inverse of a Matrix

Theorem: Let A be any n  n matrix. Then:

A  adjA  detA  In.

Consequently, if A is invertible, then: A1  1
detA

adjA.

Proof: We have to investigate every entry in the matrix product A  adjA and show that we obtain
detA along the main diagonal and 0 for the other entries.
Using the dot product formulation of the matrix product, the entry in row i, column j of the product is
the dot product of row i of A with column j of adjA. However, since adjA is the transpose of
cof A, the entries in column j of adjA are:

C j,1, C j,2, . . . , C j,n,

that is, the cofactors of the entries from row j of A. Thus, the final entry is:

a i,1C j,1  a i,2C j,2   C j,n.

Case 1. If i  j, that is, we have a main diagonal entry, then we get:

a i,1C i,1  a i,2C i,2   C i,n.

However, this is exactly the formula for detA by applying a cofactor expansion along row i of A.
Thus the diagonal entries are indeed detA.
Case 2. If i  j, we must show that this entry is 0. We will do this by cleverly replacing row j of A with
row i of A. Let A / be the resulting matrix:

A / 

a1,1 a1,2 . . . a1,n

   

a i,1 a i,2 . . . a i,n

   

a i,1 a i,2 . . . a i,n

   

an,1 an,2 . . . an,n

 row i

 row j

We boxed the entries of row j in order to distinguish row j from row i. Since A / has two rows with
identical entries, we must have detA /   0.

Let us denote by C j,1
/ the j, 1-cofactor of A /. Since we must delete row j and column 1 from A /, we will

get exactly the same minor as the original matrix A, and hence C j,1
/  C j,1.

Similarly, C j,2
/ through C j,n

/ are correspondingly equal to C j,2 through C j,n. Now, if we perform a
cofactor expansion for A / along row j, we obtain:

0  detA /   a i,1C j,1
/  a i,2C j,2

/   a i,nC j,n
/  a i,1C j,1  a i,2C j,2   a i,nC j,n,

completing our proof.
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A by-product of this formula, and the ideas behind its proof, is an alternative, albeit mostly impractical
method to solve an invertible matrix equation.

Cramer’s Rule

This method is usually seen in an Algebra or Precalculus class. It is named after the Swiss
mathematician Gabriel Cramer (1704-1752). We will now be in a position not just to use it, but also
to prove it:

Theorem — Cramer’s Rule: Let A be an invertible matrix. Then: the unique solution to the
matrix equation:

A

x1

x2



xn



b1

b2



bn

has entries:

x1 
detA1 

detA
, x2 

detA2 
detA

, . . . , xn 
detAn 

detA
,

where Ai is the matrix obtained from A by replacing column i of A with b.

Proof: The unique solution x is of course given by x  A1  b, since A is invertible. However, if we
use our new formula for A1, we get:

x  1
detA

adjA  b.

Since b is a column vector, we can again use the dot product interpretation to get:

x i  1
detA

 row i of adjA  b  1
detA

 b1C1,i  b2C2,i   bnCn,i ,

where again, we note that adjA is the transpose of cofA, and thus the entries of row i of adjA are
the corresponding cofactors for column i of A. However, in the same way that we proved the previous
theorem by cleverly replacing row j of A, we will finish the proof of Cramer’s rule by replacing column
i of A with the column vector b, and call the resulting matrix Ai:

Ai 

a1,1 ... a1,i1 b1 a1,i1 ... a1,n

a2,1 ... a2,i1 b2 a2,i1 ... a2,n

      

an,1 ... an,i1 bn an,i1 ... an,n

.

This time, naturally, we will compute detAi  using a cofactor expansion along column i. We will
denote the j, i cofactor of Ai by C j,i

i, where j  1. . n. Since we will delete row j and column i of
Ai, we will get exactly the same minor that we would obtain by deleting row j and column i of A
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itself. Thus:

C j,i
i  C j,i.

From this, we get the determinant by expanding along column i:

detAi   b1C1,i
i  b2C2,i

i   bnCn,i
i  b1C1,i  b2C2,i   bnCn,i,

and thus we get:

x i  1
detA

 b1C1,i  b2C2,i   bnCn,i   1
detA

 detAi ,

completing our Proof.

Example: Let us bring back our earlier 3  3 matrix:

A 

5 2 3
4 1 7
6 4 9

.

We saw that detA  59, so we know that A is invertible. Let us find the unique solution to:

A
x1

x2

x3



7
4

2

.

We will need the determinants:

detA1  

7 2 3
4 1 7

2 4 9

 269,

detA2  

5 7 3
4 4 7
6 2 9

 532, and

detA3  

5 2 7
4 1 4
6 4 2

 44.

Thus:

x1  269
59 , x2  532

59 , and x3  44
59 ,

so the unique solution is:

x  269
59 , 532

59 , 44
59 . 
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5.4 Section Summary

Let A be an n  n matrix. The cofactor matrix of A, denoted cof A, is the matrix whose entries are
the corresponding cofactors of each entry of A:

cof A  C i,jA,

where C i,jA  1 ij  M i,jA and the minor M i,jA, is the determinant of the submatrix obtained
from A by erasing its ith row and jth column of A.
The adjugate matrix of A is the transpose of the cofactor matrix, and is written as:

adjA  cof A  C j,iA.

Let A be any n  n matrix. Then:

A  adjA  detA  In.

Consequently, if A is invertible, then:

A1  1
detA

adjA.

Cramer’s Rule: Let A be an invertible matrix. Then: the unique solution to the matrix equation:

A

x1

x2



xn



b1

b2



bn

has entries:

x1 
detA1 

detA
, x2 

detA2 
detA

, . . . , xn 
detAn 

detA
,

where Ai is the matrix obtained from A by replacing column i with b.

5.4 Exercises

For Exercises 1 to 3: Find the adjugate matrices of the following matrices, and use them to find the
inverse of each matrix, when possible:

1. a. A 
3 5
1 4

b. B 
3 5
12 20

2. a. A 

4 3 1
5 2 0
3 1 2

b. B 

2 3 4
1 7 1
5 0 2
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3. a. A 

5 2 1 3
0 4 7 5
6 3 8 0
9 4 3 2

b. B 

3 7 7 1
2 3 6 2
5 2 7 1
4 6 5 2

For Exercises 4 to 9: Use Cramer’s Rule to solve the following systems of linear equations, if
applicable:

4. a. 3x  5y  4
2x  y  7

b. 7x  4y  6
6x  5y  8

5. a. 15x  5y  20
6x  2y  14

b.
3
4 x  5

2 y   7
4

2
3 x  11

6 y  4
3

6. a.
2x  4y  5z  6

x  3y  7z  1
5x  y  3z  4

b.
2x  3y  2z  9

x  2y  z  5
4x  y  4z  3

7. a.
5x  2y  z  8
7x  3y  4z  1
3x  6y  2z  5

b.
x  2y  4z  3

x  4y  5z  2
3x  y  7z  4

8. a.

5x  2y  z  2w  3
4y  7z  6w  5

6x  3y  8z  5w  0
9x  4y  3z  w  2

b.

3x  7y  7z  4w  1
2x  3y  6z  9w  2

5x  2y  7z  3w  1
4x  6y  5z  5w  2

9. a.

7x  5y  2z  w  3
2x  4y  4z  3w  7

4x  y  6z  5w  4
3x  2y  9z  2w  0

b.

x  2y  2z  2w  3
4x  8y  6z  w  2

3x  6y  4z  3w  5
x  y  z  4w  4

10. Use Cramer’s Rule to solve for the variables b and c only in the linear system:

3a  2b  5c  d  4e  6
a  b  3c  2d  7e  3
2a  3b  c  4d  2e  2
5a  4b  2c  3d  3e  1
4a  5b  7c  d  e  4
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11. Suppose that a, b, c, d is a linearly independent set of vectors from 4. Use Cramer’s Rule
to show that the system represented by the augmented matrix:

a1 b1 c1 d1 | 5a1  2c1  7d1

a2 b2 c2 d2 | 5a2  2c2  7d2

a3 b3 c3 d3 | 5a3  2c3  7d3

a4 b4 c4 d4 | 5a4  2c4  7d4

has exactly one solution, and find that solution. As usual, a  a1, a2, a3, a4 , and similarly for
the other vectors. Hint: think of the properties of determinants.

12. Let E be an n  n elementary matrix, where n  2.

a. Warm-up: compute the adjoint matrices of the following elementary matrices. Which of the
adjoints is also an elementary matrix?

1 0
0 5

;
0 1
1 0

;
1 0 0
0 4 0
0 0 1

;
0 0 1
0 1 0
1 0 0

;
1 0 3
0 1 0
0 0 1

b. If n  2 and E is of Type 1 (multiply row i of In by a non-zero number c to obtain E), then
adjE is also an elementary matrix of Type 1.

c. Show that if n  2 and E is of Type 1, then adjE is not an elementary matrix (except for
the trivial case when E  In). What goes wrong?

d. Show that if E is of Type 2 (exchange two rows of In to obtain E), then adjE is never an
elementary matrix.

e. Show that if E is of Type 3 (add a multiple of row i of In to row j to obtain E), then adjE
is also an elementary matrix of Type 3.

13. Prove that if A and B are invertible n  n matrices, then:

adjA  B  adjB  adjA.

Note: this formula is true even if A or B is not invertible, but the proof is much more difficult.
Also notice the similarity between this formula and those for the inverse and transpose of the
matrix product A  B.

14. The objective of this exercise is to prove that an n  n matrix A is invertible if and only if
adjA is also invertible. Note that the formula:

A  adjA  detA  In

is always true, whether or not A is invertible.

a. The easy part: use this formula to prove that if A is invertible, then adjA is also invertible.

b. Now for the converse: Suppose instead that adjA is invertible. Use Proof by Contradiction
to prove that A is also invertible. Hint: Suppose A is not invertible. Use the formula above to
solve for A. What happens? Be sure to actually explain what the contradiction is. This is not
as obvious as it looks.

Section 5.4 The Adjugate Matrix and Cramer’s Rule 495



15. Use the previous Exercise to show that if A is an n  n matrix, then:

detadjA  detAn1.
16. The objective of this Exercise is to give an alternative proof that the inverse of an invertible

upper-triangular matrix A is again upper triangular.

a. Write down the rigorous definition of what an upper triangular matrix is, from Section 2.9.
The definition should mention a certain inequality.

b. Consider the upper triangular matrix:

A 

2 5 1 4
0 3 6 2
0 0 7 8
0 0 0 1

.

Find adjA. What kind of a matrix is it?
c. Now, let A be any n  n upper-triangular matrix. Show that if none of the entries on the

main diagonal of A is zero, then all of the cofactors C i,i for the main diagonal are also
non-zero.

d. Next, show that if i  j, then the matrix obtained by the deleting row i and column j from A
is still upper triangular.

e. Continuing part (d), show that additionally, a zero now appears on the main diagonal.
Conclude that C i,j  0.

f. Explain why the last two parts shows that adjA is an upper triangular matrix also.
g. Finally, explain why A1 is also upper triangular.

17. Mimic the outline of the previous Exercise, parts (c) to (g), to prove that if A is an invertible
lower triangular matrix, then A1 is also lower triangular.
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5.5 The Wronskian

In Section 3.2, we defined a finite set of functions S   f1x, f2x, , fnx from some function
space FI to be linearly independent if the only solution to the dependence test equation:

c1 f1x  c2 f2x   cn fnx  zx

is the trivial solution: c1  c2    cn  0. In other words, the only way for the linear combination
on the left side of this equation to be zero at all points x  I is to have all coefficients zero. We saw a
variety of ideas to determine whether or not S were linearly independent or dependent, such as
plugging in several values of x and attempting to solve the resulting systems of equations, taking a limit
as x approaches a or some infinite limit, applying the Fundamental Theorem of Algebra (if the
functions happened to be polynomials, or can be converted to polynomials), and using known identities
from trigonometry, again if applicable. In other words, we had no clear or obvious strategy on how to
attack this question. In this Section, we present a method which uses the derivatives and the
determinant concept in order to decide if S is independent or dependent.
To see how this method works, let us first assume that S is linearly dependent. This means that we can
find a non-trivial solution to the dependence test equation, that is, where at least one c i is non-zero.
However, if S  C1I, and we apply the derivative operator to both sides of the equation, we get:

c1 f1
/x  c2 f2

/x   cn fn
/x  z /x  zx.

Let us keep applying this idea by taking a 2nd derivative, 3rd derivative, all the way to the n  1-st
derivative, thus assuming that S  Cn1I. We end up with the system:

c1 f1x  c2 f2x   cn fnx  zx
c1 f1

/x  c2 f2
/x   cn fn

/x  zx
c1 f1

//x  c2 f2
//x   cn fn

//x  zx


c1 f1
n1x  c2 f2

n1x   cn fn
n1x  zx.

Since we only took n  1 derivatives, this system is square, and we can write it in the form of a matrix
product:

f1x f2x  fnx
f1

/x f2
/x  fn

/x
f1

//x f2
//x  fn

//x
   

f1
n1x f2

n1x fn
n1x

c1

c2





cn



zx
zx




zx

.

Now, recall that the non-trivial solution c1, c2,  , cn must be valid for all points x  I. But this
means that the square matrix cannot be invertible for any value of x  I. Thus, its determinant must
be zero for all x  I. This determinant is called the Wronskian of S, denoted WS, and is named
after Józef Maria Hoene-Wroński (Poland, 1776-1853). The contrapositive of this statement tells us
that if WS is non-zero for at least one x  I, then S is an independent set. We summarize our
conclusions in the following:
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Definition/Theorem: Let S   f1x, f2x, , fnx  Cn1I for some interval I. We
define the Wronskian of S, WSx as the function:

WSx  W f1x, f2x, , fnx 

f1x f2x  fnx
f1

/x f2
/x  fn

/x
f1

//x f2
//x  fn

//x
   

f1
n1x f2

n1x  fn
n1x

.

If S is a dependent set, then WSx  zx for all values x  I.
Thus, if WSx is non-zero for at least one x  I, then S is an independent set.

Example: Let us consider the set S   sinx, sin2x, sin3x.
Using the Chain Rule, the Wronskian of S is:

WSx 
sinx sin2x sin3x
cosx 2 cos2x 3 cos3x
 sinx 4 sin2x 9 sin3x



sinx sin2x sin3x
cosx 2 cos2x 3 cos3x

0 3 sin2x 8 sin3x

 sinx16 cos2x sin3x  9 cos3x sin2x
 cosx8 sin2x sin3x  3 sin2x sin3x

 9 sinxcos3x sin2x  16 sinxcos2x sin3x  5 cosx sin2x sin3x.

Note that we added row 1 to row 3 to produce the zero in column 1 before performing a cofactor
expansion along column 1 to compute the determinant. We can attempt to simplify WS further using
trigonometric identities, but there is really no point in doing so in this case. Let us evaluate WSx at
some convenient value for x to see if we obtain at least one non-zero result. Notice that sin3x appears
in two terms. If we let x  /3, then sin3x  0, and so:

WS/3  9 sin/3cos sin2/3   27
4 .

Since WSx is non-zero at x  /3, we can safely conclude that S is linearly independent.

What if we had evaluated WSx at several values for x and kept getting zero? Would this mean that S
were dependent? We will answer this question in more depth in the next subsection, but for now, let us
say that when this happens, you can either keep trying with more values for x until you get a non-zero
result, or you can try to think of identities (trigonometric or otherwise) that will show that
WSx  zx for all x  I. A valid conclusion in one case will be presented in the next subsection.

What About the Converse?

Suppose that WSx  zx for all x  I. Does this also mean that S is a dependent set? Unfortunately,
the answer in general is no. Giuseppe Peano, in 1889, found a counterexample. Consider the two
functions:

f x  x2, and gx  x|x|,

498 Section 5.5 The Wronskian



and consider the set S   f x, gx  F. Note that we can write the second function as:

gx 
x2 if x  0
x2 if x  0

, and so g /x 
2x if x  0
2x if x  0

 2|x|.

Thus, both f x and gx are differentiable for all x, and:

WSx 
x2 x|x|
2x 2|x|

 2x2 |x|  2x2 |x|  zx,

so WSx  zx for all x  . However, S contains only two (non-zero) functions, and so S is
dependent if and only if these functions are parallel as vectors, that is:

f x  k  gx, for some non-zero k  , for all x  .
But since f x  x2  gx when x  0, the only possible solution for this equation would be k  1.
But f x  gx when x  0, and so k  1 does not work for all x  . Thus, S is actually an
independent set, even though WSx  zx for all x  .
What went wrong with this set? Notice that g /x  2|x|, and so g /x is not differentiable at x  0.
Peano himself also discovered that the converse will be true if we require that the functions in S are
real analytic, that is they are members of C, the set of all functions whose higher derivatives all
exist at all x  . Since gx is not in C, this Example also shows that the following converse
could fail if our functions are not in C.

Theorem: Let S   f1x, f2x, , fnx  C.
If WS  zx for all x  , then S is a linearly dependent set.

Example: Let us consider the set S   cos2x, sin2x, 1  C. We know that:

cos2x  sin2x  1,

and so S is certainly a dependent set. To prepare ourselves to compute WS, we have:

d
dx cos2x  2 cosx sinx   sin2x, and so:

d 2

dx2 cos2x  2 cos2x. Similarly:

d
dx sin2x  2 sinxcosx  sin2x, and so:

d 2

dx2 sin2x  2 cos2x.

Thus, the Wronskian of this set is:

WSx 
cos2x sin2x 1
 sin2x sin2x 0
2 cos2x 2 cos2x 0

 2 sin2xcos2x  2 sin2xcos2x  zx,

where we computed the determinant using a cofactor expansion along the 3rd column. Thus, we verify
that S is indeed a dependent set.
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5.5 Section Summary

Let S   f1x, f2x, , fnx  Cn1I for some interval I. The Wronskian of S, WSx, is:

WSx  W f1x, f2x, , fnx 

f1x f2x  fnx
f1

/x f2
/x  fn

/x
f1

//x f2
//x  fn

//x
   

f1
n1x f2

n1x  fn
n1x

.

If S is a dependent set, then WSx  zx for all values x  I.
Thus, if WS is non-zero for at least one x  I, then S is an independent set.
As a partial converse, suppose S   f1x, f2x, , fnx  CI, for some interval I.
If WS  zx for all x  I, then S is a linearly dependent set.

5.5 Exercises

For Exercises 1 to (12): (a) Find the Wronskian WSx of the set of functions S, and (b) decide
whether S is independent or dependent. If S is independent, give at least one value for x so that the
Wronskian is non-zero at x. Approximations are acceptable.
1. S   cosx, cos2x, cos3x
2. S   ex sinx, ex cosx
3. S   ekx sinnx, ekx cosnx, where k and n are fixed non-zero real numbers.
4. S   tan2x, sec2x, 1
5. S   cot2x, csc2x, 1
6. S   cosx, sinx, cos2x, sin2x
7. S   tanx, tan2x, tan3x
8. S   x1/2, x3/5, x7/4
9. S   x1/2, x1/3, x1/4, x1/5
10. S  x  1 , x  2 , x  3 , x  4
11. S   3x, 4x, 5x
12. S   log3x, log4x, log5x 

For Exercises (13) to (16): In Section 3.3, we said that if S   f ix | i  I  is an infinite set of
functions, then S is a linearly independent set if every finite subset of S is linearly independent. Thus,
we can apply the idea of the Wronskian on an arbitrary finite subset of S to determine if S is dependent
or independent. For the following infinite sets S: (a) Write down what an arbitrary finite subset S / of S
would look like, where S / contains n functions; (b) Find the Wronskian WS /x of the set S / from (a);
(c) Determine if S is linearly independent or dependent using WS /x. Hint: in all four problems, one
factor for WS /x is a Vandermonde determinant. You may need to perform some row and/or column
operations before the Vandermonde determinant reveals itself.
13. S   ekx | k    C.
14. S   bx | b  0,  C.
15. S   xk | k  0,  C0,.
16. S   x  km | k  , where m is some fixed real number.

Hint: the answer to (c) depends on whether or not m is an integer. Think of Exercise 10.
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A Summary of Chapter 5

An ordered list consisting of the numbers 1, 2, . . . , n, with each number appearing exactly once, is
called a permutation of the set 1, 2, 3, . . , n. There are n! permutations of 1, 2, 3, . . , n.
An inversion occurs in a permutation  if a number on the left is bigger than a number to its right.
A permutation  is even if it has an even number of inversions, and  is odd if it has an odd number of
inversions. The sign of , denoted sgn, is 1 if  is even, and 1 if  is odd.
A permutation  is also a bijection of the set 1, 2, 3, . . , n, and as such possesses an inverse, 1.
Permutations can be represented by a directed bipartite graph. We will use two copies of the set
1, 2, 3, . . , n, one on top of the other, to serve as our vertices. If i  j, we will have a directed
edge (an arrow) from i on the top row to j on the bottom row. An inversion occurs when two of these
edges intersect.
The graph representing 1 is the same as that of , only with the arrows reversed. Thus, the number
of inversions in  and 1 are the same, so sgn  sgn1 .
If  / is obtained from  by exchanging any two components, then sgn /   sgn.
Consequently, half of the n! permutations of 1, 2, 3, . . , n are even, and half are odd.
In this Chapter, all matrices are n  n or square. The determinant of an n  n matrix A is:

detA  |A |  
all permutations
 of 1, 2, ..., n

sgn  a1,1  a2,2    an1,n1  an,n.

detA  detA .
If A has a row or a column of zeroes, then detA  0.
If A has two proportional rows or columns, then detA  0.
If A is an upper or a lower triangular matrix, then detA  a1,1  a2,2    an,n.
In particular, if D  Diagd1, d2, . . . , dn , then detD  d1  d2    dn.
Suppose E is an elementary matrix. If E is obtained from In by:
1. multiplying row i by k  0, then detE  k.
2. exchanging row i and row j, then detE  1.
3. adding k times row i to row j, then detE  1.
Consequently, the determinant of every elementary matrix is non-zero.
Let A be an n  n matrix. Suppose B is obtained from A by:
1. multiplying row i of A by k  0. Then: detB  k  detA.
2. exchanging row i and row j of A. Then: detB  detA.
3. adding k times row i of A to row j of A. Then: detB  detA.
Analogous statements can be made by replacing the word “row” with the word “column.”
Consequently if E is the elementary matrix corresponding to the row operation performed, then
B  E  A, and so: detE  A  detE  detA.
In particular: detk  A  kn  detA.
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The determinant of A can be computed by performing row or column operations on A until we get a
triangular matrix B. The determinant of A is obtained by multiplying the determinant of B by all the
non-zero numbers k that were factored out of rows and columns using Type 1 operations, and by
1 t, where t is the total number of Type 2 operations. Type 3 operations do not affect the value of
the determinant.
Let A and B be n  n matrices. Then:
 A is invertible if and only if detA  0.
 detA  B  detA  detB  detB  A.
 For any positive integer k: detAk   detAk.
 If A is invertible, then: detA1   1/detA  detA1.

Thus, in this case, detAk   detAk for all integers k.
The determinant of the submatrix obtained from A by erasing its ith row and jth column is called the
i,j-minor of A, denoted M i,jA. The i,j-cofactor of A is the number: C i,jA  1 ij  M i,jA.
We can compute detA by a cofactor expansion along row i:

detA  a i,1C i,1  a i,2C i,2   a i,nC i,n,
or a cofactor expansion along column j: detA  a1,jC1,j  a2,jC2,j   an,jCn,j.
Determinants can be computed by using a combination of two strategies — row and/or column
operations and cofactor expansion along a row or column.
The cofactor matrix of A, denoted cof A, is the matrix whose entries are the corresponding cofactors
of each entry of A: cof A  C i,jA.
The adjugate matrix of A is the transpose of the cofactor matrix, and is written as:

adjA  cof A  C j,iA.
Let A be any n  n matrix. Then: A  adjA  detA  In.

Consequently, if A is invertible, then: A1  1
detA

adjA.

Cramer’s Rule: Let A be an invertible matrix. Then: the unique solution to the matrix equation Ax  b
has entries: x1  detA1 /detA, x2  detA2 /detA,  , xn  detAn /detA, where Ai is
obtained from A by replacing column i with b.
Let S   f1x, f2x, , fnx  Cn1I for some interval I. The Wronskian of S, WSx, is:

WSx  W f1x, f2x, , fnx 

f1x f2x  fnx
f1

/x f2
/x  fn

/x
f1

//x f2
//x  fn

//x
   

f1
n1x f2

n1x  fn
n1x

.

If S is a dependent set, then WSx  zx for all values x  I.
Thus, if WS is non-zero for at least one x  I, then S is an independent set.
As a partial converse, suppose S   f1x, f2x, , fnx  C.
If WS  zx for all x  I, then S is a linearly dependent set.
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Chapter 6
Painting the Lines:

Eigentheory, Diagonalization
and Similarity

We continue to focus on n  n or square matrices A, and analogously, on operators T : n  n.
More generally, we will extend our ideas to operators on finite dimensional vector spaces.

We will be using the determinant function to find a polynomial, called the characteristic polynomial,
which is associated to A. The roots of this polynomial, which is of degree n, are special numbers called
eigenvalues, denoted by the Greek letter . Each eigenvalue corresponds to an infinite set of non-zero
vectors called eigenvectors. These eigenvectors have special geometric properties: If v is an
eigenvector for A corresponding to , then Av  v.

Alternatively, this means that if T is the operator with standard matrix A, then Tv  v.
Eigentheory, the science of studying matrices, their eigenvalues and eigenspaces, has important
applications. We will see in Chapter 9, for example, that we can use eigentheory to determine if a set of
data points is strongly linearly correlated via a constant of proportionality:

 

v

y

x21
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3 4
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.

Eigenvectors have the major advantage in that if we knew that v is an eigenvector with associated
eigenvalue , then we can compute the matrix product Av using the much easier scalar product v.

Arguably the most important application of eigenvalues and eigenvectors is the process of
diagonalizing a square matrix, when possible. This means that if T is the linear operator of n

corresponding to A, then we can find a basis S for n so that TS is diagonal. We will see that this is
possible if and only if we can find a set S of n linearly independent eigenvectors S  v1, v2, . . . , vn
for our matrix A. In this case: TS  Diag1, 2, . . . , n , where each  i is the eigenvalue
corresponding to vi.

We know that there are an infinite number of bases for a vector space. We will explore what happens if
we perform computations using two different bases for the same space. Our observations will lead us
to the concept of similarity: two matrices that are similar, as the word implies basically represent the
same operator. They share certain properties that are intrinsic to these matrices, such as invertibility,
rank and eigenvalues. The concept of similarity will enable us to find eigenvalues and eigenvectors for
a linear operator T : V  V on an abstract vector space V.
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6.1 The Eigentheory of Square Matrices

We know that it is time-consuming and often tedious to compute the product of an n  n matrix with an
n  1 matrix: each row requires n multiplications, so there are n2 multiplications in all. Then there are
n  1 additions to perform for each row, for a total of n2  n additions. This is a total of 2n2  n
arithmetic operations, and as such we expect that the time to perform this matrix product varies directly
with n2. Thus, our computation time approximately quadruples when we double the dimension of the
matrices. This becomes a significant issue when the matrices are large, even with a modern computer.

On the other hand, multiplying an n  1 matrix by a scalar requires only n multiplications, and no
additions. Clearly this is a much faster operation, and we should try to perform a scalar product instead
of a matrix product whenever possible. This naturally leads us to the following:

Definition: Let A be an n  n matrix. We say that    (the Greek letter lambda) is an
eigenvalue of A, and a non-zero vector v  n is an eigenvector for A associated to , or
simply an eigenvector for , if:

Av  v.
In other words, if T : n  n, with T  A, then Tv is parallel to v :

 y

x21

3

1
2

3 4

v

T ( v ) =  v,  
.

.

y

x21

3

1
2

3 4

v

T (  v ) =  v,  

Examples of Possible Eigenvectors and Eigenvalues of an Operator on 2

We note that the eigenvalue  depends on the matrix A, and the eigenvector v depends on the matrix A
as well as the eigenvalue . Thus, as we shall see below, a matrix could have several different
eigenvalues, and each eigenvalue could have different eigenvectors. We will refer to the study of the
eigenvalues and eigenvectors of a matrix as Eigentheory, for the sake of brevity.

Let us see how we would go about finding such a  and v. Suppose we assume that such a  and such
a v exist. Then we must have:

Av  v  In v,

where the right side of the equation is now also a matrix product. We can now put both sides of the
equation together as:

In v  Av  0n, or

In  Av  0n.

504 Section 6.1 The Eigentheory of Square Matrices



Since we require that v  0n this equation says that we can find a non-trivial solution v to the
homogeneous system In  Av  0n. By our Really Big Theorem on Invertible Matrices in Chapter
2, this is possible if and only if In  A is a non-invertible matrix (otherwise, we would have the
unique trivial solution v  0n. But we saw in the previous Chapter that a matrix is non-invertible if
and only if its determinant is zero. Thus, we have:

Definition/Theorem: Let A be an n  n matrix. Then we can find a real number  and a
non-zero vector v  n such that:

Av  v
if and only if detIn  A  0.
The equation above is called the characteristic equation of the matrix A.
The determinant in this equation is a polynomial whose highest term is n, and it is called the
characteristic polynomial of A, denoted pA, or p:

pA  p  detIn  A.

Thus, in order to find the eigenvalues of a matrix, we need to find the real roots of the characteristic
polynomial p. In order to find the eigenvectors associated to , we must find all the non-trivial
solutions to the system of equations:

In  Av  0n.
This means we find the non-zero vectors in the nullspace of In  A. However, we can also use the
system:

A  In v  0n

instead, because all that we have to do to compute this safely is to subtract  along the diagonal of A.
The rest of the entries of A are unchanged.
The only part of this Definition/Theorem that needs to be proven is that n is the highest term of this
polynomial. Recall from the definition of the determinant that each of the n! terms in the determinant is
the product of a factor from each row and column, multiplied by the sign of the permutation associated
with this product. In particular,   a i,i is on the main diagonal, for i  1. . n, and thus the term
corresponding to the main diagonal is sgn  a1,1     a2,2       an,n .

However, the permutation associated to this product is 1, 2, . . . , n, which has no inversions, and thus
sgn  1. Moreover, any other term will have fewer than n of such factors   a i,i, and thus will
contribute a term of degree strictly less than n. Thus, n is the highest term appearing in the
characteristic polynomial.

Let us demonstrate the Eigentheory of a 2  2 matrix:

Example: Let A 
37 21
70 40

. The characteristic polynomial is:
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p  detI2  A

 det
 0
0 


37 21
70 40


  37 21

70   40

   37  40  2170  2  3  10    2  5.
Thus, the eigenvalues are   2 and 5. Let us find the eigenvectors, one at a time, for each of these
two eigenvalues. For   2, we need to find the nullspace of the matrix:

A  2  I2 
37  2 21
70 40  2


35 21
70 42

, with rref
1  3

5
0 0

.

Thus, y is free, and we get:

v  3
5 t, t  t

5 3, 5, for some t  , t  0.

as our eigenvectors. Recall that we are only interested in the non-zero members of the nullspace. We
can check that these are indeed eigenvectors by directly multiplying A by the column vector:

Av 
37 21
70 40

3
5 t

t


 6
5 t

2t
 2

3
5 t

t
,

and thus v is an eigenvector for   2. Similarly, for   5, we have to find the nullspace of:

A  5  I2 
37  5 21
70 40  5


42 21
70 35

, with rref
1  1

2
0 0

.

Again, y is free, and the eigenvectors are thus of the form:

v  1
2 t, t  1

2 t1, 2, for some t  , t  0.

We can check that these are indeed eigenvectors as before:

Av 
37 21
70 40

1
2 t

t


5
2 t

5t
 5

1
2 t

t
,

and thus 1
2 t, t is indeed an eigenvector for   5. 

The 2  2 matrix that we looked at had integer roots. Suppose for simplicity that A is any 2  2 matrix
with rational (possibly integer) entries. The characteristic polynomial p  2  b  c will have
rational coefficients. Let   b2  4c be its discriminant. If   0, the eigenvalues will be imaginary.
We will not deal with imaginary eigenvalues for now, but we will deal with them in Chapter 8. If
  0, there will be a unique (double) root, and this eigenvalue will be rational. If   0, we will get
two distinct real eigenvalues, and they will be rational if and only if  is a perfect square.
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Eigenspaces

We said in the definition that an eigenvector v cannot be the zero vector. However, we also know that:

A0n  0n    0n,

for any n  n matrix A and any scalar . In other words, 0n behaves somewhat like a “trivial
eigenvector.” For this reason, we give it an honorary membership in this set, but we will continue to
say that the zero vector is not an eigenvector of A :

Definition/Theorem — Eigenspaces:
Let A be an n  n matrix and   . We define the eigenspace of A associated to , denoted
EigA,, to be:

EigA,  v  n |Av  v.

Notice that A0n  0n  0n, so 0n  EigA,.
If  is an actual eigenvalue for A, then EigA,  nullspaceA  In , which is a non-zero
subspace of n containing all the eigenvectors of A associated to , and thus its dimension is
strictly positive.
If  is not an eigenvalue of A, then EigA, consists only of 0n. In this case, we can refer to
EigA, as a trivial eigenspace.
Thus, we can say that  is an eigenvalue of A if and only if the eigenspace EigA, is at
least 1-dimensional.

Proof: First of all, EigA, is a non-empty set, because 0n  EigA,, as seen above. If  is an
actual eigenvalue for A, then A has at least one (non-zero!) eigenvector v associated to . Thus
EigA, contains at least one non-zero vector, so its dimension is at least 1.
Now, we have to show that EigA, is closed under vector addition and scalar multiplication:
Let v1 and v2 be two eigenvectors for A associated to . This means that:

Av1  v1 and Av2  v2.
Thus we have:

Av1  v2   Av1  Av2  v1  v2  v1  v2 ,

and thus v1  v2 is also an eigenvector for A associated to  (or possibly the zero vector, but this is still
a member of EigA,). Thus EigA, is closed under vector addition. Similarly:

Ak  v1   k  Av1   k  v1    kv1 .

Thus, k  v1 is an eigenvector for A associated to  (or it is the zero vector). Thus EigA, is a
subspace of n.

Example: We saw in the previous Example that the eigenvalues of:

A 
37 21
70 40

are   2 and 5. We can write the associated eigenspaces in terms of the eigenvectors that we
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computed above:

EigA,2  Span3, 5, and

EigA, 5  Span1, 2,

and thus each eigenspace is 1-dimensional. 

Eigentheory for Triangular Matrices

We saw in Section 5.2 that the easiest non-trivial matrices for which we can find the determinant are
the triangular matrices. Similarly, we can find the characteristic polynomial, as well as the eigenvalues
of these special matrices, with hardly any effort:

Theorem: Let A be an upper or lower triangular n  n matrix, and suppose the entries along
the main diagonal are c1, c2, . . . , cn. Then: the characteristic polynomial of A is:

p    c1   c2   cn ,

and therefore the eigenvalues are precisely c1, c2, . . . , cn. Moreover, if:

D  Diagd1, d2, . . . , dn 

is a diagonal matrix, then for every i  1n: ei is an eigenvector for d i.

The proof is left as an Exercise.

Examples: Consider the lower triangular matrix A 

4/3 0 0
22/3 7/3 0
10/3 5/3 4/3

The characteristic polynomial of A is:

p    4
3   7

3   4
3    4

3
2
  7

3 ,

and the eigenvalues are indeed   4/3 and 7/3.

Let us find the eigenvectors associated to each eigenvalue. We will need the nullspaces of:

A  4
3 I3 

0 0 0
22/3 11/3 0
10/3 5/3 0

, with rref
1  1

2 0

0 0 0
0 0 0

, and

A  7
3 I3 

11/3 0 0
22/3 0 0
10/3 5/3 11/3

, with rref

1 0 0

0 1 11
5

0 0 0

.

We can see from the rrefs that EigA, 4/3  Span 1, 2, 0, 0, 0, 1, which is a 2-dimensional
subspace, and EigA,7/3  Span0,11, 5, which is a 1-dimensional subspace.
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Now, suppose we change A by changing 22/3 to 23/3:

A1 

4/3 0 0
23/3 7/3 0
10/3 5/3 4/3

Since we did not change any of the diagonal entries, the characteristic polynomial and the eigenvalues
are exactly the same as before. Let us study the eigenspaces:

A1  4
3 I3 

0 0 0
23/3 11/3 0
10/3 5/3 0

, with rref
1 0 0
0 1 0
0 0 0

, and

A1  7
3 I3 

11/3 0 0
23/3 0 0
10/3 5/3 11/3

, with rref

1 0 0

0 1 11
5

0 0 0

.

Notice that the rref is the same for   7/3, and so that eigenspace is also the same as before.
However, the rref for   4/3 is now different, with only one free variable x3. Thus,
EigA1, 4/3  Span0, 0, 1 is only 1-dimensional.

Let us conclude this Section with a Theorem that is almost obvious, but it still deserves to be stated. Its
proof will be left as an Exercise.

Theorem: Suppose that 1 and 2 are two distinct eigenvalues for A. Then:

EigA,1   EigA,2   0n .

In other words, an eigenvector for A belongs to exactly one eigenspace.

6.1 Section Summary

Let A be an n  n matrix. We say that  is an eigenvalue of A, and v is an eigenvector for A associated
to , or simply an eigenvector for , if Av  v, where v is a non-zero vector of n.

Let A be an n  n matrix. Then we can find a real number  and a non-zero vector v  n such that
Av  v if and only if: detIn  A  0.
This equation is the characteristic equation of the matrix A. The determinant above is a polynomial
whose highest term is n, called the characteristic polynomial of A, and denoted pA or just p.
If   , we define the eigenspace of A associated to , denoted EigA,, to be:

EigA,  v  n | Av  v  nullspaceA  In .

This set includes 0n for any real number . If  is an actual eigenvalue for A, then EigA, is a
non-zero subspace of n. It contains all the eigenvectors of A associated to , and thus, its dimension
is strictly positive. If  is not an eigenvalue of A, then EigA, consists only of the zero vector. In this
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case, we can refer to EigA, as a trivial eigenspace.
Thus,  is an eigenvalue of A if and only if the eigenspace EigA, is at least 1-dimensional.
Let A be an upper or lower triangular n  n matrix, and suppose the entries along the main diagonal
are c1, c2, . . . , cn. Then: the characteristic polynomial of A is: p    c1   c2   cn .
Thus, the eigenvalues are precisely c1, c2, . . . , cn. Moreover, if D  Diagd1, d2, . . . , dn  is a
diagonal matrix, then for every i  1n: ei is an eigenvector for d i.
Suppose that 1 and 2 are two distinct eigenvalues for A. Then: EigA,1   EigA,2   0n .

6.1 Exercises

For Exercises 1 to 15: For each of the following matrices: (a) find the characteristic polynomial, (b)
find the eigenvalues, (c) find a basis for each eigenspace consisting of vectors with integer coefficients,
and (d) find the dimension of each eigenspace:

1.
8 10
5 7

2.
5 4
20 13

3.
8 6
6 3

4.
61 84
42 58

5.
3 5
9 3

6.
94 245
42 109

7.
5 4 7
0 2 3
0 0 4

8.
4 0 0
1 7 0

3 6 2

9.
5 3 6

0 0 7
0 0 8

10.

3 3 15 12
0 2 5 4
0 0 3 1
0 0 0 4

11.

2 0 0 0
4 3 0 0

8 10 2 0
24 30 15 3

12.

5 0 0 0
7 3 0 0

21 24 5 0
14 16 0 5

Note: for Exercises 13 to 15, follow the same instructions as above, but we warn that you should
follow exactly the same algorithm that you have been using. DO NOT clear the denominators before
performing the algorithm. Deal with the fractions properly.

13.
43
9

49
9

 28
9  34

9
14.

1/3 5/3 2/3
0 4/3 1/3
0 0 2/3

15.

5/2 7/2 1/2 0
0 0 9/2 7/2
0 0 3/2 5/2
0 0 0 1/2

For Exercises 16 to 23: In each item, you are given two or three matrices that are almost equal to
each other. For each matrix, follow the same instructions as above, and write down an observation as
to how the eigenvalues and/or eigenvectors differ among the matrices in each item. Use technology for
Exercise 19 onwards, if allowed by your instructor.
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16. a.
0 9
4 0

b.
0 9
4 0

17. a.
3 15 6
0 2 2
0 0 3

b.
3 14 6
0 2 2
0 0 3

18. a.
7 0 0
3 2 0
6 18 7

b.
7 0 0
3 2 0
6 18 7

19. a.

2 10 15 4
0 3 7 21
0 0 2 15
0 0 0 3

b.

2 10 14 4
0 3 7 21
0 0 2 15
0 0 0 3

c.

2 10 14 4
0 3 7 20
0 0 2 15
0 0 0 3

20. a.

2 10 8 16
0 3 2 4
0 0 2 1
0 0 0 2

b.

2 20 8 16
0 3 2 4
0 0 2 1
0 0 0 2

c.

2 20 8 16
0 3 2 4
0 0 2 0
0 0 0 2

21. a.

1 4 12 36 80
0 3 6 18 45
0 0 1 6 15
0 0 0 3 5
0 0 0 0 1

b.

1 4 12 36 90
0 3 6 18 45
0 0 1 6 15
0 0 0 3 5
0 0 0 0 1

c.

1 4 12 40 90
0 3 6 20 45
0 0 1 6 15
0 0 0 3 5
0 0 0 0 1

22. a.
3 0 0

3  2 2 0

5 5 3

b.
3 0 0

3  2 2 0

4 5 3

23. a.
32 0 0

6  4 2 0
1  32

b.
32 0 0

6  4 2 0
2  32
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24. Let A 
8 10
5 7

, be the matrix from Exercise 1.

a. Find A.
b. Find the characteristic polynomial for A.
c. Is this the same characteristic polynomial as that of A?
d. Describe the eigenvectors for each of the eigenvalues for A.
e. Compare your answers to (d) with your eigenvectors for A. Are they the same or different?

25. Prove in general that A and A have the same characteristic polynomial: pA  pA.
Thus, they have the same eigenvalues. Hint: what word best describes the matrix In, as it relates
to this Exercise? The deeper relationship between the corresponding eigenspaces will be
explained in Chapter 9.

26. Let A be an upper or lower triangular n  n matrix, and suppose the entries along the main
diagonal are c1, c2, . . . , cn. Prove that the characteristic polynomial of A is:

p    c1   c2   cn ,

and therefore the eigenvalues are c1, c2, . . . , cn.
27. Prove that if D  Diagd1, d2, . . . , dn  is a diagonal matrix with distinct diagonal entries d i, then

for every i  1n: EigD, d i   Spanei.
28. Prove that e1 is always an eigenvector of an upper triangular matrix A. Describe the eigenvalue it

is associated to (where do you find it?).
29. State and prove an analogous theorem for lower triangular matrices similar to the previous

Exercise. Hint: look at the last Example in this Section.
30. Suppose that B  kA, for some scalar k, and A is a square matrix. Prove that if v is an

eigenvector for A with corresponding eigenvalue , then v is also an eigenvector for B. What is
the corresponding eigenvalue?

31. The objective of this Exercise is to show that the rotation matrix:

R 
cos  sin
sin cos

does not have any real eigenvalues, for any value of  except when   n, where n is an integer.
a. Find the characteristic polynomial of this matrix.
b. Show that the discriminant of the characteristic equation is negative, unless   n for

some integer n. If so, show that there are exactly two different matrices R, and find their
eigenvalues.

c. Now, argue geometrically that the rotation matrix can only have real eigenvalues if   n
for some integer n. Hint: draw the effect of R on an eigenvector.

32. In contrast, the objective of this Exercise is to show that the matrix:

A 
cos sin

sin cos

always has real eigenvalues.
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a. Show that A  DR, where R is the rotation matrix from the previous Exercise, and D is a
diagonal matrix. What is D?

b. Based on your answer to (a), explain in words the geometric action of A. Hint: a matrix
product is equivalent to a composition of two transformations.

c. Find the characteristic polynomial of A.
d. Show that the eigenvalues of A do not depend on .
e. Find the general eigenvector for each eigenvalue (these do depend on .
f. Use the half angle formulas:

tan 
2 

1  cos
sin


sin

1  cos

to show that the eigenvectors can be expressed in terms of cos/2 and sin/2.
g. Use your answers to (b) and (f) to explain geometrically why we get the eigenvectors in (e)

for each eigenvalue. Draw a picture for each eigenvalue.
h. Do you notice something special about the two sets of eigenvectors?
i. Assemble the matrix A for   cos15/13 and find the corresponding eigenvectors,

expressed with integer coefficients.
j. Repeat steps (a) to (i) for the matrix:

B 
cos sin
sin cos

.

Warning: Part (a) should be slightly modified.
33. Suppose that 1 and 2 are two distinct eigenvalues for A. Prove that:

EigA,1   EigA,2   0n .

34. Matrices in Block Diagonal Form: Suppose that A1, A2, , Ak are all square matrices, not
necessarily of the same size, with k  2. We defined the direct sum of these matrices:

A  A1  A2   Ak

in the Exercises of Section 2.8.
a. Prove that: pA  pA1  pA2    pAk. Hint: use Exercise 15 in Section 5.3

regarding the determinant of matrices in block diagonal form.
b. Now, suppose that:

A1 
23 40
8 13

, and A2 

13 16 16
8 5 8
16 16 19

, with

EigA1, 3  Span 2, 1 ,
EigA1, 7  Span 5, 2 ,
EigA2, 3  Span 1, 1, 0, 1, 0, 1 , and

EigA2,5  Span 1, 2, 1.

Find the eigenvalues of A  A1  A2 and find a basis for each eigenspace. Hint/Warning:
A1 and A2 have a common eigenvalue.
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6.2 The Geometry of Eigentheory and Computational Techniques

The concepts of an eigenvalue and an eigenvector obviously have geometric implications: v is an
eigenvector for an operator T if and only if Tv is parallel to v. We begin this section by seeing
instances when eigentheory naturally appears from the geometric description of an operator.

The Kernel as an Eigenspace

Although 0n is not allowed to be an eigenvector, the scalar 0 is allowed to be an eigenvalue. Notice,
though, that   0 is an eigenvalue for A if and only if there exists a non-zero vector v such that:

Av    v  0  v  0n,
or in other words, if and only if A has a non-zero kernel. We know from The Really Big Theorem on
Invertibility in Chapter 2 that for a square matrix, this is equivalent to A being not invertible. The
contrapositive of this statement thus tells us that   0 is not an eigenvalue for A if and only if A is
invertible. Together with one of our main results in Chapter 5 that A is invertible if and only if detA
is non-zero, we can now formally add two more conditions to our Really Big Theorem:

Theorem — Addenda to the Really Big Theorem on Invertibility:
Let A be an n  n matrix. Then, the condition that A is invertible is equivalent to the
following:
23. detA is not 0.
24.   0 is not an eigenvalue for A.

Example: Let A 

1 2 2
2 2 1
1 0 3

.

The third row is the sum of the first two rows, and therefore this matrix is not invertible. Let us find its
characteristic polynomial and verify:

p  detI3  A  det
 0 0
0  0
0 0 


1 2 2

2 2 1
1 0 3



  1 2 2
2   2 1
1 0   3

   1  2  3  2  0  2  2  4  3  0
 3  42    6  2  2  4  4  12
 3  42  3    1  3.

Thus,   0 is indeed an eigenvalue, along with 1 and 3. The rref of A is:
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1 0 3

0 1  5
2

0 0 0

,

and from this we can see that:

EigA, 0  nullspaceA  Span6, 5, 2
A basis for the other two eigenspaces can be found, as usual, by looking at the nullspace of A  I3.

We repeat that   0 is allowable as an eigenvalue, but v  0n is not allowable as an eigenvector,
even though it is a member of every eigenspace.

Eigentheory for Geometric Operators

The scaling operators Sk have matrices k  In. The characteristic polynomial of these matrices are
thus:

p  det  In  k  In    kn,
so   k is the only eigenvalue. But then, for all v  n:

Skv  kv,

and so all v  n are eigenvectors for Sk (except the zero vector), that is:

Eigk  In, k  n.
The shear operators in 2 have matrices:

A 
1 a
0 1

or B 
1 0
b 1

.

Recall that the first kind are horizontal shears and the second kind are vertical shears. We assume that
a and b are not zero, otherwise we get the identity matrix (which is an example of a scaling operator
with   1. Both of these matrices have characteristic polynomial:

p    12,
and so   1 is the only eigenvalue for either kind of shear operator. But then:

A  1  I2 
0 a
0 0

or
0 0
b 0

.

The rref of these matrices are, respectively:

0 1
0 0

and
1 0
0 0

, thus

EigA, 1  Span0, 1  Span j , and

EigB, 1  Span1, 0  Span i .
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We can check that:

1 a
0 1

x
0


x
0

and
1 0
b 1

0
y


0
y

.

For a horizontal shear, we indeed see from the action on the basic box that a vector on the x-axis does
not change, whereas for a vertical shear, a vector on the y-axis does not change:

 

x

y

1

1 T

x

y

1

1T

x

y

1

1

.

x

y

1

1
or

The Effect of a Shear Operator on the Basic Box

Our computations above show that there are no other eigenvectors for shear operators.
Now, let us think of a plane  and its normal line L, and the associated projection and reflection
operators:

 
v

refl ( v )

n



proj ( v )

proj L ( v )

proj ( v )

proj L ( v )
v

 proj L ( v )

refl ( v )

 proj L ( v )

L

.

.

V
.

Projections Onto and Reflections Across a Plane 

If a vector v is on , then its projection onto as well as its reflection across  are already itself:
projv  v and reflv  v.

In other words, v is an eigenvector for both operators, with eigenvalue 1 in both cases. Conversely, any
vector u which is not on  will be projected to a vector on , and its reflection will certainly not be the
same vector u either. Thus:

Eig proj , 1    Eig refl , 1.
On the other hand, if w is on L, then its projection onto  will be the zero vector, and its reflection
across  will be its negative:

projw  03 and reflw  w.

Thus, w is an eigenvector for proj with eigenvalue 0 (in other words, w is in the nullspace of proj
and w is an eigenvector for refl with eigenvalue 1. Conversely, a vector u which is not on L will
have a non-zero projection onto , and its reflection across  will not be in the exact opposite
direction as u. Thus:
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Eig proj , 0  L  Eig refl ,1.
We leave it as an Exercise to see the effect of projL and reflL on these two kinds of vectors. Similar
ideas can be applied to projections onto a line L in 2 as well as to reflections across L. Along with
these operators, you will also investigate in the Exercises the eigentheory of rotation matrices in 2,
and some of their related matrices.

More generally, the effect of a 2  2 matrix with two distinct eigenspaces can easily be visualized using
a vector from each eigenspace.

Example: Let A 
9

26
5

13
 6

13
43
26

. Its characteristic polynomial is:

p 
  9

26  5
13

6
13   43

26
   9

26   43
26  5

13
6

13

 2  2  3
4  1

4 2  12  3.

Thus, the eigenvalues are 1/2 and 3/2. For   1/2:

A  1
2 I2 

2
13

5
13

 6
13

15
13

, with rref R1 
1  5

2
0 0

.

Thus, EigA, 1/2  Span5, 2. For   3/2:

A  3
2 I2 

 15
13

5
13

 6
13

2
13

, with rref R2 
1  1

3
0 0

.

Thus, EigA, 3/2  Span1, 3. We can therefore visualize the effect of the operator T
corresponding to A using the parallelogram formed by the two basis vectors 5, 2 and 1, 3:

 

y

x21

3

1
2

3 4

.

y

21

3

1
2

3 4



T 


T 

5 x5
.

T

Visualizing the Effect of an Operator Through its Eigenvectors

Notice that the corresponding sides of the parallelogram are parallel to each other, although the
proportions are different.
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Finding the eigenvalues of a non-triangular 3  3 matrix or bigger can be a daunting task, unless one
can use mathematical software or a graphing calculator. We will need to find the roots of a cubic or
higher-degree polynomial, which may be irrational or imaginary. However, if the entries of the matrix
are integers, hopefully there are enough integer and rational roots so that any irrational root will involve
only a square root. Let us now look at Theorems and techniques that will help us to find eigenvalues:

The Integer and Rational Roots Theorems

Our basic tools are two Theorems that we usually see in Precalculus:

Theorem — The Integer Roots Theorem:
Let px  xn  cn1xn1   c1x  c0 be a polynomial with integer coefficients, and
c0  0. Then, all the rational roots of px are in fact integers, and if x  c is an integer root
of px, then c is a factor of the constant coefficient c0.

Note: If c0  0, then we can factor px in the form xk  qx for some positive power k, and the
constant coefficient of qx is now non-zero. Thus we can apply the Integer Roots Theorem to qx.

If we have the misfortune of having a matrix with entries that are non-integer rational numbers (i.e.
fractions), the characteristic polynomial will still have highest term n, but some of the coefficients of
the lower powers of  may be fractions. To find the roots of such a polynomial, we would normally
“clear denominators” by multiplying the polynomial by the least common denominator of the
coefficients. This will give us a polynomial that will now have integer coefficients. The roots of this
polynomial will be the same as the roots of original polynomial p. The highest term, though, will
now have a coefficient that is not 1. To find the roots of such a polynomial, we can use:

Theorem — The Rational Roots Theorem:
Let qx  cnxn  cn1xn1   c1x  c0 be a polynomial with integer coefficients, with
c0  0. Then, all the rational roots of qx are of the form x  c/d, where c is a factor of the
constant coefficient c0 and d is a factor of the leading coefficient cn.

These two Theorems give us possible candidates for the integer and rational roots of the characteristic
polynomial. It is still up to us to perform the tedious task of finding the actual roots, either by plugging
them directly into p or using synthetic division, a technique that we also see in precalculus. We can
likewise use the following Theorem for some additional assistance:

Theorem — Descartes’ Rule of Signs:
Let px be a polynomial with real coefficients. Then: the number of positive roots of px is
equal to the number of sign changes in consecutive coefficients of px, or it is less than this
number by an even integer. Similarly, the number of negative roots of px is the number of
sign changes in consecutive coefficients of px, or it is less than this number by an even
integer.

In any case, if we are fortunate enough to find a root quickly, say   c, then we can factor out   c
from the characteristic polynomial, resulting in a polynomial of degree n  1. We repeat this process of
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finding roots until we are down to a quadratic factor, at which point we use the quadratic formula or
factoring techniques to find the remaining roots.

Example: Let A 

13 8 8
20 15 8

4 4 3

. First we find the characteristic polynomial:

detI3  A 
  13 8 8

20   15 8
4 4   3

   13  15  3  884  8204
 8  154    1384  820  3

 3  52  189  585  256  640  32  480  32  416  160  480
 3  52  29  105,

with a little work on a calculator. Let us hope that there are integer roots for p, and try the factors of
105  3  5  7. Thus, even though 105 is a big number, it has a small number of factors, namely:

 1, 3, 5, 7, 15, 21, 35, 105.

Notice also that p has two sign changes, and p  3  52  29  105 has only one sign
change, and therefore we are guaranteed a unique negative real root. We keep our fingers crossed
that this negative root is an integer, as we sequentially try the negative factors of 105 :

p1  1  5  29  105  128 No.
p3  27  45  87  105  120 Try again.
p5  125  125  145  105  0 Success!

Now, we divide out   5 from p, either via long division or synthetic division, and get a quadratic,
thus:

3  52  29  105    52  10  21.

The quadratic above now easily factors as   3  7, and so:

p    5  3  7.

Thus, the eigenvalues are:   5, 3 and 7.

Once the eigenvalues are found, it is now a straightforward task to find the corresponding eigenvectors
using the Gauss-Jordan algorithm, as seen in the previous Section. We leave it as an Exercise to find
the eigenvectors of the matrix above.
We have some further remarks about this Example. You may gamble and try to look for the positive
roots instead, but unfortunately Descartes’ Rule of Sign says that we have either 2 or 0 positive roots,
and thus we are not guaranteed in advance that we will find positive roots, much less positive integer
roots. The gamble would have paid off in this case because   3 is an eigenvalue, and we would have
discovered it next after failing with   1.
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Notice also that we were not guaranteed either that the unique negative root would be an integer. Since
p1 and p3 are both positive, if we reach a point where p is negative for some integer
candidate   3, we would have a sign change without hitting an integer root. Thus, this unique
negative root would have been irrational. If this happens, we should try to find the positive roots, and
hope that they exist, and hope at least one is an integer. When all else fail, most graphing calculators
and mathematical software can easily approximate the roots of polynomials. Some can also find an
approximate basis for eigenspaces.

Here is one thing we learned in Calculus, though, that might give us some comfort:

Theorem: Let px be a polynomial with odd degree. Then px has at least one real root.

Thus, all 3  3 matrices, all 5  5 matrices, etc., are guaranteed to have at least one real eigenvalue.
Unfortunately, this still does not guarantee us that the eigenvalue is an integer or a rational number.

Example: Consider the matrix:

A 

3 8 1
8 5 0
1 0 2

.

With a little bit of work, we will find that the characteristic polynomial of A is:

p  3  102  34  103.
Descartes’ Rule of Signs tells us that there are two or zero positive roots for p, and thus we are not
guaranteed a positive root. However:

p  3  102  34  103,
and so Descartes’ Rule now tells us that there is exactly one negative root, since p has only one
sign change. Unfortunately, 103 is a prime number, and so the only possible rational roots for p are
the integer roots 1 and 103. Directly plugging in 1 and 103 yield 126 and 1195212,
respectively, so neither one of them is a root. This tells us that the negative root must be irrational.
However, since there is a sign change between the values of p1 and p103, the Intermediate
Value Theorem of Calculus tells us that there must be a zero for p somewhere between 103 and
1, and our instincts should tell us that this root should be much closer to 1 than 103, judging by
their values under p. Let us try to narrow the gap a bit:

p2  123,
p3  88,
p4  15, and at last:
p5  102.

Thus, our irrational root is in the interval 5,4. To refine our root further, we can apply Newton’s
Method, which needs the derivative, p /  32  20  34. Recall that this method begins with an
initial guess which we will call x0, and the next guess is inductively defined to be:

xk1  xk 
pxk 
p /xk 

.
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Let us use x0  4 as our initial guess, since 15 is closer to zero than 102. We will stop Newton’s
Method when the first four digits after the decimal point do not change between xk and xk1. We get:

x1  4  p4
p /4

 4  15
94

 4. 15957,

x2  4. 15957  p4. 15957
p /4. 15957

 4. 15957  0. 5638199325
101. 0974678

 4. 153993, and

x3  4. 153993  p4. 153993
p /4. 153993

 4. 153993  0. 0006983350646
100. 8468335

 4. 153986075.

Rounding this off to 4. 153986, we verify that p4. 153986  7. 59167  106, so it would appear
that we have an excellent approximation for our negative root. We can now use synthetic division to
factor out   4. 153986 from p:

4. 153986  1 10 34 103
4. 153986 58. 79546 102. 9999937

                        
1 14. 153986 24. 79546  0

The bottom line tells us that other factor of p is the approximate quadratic:

2  14. 153986  24. 79546.

Applying the Quadratic Formula, we get our two other approximate roots:

  2. 048238689 and   12. 10574731.

Thus, all three roots are in fact irrational. Of course, a graphing calculator would also find these three
approximate roots for us, with much less effort.
We should point out that since these are not exact values for , extra care must be given in applying
the Gauss Jordan Algorithm to find the eigenspaces. Recall that each matrix A    I3 must not be
invertible, that is, the correct rref should yield at least one row of zeroes. Let us illustrate for
  2. 048239. As usual, we first find A  2. 048239I3:

3  2. 048239 8 1
8 5  2. 048239 0
1 0 2  2. 048239


0. 951761 8 1

8 2. 951761 0
1 0 0. 048239

.

If we were to directly use technology at this point to find the rref of this matrix, we would be
disappointed to get the identity matrix I3: this is both wrong and useless. Let us find the correct
approximate rref intelligently, step by step. Let us swap the 1st and 3rd row to get a leading 1 in the
first column (after dividing row 1 by 1), and clear out the other two entries of column 1, as usual:
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1 0 0. 048239
8 2. 951761 0

0. 951761 8 1



1 0 0. 048239
0 2. 951761 0. 385912
0 8 1. 045912

.

To get a row of zeroes, the 2nd and 3rd row should be parallel to each other. We can easily verify this
by dividing each row by the first non-zero entry (in other words, the corresponding entry in column 2):



1 0 0. 048239
0 1 0. 1307395822
0 1 0. 130739

.

The 2nd and 3rd row are now approximately equal. If the  we obtained were exact, the two rows
should be exactly equal. This gives us the more useful approximate rref:

R 
1 0 0. 048239
0 1 0. 130739
0 0 0

.

Thus, our eigenspace is approximately:
EigA, 2. 048239  Span0. 048239, 0. 130739, 1.

We can check that:

3 8 1
8 5 0
1 0 2

0. 048239
0. 130739

1


0. 098805

0. 267783
2. 048239

, whereas

2. 048239
0. 048239

0. 130739
1


0. 098805

0. 2677847
2. 048239

.

We can apply these ideas to find an approximate basis for the other two eigenspaces:

EigA,4. 153986  Span6. 153986,5. 3781913, 1 and
EigA, 12. 105747  Span10. 105747,11. 37755, 1. 

This last Example illustrates an important point: technology can be very useful in performing messy
computations for us, but their precision is limited. Their use could yield misleading or outright false
answers. We need to intelligently interpret whatever results we obtain from them, and re-do our
computations if necessary to account for the lack of precision.
We also remark that the matrix in the previous Example is symmetric, and it will be stated in Chapter
7 and proven in Chapter 8 that all the eigenvalues of a symmetric matrix are real, and thus our efforts
to find their eigenspaces will not be in vain.
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6.2 Section Summary

Let A be an n  n matrix. Then A is invertible if and only if   0 is not an eigenvalue for A.
We can try to find integer or rational eigenvalues by using the Integer Roots Theorem or the Rational
Roots Theorem, and Descartes’ Rule of Signs. Technology can help us approximate irrational
eigenvalues and a basis for the corresponding eigenspaces.
The Integer Roots Theorem: Let px  xn  cn1xn1   c1x  c0 be a polynomial with integer
coefficients, with c0 non-zero. Then, all the rational roots of px are in fact integers, and if x  c is
an integer root of px, then c is a factor of the constant coefficient c0.
The Rational Roots Theorem: Let qx  cnxn  cn1xn1   c1x  c0 be a polynomial with
integer coefficients, with c0  0. Then, all the rational roots of qx are of the form x  c/d, where c
is a factor of the constant coefficient c0 and d is a factor of the leading coefficient cn.
Descartes’ Rule of Signs: Let px be a polynomial with real coefficients. Then: the number of
positive roots of px is equal to the number of sign changes in consecutive coefficients of px, or less
than this number by an even integer; the number of negative roots of px is the number of sign
changes in consecutive coefficients of px, or less than this number by an even integer.

6.2 Exercises

1. Find a basis for the eigenspaces of each of the eigenvalues   5, 3 and 7 for the matrix that is
in the 3rd Example of this Section.

2. We saw that if A only has integer entries, then its characteristic polynomial p has only integer
coefficients. According to the Integer Roots Theorem, the factors of the constant coefficient c0 (if
c0  0) are the only possible candidates for the integer roots of p.
Prove that if c0 factors as:

c0  p1
n1  p2

n2    pk
nk

where p1, p2, . . . , pk are the distinct prime factors of c0, then there are exactly:

2n1  1n2  1. . . nk  1

distinct factors of c0. Hint: What are the possible choices for the power of p i that appears in a
factor? Don’t forget that you can have positive and negative factors.

For Exercises 3 to 5: Use the previous Exercise to get a count of the number of candidates
for the integer roots of the following polynomials, list all of them, then factor the polynomials
completely and find their roots:

3. p  3  82  3  90

4. p  3  2  30  72

5. p  3  112  33  15

For Exercises 6 to 29: Find the characteristic polynomial, eigenvalues, and a basis for each
eigenspace (for the real eigenvalues only), and the dimension of each eigenspace, of the following
matrices. Warning: irrational eigenvalues will appear in Exercise 9, and you will need the Rational
Roots Theorem in Exercise 11, 18, 19 and 20.
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6.
2 0 1
0 5 0
1 0 2

7.
4 2 0
0 3 0
1 5 3

8.
5 1 1
1 5 1
1 1 5

9.
3 1 0
2 3 0

0 0 5

10.
6 2 12
3 5 6
8 2 14

11.

19
4 2 2

5  9
4 2

7
2 2  3

4

12.
3 4 4
21 17 21
15 10 14

13.
11 6 12
15 10 12
15 6 16

14.
5 6 6
12 10 9
9 6 10

15.
29 64 32
16 35 16
8 16 5

16.
13 11 11
44 42 44
22 22 24

17.
19 16 16
72 53 48
48 32 27

18.

17 22
3 11

55
3 6 11

110
3

44
3  70

3

19.

 97
4 75 15

 25
2

153
4

15
2

25 75  57
4

20.

 32
5 14 21

5

7 73
5

21
5

14 28  39
5

21.

0 0 3 0
0 3 0 0
3 0 0 4
0 0 4 0

22.

0 0 0 7
0 0 7 0
0 7 0 0
7 0 0 0

23.

0 3 0 7
3 0 7 0
0 7 0 3
7 0 3 0

24.

5 9 6 9
8 8 24 5
0 3 3 3
8 10 24 7

25.

68 80 80 30
32 39 37 15
32 37 39 15
20 25 25 13

26.

25 30 14 2
14 12 7 1
70 75 38 5
14 8 7 3

27.

26 42 14 42
14 23 7 21
42 63 23 63
14 21 7 19

28.

12 11 27 10
6 7 13 5
22 17 43 15
50 39 95 33

29.

2 0 0 0 2
0 2 0 2 0
0 0 2 0 0
0 2 0 2 0
2 0 0 0 2
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For Exercises (30) to (32): The following symmetric matrices have irrational eigenvalues, but each
eigenspace is only 1-dimensional. Find p and the eigenvalues, correct to 4 decimal places. Find an
approximate basis for each eigenspace, also correct to 4 decimal places. You may use technology, but
heed the warnings in the final Example of this Section with regards to finding the approximate rref of
A  In.

30.
1 3 2
3 0 4
2 4 2

31.
1 1 3
1 2 0
3 0 5

32.

2 1 0 1
1 3 2 1
0 2 1 0
1 1 0 3

33. Suppose that A is an n  n matrix. Prove that if v is an eigenvector of A associated to the
eigenvalue , and k  0, then k  v is again an eigenvector of A associated to .

34. Suppose that A is an n  n matrix. Prove that if  is an eigenvalue for A with associated
eigenvector v, then k is an eigenvalue for Ak for any positive integer k, with associated
eigenvector v as well. Hint: use Induction.

35. Suppose that A is an invertible n  n matrix.

a. Prove that if  is an eigenvalue for A with associated eigenvector v, then 1/ is an
eigenvalue for A1, with associated eigenvector v as well. As part of your proof, explain
why the expression 1/ makes sense if A is invertible.

b. Use a to show that for every eigenvalue : EigA,  EigA1, 1/.

36. The Cayley-Hamilton Theorem states that: If A is an n  n matrix with characteristic polynomial
p, then pA  0nn. We can think of this as saying that A is a root of its characteristic
polynomial. This Theorem is very deep, and its proof is complicated.

Demonstrate that the Cayley-Hamilton Theorem is true when applied to the matrices in Exercise
10, 15 and 24.

37. True or False: Determine if the statement is true or false. If the statement is true, cite a definition
or Theorem that supports your conclusion, or give a convincing argument why the statement is
true. If the statement is false, cite a definition or Theorem that supports your conclusion, or
provide a counterexample, or give a convincing argument why the statement is false.

a. If A is an n  n matrix and  is one of its eigenvalues, then 0n is an eigenvector for .
b. If A is an n  n matrix and  is one of its eigenvalues, then 0n is a member of the eigenspace

EigA,.
c. The diagonal entries a i,i are the eigenvalues of any n  n matrix A.
d. Every 3  3 matrix has at least one rational eigenvalue.
e. Every 3  3 matrix has at least one real eigenvalue.
f. Every 4  4 matrix has at least one real eigenvalue.
g. Every 5  5 matrix has at least one real eigenvalue.
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6.3 Diagonalization of Square Matrices

One of the most elegant applications of Eigentheory is the process of diagonalizing a square matrix or a
linear operator. In this Section, we will study the process for square matrices, and see the process for
operators in Section 6.6:

Definition: Let A be an n  n matrix. We say that A is diagonalizable if we can find an
invertible matrix C such that:

C1AC  D,
where D  Diag1, 2, . . . , n  is a diagonal matrix, or equivalently:

AC  CD or A  CDC1.

We also say that C diagonalizes A. The matrix product C1AC is also referred to as
conjugating A by C. A matrix which is not diagonalizable is also called defective.

The key to understanding the connection between diagonalization and Eigentheory is actually the
second equation: AC  CD.
If we partition C into its column vectors as:

C  v1 | v2 | | vn ,

we can think of both sides of the equation in terms of matrix multiplication. Recall that AC is the matrix
whose columns are Avi. Similarly, in Section 2.9, we saw that multiplying a matrix C on the right by a
diagonal matrix D has the effect of multiplying the columns of C by the corresponding diagonal entry
in D. Thus, we get:

AC  CD is equivalent to:
Av1 | Av2 | | Avn  1v1 | 2v2 | | nvn .

By comparing columns, we see that we must satisfy:

Avi   ivi,

for each column vi. Thus, the columns vi of C are eigenvectors of A, and the corresponding entry  i in
D is its eigenvalue. Since C is invertible, these columns must be linearly independent, and
consequently the set S  v1, v2, . . . , vn is a basis for n. We may summarize our discovery in the
following:

Theorem — The Basis Test for Diagonalizability:
Let A be an n  n matrix. Then, A is diagonalizable if and only if we can find a basis for
n consisting of n linearly independent eigenvectors for A, say v1, v2, . . . , vn. If this is
the case, then the diagonalizing matrix C is the matrix whose columns are v1, v2, . . . , vn,
and the diagonal matrix D contains the corresponding eigenvalues along the main diagonal.

Although there could be as many as n! ways to arrange D, let us agree for the sake of uniformity to
arrange the eigenvalues in increasing order.
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Example: We saw the matrix:

A 
37 21
70 40

in Section 6.1, with eigenvalues   2 and 5, and we found that:
EigA,2  Span3, 5, and

EigA, 5  Span1, 2,

The two basis vectors are definitely not parallel, and therefore they are linearly independent. Thus, we
can assemble them into the columns of:

C 
3 1
5 2

, whose inverse is: C1 
2 1
5 3

.

We assemble the associated eigenvalues in the same order, thus:

D 
2 0
0 5

.

We can check that:

CDC1 
3 1
5 2

2 0
0 5

2 1
5 3


6 5
10 10

2 1
5 3


37 21
70 40

 A.

and thus A is indeed diagonalizable.

Example: Let A 
0 2
8 0

. Then:

p  det
 0
0 


0 2
8 0


 2
8 

 2  16.

This matrix does not have real eigenvalues, and thus does not have any eigenvectors. Thus, A is not
diagonalizable, even though it almost looks like a diagonal matrix.

In general, any matrix which has imaginary eigenvalues cannot be diagonalized. However, we will see
in Chapter 8 that it will be possible to diagonalize such matrices over the set of matrices with complex
entries, so to be more precise, we say:

Theorem: Let A be an n  n matrix with imaginary eigenvalues. Then A is not
diagonalizable over the set of real invertible matrices.

On the other hand, let us look at the following:

Section 6.3 Diagonalization of Square Matrices 527



Example: Let A 

2 3 7
0 2 1
0 0 5

.

This matrix is upper triangular, so the characteristic polynomial is p    22  5, and the
eigenvalues are 2 and 5. To find the eigenvectors, we must compute the matrices I3  A and their
rrefs, resulting in:

For   2:
0 3 7
0 0 1
0 0 3

with rref
0 1 0
0 0 1
0 0 0

, and

For   5:
3 3 7
0 3 1
0 0 0

with rref
1 0 8/3
0 1 1/3
0 0 0

.

Thus we can conclude that:
EigA, 2  Span1, 0, 0, and
EigA, 5  Span8,1, 3.

Thus, we only get a total of only two linearly independent eigenvectors for A instead of three, so A is
not diagonalizable. This shows that it is not always possible to diagonalize a matrix, even if all of its
eigenvalues are real.

Example: Let B 

2 9 6
0 5 2
0 0 2

.

This matrix is again upper triangular, with characteristic polynomial p    22  5, which is
exactly the same polynomial as in the last Example. The eigenvalues are again   2 and 5. To find
the eigenvectors, we must compute the matrices I3  B and their rrefs, resulting in:

For   2:
0 9 6
0 3 2
0 0 0

with rref
0 1  2

3
0 0 0
0 0 0

, and

For   5:
3 9 6
0 0 2
0 0 3

with rref
1 3 0
0 0 1
0 0 0

.

Thus we can conclude that:
EigB, 2  Span 1, 0, 0, 0, 2, 3, and
EigB, 5  Span3, 1, 0.

This time, we have three linearly independent eigenvectors, and so B is diagonalizable.
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Hopefully, you noticed that the suspicious issue is the fact that the factor   2 was squared in both
characteristic polynomials. This will be further explained below.

Independence of Distinct Eigenspaces

We saw in the previous example that it may not always be possible to get n linearly independent
eigenvectors for an n  n matrix. However, since we had two eigenvalues, we were still fortunate
enough to find two linearly independent eigenvectors. More generally, the number of eigenvalues gives
us a lower bound for the number of linearly independent eigenvectors we can find:

Theorem — Independence of Distinct Eigenspaces:
Suppose that 1, 2, . . . , k are distinct eigenvalues for an n  n matrix A, and suppose that
vi is an eigenvector of A corresponding to  i, for i  1. . k.
Then: the set S  v1, v2, . . . , vk  is linearly independent. Thus, if A has a total of m
distinct eigenvalues, we can find at least m linearly independent eigenvectors for A.

Proof: This is another proof that deserves to be called magical. Since v1  0n, the set v1 is linearly
independent. Now let’s see what happens when we include the 2nd vector. Suppose v1, v2 is a set of
two eigenvectors with corresponding distinct eigenvalues 1 and 2. If this set were dependent, then
v2 would parallel to v1, that is, v2  cv1. Since subspaces are closed under scalar multiplication, this
implies that v2 belongs to the same eigenspace as v1. This contradicts our condition that 1  2.
The rest of the proof proceeds by Mathematical Induction: Let us assume that the set v1, v2, . . . , vj 
is linearly independent for our Induction Hypothesis. We must show that the set v1, v2, . . . , vj, vj1 
is still linearly independent as our Inductive Step.
Let us consider the dependence test equation for this set:

c1v1  c2v2   c jvj  c j1vj1  0n.

By multiplying both sides of this equation by the matrix A on the left, we get:

Ac1v1  c2v2   c jvj  c j1vj1   A0n 

c1Av1  c2Av2   c jAvj  c j1Avj1  0n 

c11v1  c22v2   c j jvj  c j1 j1vj1  0n,

where we were able to perform the last step because each vi is an eigenvector with eigenvalue  i.
Now, starting with the original highlighted dependence equation above, we can also multiply both
sides by  j1, thus getting:

 j1c1v1  c2v2   c jvj  c j1vj1    j10n 

c1 j1v1  c2 j1v2   c j j1vj  c j1 j1vj1  0n.

Let us put our two resulting equations on top of each other:

c11v1  c22v2    c j jvj  c j1 j1vj1  0n, and

c1 j1v1  c2 j1v2   c j j1vj  c j1 j1vj1  0n.
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Notice that the last terms in both equations are identical. Now, here comes the magic: if we subtract
the corresponding sides of these equations from each other, we get:

c11   j1 v1  c22   j1 v2   c j j   j1 vj  0n.

This now looks like a dependence test equation for the set of vectors in v1, v2, . . . , vj. This set is
assumed to be independent in the Induction Hypothesis, and so each c i i   j1  must be zero! Since
the  i are distinct, each  i   j1 is a non-zero scalar, and so this means that c i  0 for i  1. . . j. But
going back to our original dependence equation, we get: c j1vj1  0n.

Since vj1  0n, the Zero-Factors Theorem tells us that c j1  0. Thus, the bigger set
v1, v2, . . . , vj, vj1  is still linearly independent. This argument shows that we can keep adding
eigenvectors to this set, as long as we are adding an eigenvector from a new eigenspace. Thus,
v1, v2, . . . , vk  is linearly independent.

Example: Consider the matrix from one of our previous Examples:

A 

2 3 7
0 2 1
0 0 5

.

We saw that A is not diagonalizable because we could not find three linearly independent eigenvectors
for A. But the two vectors that we did find, 1, 0, 0 and 8,1, 3, are still linearly independent, i.e.,
not parallel.

Geometric and Algebraic Multiplicities

We saw earlier that if the matrix A does not have n linearly independent eigenvectors, then we cannot
diagonalize A. However, notice also that the eigenspace which made this impossible came from a
double (i.e. repeated) eigenvalue for p. Clearly this is what produces the complication, and
therefore it requires further investigation. First, let us introduce some new terminology:

Definitions — Algebraic and Geometric Multiplicities:
Let A be an n  n matrix with distinct (possibly imaginary) eigenvalues 1, 2, . . . , k.
Suppose p factors as:

p    1 n1    2 n2      k nk ,
where n1  n2   nk  n.
We call the exponent n i the algebraic multiplicity of  i.
We call dimEigA, i  the geometric multiplicity of  i.
We agree that dimEigA, i   0 if  i is an imaginary eigenvalue (at least for now).

Note: The Fundamental Theorem of Algebra states that the sum of the algebraic multiplicities of the  i
must be the degree n of p.
A very deep result from a field of mathematics called (just by coincidence) Algebraic Geometry gives
the connection between these two multiplicities:
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Theorem — The Geometric vs. Algebraic Multiplicity Theorem:
For any eigenvalue  i of an n  n matrix. A, the geometric multiplicity of  i is at most
equal to the algebraic multiplicity of  i. Thus, following our notation in the previous
definitions:

dimEigA, i   n i for every i  1. . k.

Example: Consider again the matrix:

A 

2 3 7
0 2 1
0 0 5

from our previous Example. The characteristic polynomial of A is p    22  5, and thus
  2 has algebraic multiplicity 2, and   5 has algebraic multiplicity 1. However, we saw that
EigA, 2 and EigA, 5 are both only 1-dimensional, thus verifying the Theorem. On the other hand,
the matrix:

B 

2 9 6
0 5 2
0 0 2

has exactly the same characteristic polynomial, but EigB, 2 is 2-dimensional and EigB, 5 still
1-dimensional. Thus, the Geometric vs. Algebraic Multiplicities Theorem is also satisfied.

Example: Let p    53    24  2  4 be the characteristic polynomial of a matrix A.
The degree of p is 3  4  2  9, and thus A must be a 9  9 matrix. The Geometric vs. Algebraic
Multiplicity Theorem tells us that:

dimEigA,5  3,
dimEigA, 2  4, and

dimEigA, 2i  0  dimEigA,2i.
The last two eigenspaces have dimension 0, by convention, because 2i and 2i are imaginary numbers.
Thus, A is definitely not diagonalizable.

Thanks to the Geometric vs. Algebraic Multiplicity Theorem, together with our Theorem on the linear
independence of eigenvectors from different eigenspaces, we have the following Theorem:

Theorem — The Multiplicity Test for Diagonalizability:
Let A be an n  n matrix. Then A is diagonalizable if and only if for all of its eigenvalues
 i, the geometric multiplicity of  i is exactly equal to its algebraic multiplicity.

Idea of the Proof: We will demonstrate the ideas behind the Proof using an 8  8 matrix A. The ideas
can be applied in general, and will be outlined in the Exercises. Let us suppose that:

p    32  23  5  72.
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Thus, A has exactly four distinct eigenvalues, and four distinct eigenspaces. We also know from The
Geometric vs. Algebraic Multiplicity Theorem that:

dimEigA,3  2,
dimEigA, 2  3,

dimEigA,5  1, and
dimEigA, 7  2.

Notice that we were able to definitely say that EigA,5 is exactly 1-dimensional, since we are
guaranteed at least one (non-zero!) eigenvector. Now, let us demonstrate both directions of the
Theorem:
 Suppose we know that A is diagonalizable. Then there exists a basis B  v1, v2, . . . , v8  of 8
eigenvectors for A. Each of these eigenvectors belongs to exactly one of the eigenspaces above.
However, since B is linearly independent, every subset of B is also independent. In order to make all 8
eigenvectors fit into the four subspaces under the restrictions above, exactly 2 have to go to EigA,3,
exactly 3 have to go to EigA, 2, exactly 1 has to go to EigA,5, and exactly 2 have to go to
EigA, 7. Thus, each dimension above is exactly equal to its maximum allowable value, which
happens to be the corresponding algebraic multiplicity.
 Suppose that the dimensions of the eigenspaces above are all exactly equal to the corresponding
algebraic multiplicity. Thus, we can construct a basis for each eigenspace:

v1, v2 : a basis for EigA,3
v3, v4, v5 : a basis for EigA, 2

v6 : a basis for EigA,5
v7, v8 : a basis for EigA, 7

We note that, separately, each of the bases above must be linearly independent. However, this does not
mean that taken together, all 8 vectors are still linearly independent. Unfortunately, The Independence
of Distinct Eigenspaces Theorem only guarantees that a set consisting of one basis vector from each
eigenspace is independent. For example, the sets:

v1, v4, v6, v8 and v2, v5, v6, v7

are both independent. Thus, as usual, let us begin the process of proving that the aggregate set of all 8
vectors is independent by writing down the dependence test equation:

c1v1  c2v2  c3v3  c4v4  c5v5  c6v6  c7v7  c8v8  08.

We want to show that all the coefficients c i must be zero. To do this, let us separate the terms above
into four natural groups:

Let w 1  c1v1  c2v2,
w 2  c3v3  c4v4  c5v5,
w 3  c6v6, and
w 4  c7v7  c8v8.

The dependence test equation can now be rewritten into the shorter equation:
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w 1  w 2  w 3  w 4  08,

where each of the vectors above is in a distinct eigenspace. We are now in a position to use the power
of the Independence of Distinct Eigenspaces Theorem.
We will now use the fact that each of the (separate) bases is linearly independent. Thus, if either c1 or
c2 is non-zero, then w 1  08. Similarly, if either c3 or c4 or c5 is non-zero, then w 2  08. If c6  0,
then w 3  08. If either c7 or c8 is non-zero, then w 4  08. In other words, the corresponding w i
becomes an actual eigenvector, and not just a member of the eigenspace.

If exactly one of the w i is non-zero, say w 2  08, the test equation becomes w 2  08, which yields a
contradiction. If two or more of the w i are non-zero, then the test equation becomes, for example:

w 1  w 2  w 4  08, or perhaps

w 2  w 3  08,

where we assume that none of the w i in each equation is 08. But now, the test equation says that the
vectors involved are dependent. This is impossible, because they come from distinct eigenspaces.

As we saw in one of our Examples above, it is time consuming to have to find a basis for every
eigenspace of A, before being able to determine whether or not A is diagonalizable. However, one
important and easy consequence of this Theorem is the following:

Theorem: Let A be an n  n matrix with n real, distinct, eigenvalues. Then A is
diagonalizable.

Proof: Suppose that 1, 2, . . . , n are the n distinct eigenvalues of A. We know that each eigenvalue
 i has at least one (non-zero) eigenvector, say vi. Thus, dimEigA, i   1 for all  i. But since there
are n distinct real eigenvalues, the algebraic multiplicity of each eigenvalue is 1. Since the geometric
multiplicity is at most equal to the algebraic multiplicity, we have:

1  dimEigA,  i   1,
and thus each geometric multiplicity must be exactly 1. By the previous Theorem, A is
diagonalizable.

Example: Let A 

1 2 2
2 2 1
1 0 3

.

We saw in the previous Section that the characteristic polynomial of this matrix is:

p    1  3,
and the eigenvalues are   0, 1 and 3. Even though this matrix is not invertible because 0 is an
eigenvalue, it is diagonalizable because we have three distinct eigenvalues for this 3  3 matrix. To
find the eigenvectors, we must compute the matrices A  I3 and their rrefs, resulting in:
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For   0:
1 2 2
2 2 1
1 0 3

with rref
1 0 3
0 1 5/2
0 0 0

;

For   1:
2 2 2
2 1 1
1 0 2

with rref
1 0 2
0 1 3
0 0 0

;

For   3:
4 2 2
2 1 1
1 0 0

with rref
1 0 0
0 1 1
0 0 0

.

The eigenspaces are thus:

EigA, 0  Span 6, 5, 2 ,

EigA, 1  Span 2, 3, 1 , and

EigA, 3  Span 0, 1, 1 .

We assemble the basis vectors into the columns of C:

C 

6 2 0
5 3 1
2 1 1

, with inverse C1 

1/3 1/3 1/3
1/2 1 1
1/6 1/3 4/3

.

The diagonalizing matrix is D  Diag0, 1, 3. We verify that:

CDC1 

6 2 0
5 3 1
2 1 1

0 0 0
0 1 0
0 0 3

1/3 1/3 1/3
1/2 1 1
1/6 1/3 4/3



0 2 0
0 3 3
0 1 3

1/3 1/3 1/3
1/2 1 1
1/6 1/3 4/3



1 2 2
2 2 1
1 0 3

 A.

as expected.

Powers of Diagonalizable Matrices

One useful application of diagonalization is the ability to find powers of a matrix without a lot of effort.
Suppose we have the factorization A  CDC1, then:
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A2  CDC1 CDC1 

 CDC1CDC1

 CD2C1,
and proceeding by induction, we get:

Theorem: Let A be a diagonalizable n  n matrix with A  CDC1. Then: for all positive
integers k:

Ak  CDkC1.
Furthermore, if A is invertible, then:

A1  CD1C1.

Since Dk is easy to compute for a diagonal matrix D, this gives us an easy way to compute Ak

indirectly. The formula for A1 will be proven in the Exercises.

Example: We saw in the previous Example where A can be diagonalized as:

A 

1 2 2
2 2 1
1 0 3



6 2 0
5 3 1
2 1 1

0 0 0
0 1 0
0 0 3

1/3 1/3 1/3
1/2 1 1
1/6 1/3 4/3

.

Thus, if we want the 8th power of this matrix, we get:

A8 

6 2 0
5 3 1
2 1 1

0 0 0
0 1 0
0 0 3

8
1/3 1/3 1/3
1/2 1 1
1/6 1/3 4/3



6 2 0
5 3 1
2 1 1

08 0 0
0 18 0
0 0 38

1/3 1/3 1/3
1/2 1 1
1/6 1/3 4/3



6 2 0
5 3 1
2 1 1

0 0 0
0 1 0
0 0 6561

1/3 1/3 1/3
1/2 1 1
1/6 1/3 4/3



0 2 0
0 3 6561
0 1 6561

1/3 1/3 1/3
1/2 1 1
1/6 1/3 4/3



1 2 2
1095 2184 8745
1094 2186 8747

. 
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6.3 Section Summary

Let A be an n  n matrix. We say that A is diagonalizable if we can find an invertible matrix C such
that C1AC  D, where D  Diag1, 2, . . . , n  is a diagonal matrix, or equivalently:

A  CDC1 or AC  CD

We also say that C diagonalizes A.
The Basis Test for Diagonalizability: A is diagonalizable if and only if we can find a set of n linearly
independent eigenvectors for A, say v1, v2, . . . , vn If this is the case, then the diagonalizing matrix
C is the matrix whose columns are v1, v2, . . . , vn, and the diagonal matrix D contains the
corresponding eigenvalues along the main diagonal.
Let A have imaginary eigenvalues. Then A is not diagonalizable over the set of real invertible
matrices.
Independence of Distinct Eigenspaces: Suppose that 1, 2, . . . , k are distinct eigenvalues for an
n  n matrix A, and suppose that vi is an eigenvector of A corresponding to  i, for i  1. . k. Then: the
set S  v1, v2, . . . , vk  is linearly independent. Thus, if A has a total of m distinct eigenvalues, we
can find at least m linearly independent eigenvectors for A.
Let A have distinct (possibly imaginary) eigenvalues 1, 2, . . . , k.
Algebraic and Geometric Multiplicities: Suppose p factors as:

p    1 n1    2 n2      k nk .

We call the exponent n i the algebraic multiplicity of  i.
We call dimEigA, i  the geometric multiplicity of  i, where we agree that dimEigA, i   0 if
 i is an imaginary eigenvalue.
The Geometric vs. Algebraic Multiplicity Theorem: For any eigenvalue  i of A, the geometric
multiplicity of  i is at most equal to the algebraic multiplicity of  i.
The Multiplicity Test for Diagonalizability: A is diagonalizable if and only if for all of its
eigenvalues  i, the geometric multiplicity of  i is exactly equal to its algebraic multiplicity.
If A has n real, distinct eigenvalues, then A is diagonalizable.
If A  CDC1, then Ak  CDkC1, for any positive integer k.

6.3 Exercises

For Exercises 1 to 24: Diagonalize the matrix in the indicated Exercise, that is, find an invertible
matrix C and a diagonal matrix D such that A  CDC1, or explain why it is impossible to do so. You
need not find C1, at least for now. You can use the answers to Sections 6.1 and 6.2 in the Key.

1. Section 6.1, Exercise 1.
2. Section 6.1, Exercise 4.
3. Section 6.1, Exercise 5.
4. Section 6.1, Exercise 13.
5. Section 6.1, Exercise 7.
6. Section 6.1, Exercise 14.
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7. Section 6.1, Exercise 10.
8. Section 6.2, Exercise 1.
9. Section 6.2, Exercise 6.
10. Section 6.2, Exercise 7.
11. Section 6.2, Exercise 8.
12. Section 6.2, Exercise 10.
13. Section 6.2, Exercise 11.
14. Section 6.2, Exercise 12.
15. Section 6.2, Exercise 13.
16. Section 6.2, Exercise 14.
17. Section 6.2, Exercise 15.
18. Section 6.2, Exercise 16.
19. Section 6.2, Exercise 22.
20. Section 6.2, Exercise 24.
21. Section 6.2, Exercise 25.
22. Section 6.2, Exercise 26.
23. Section 6.2, Exercise 27.
24. Section 6.2, Exercise 29.

For Exercises 25 to 32: Decide which of the matrices in each Exercise, if any, is
diagonalizable. You may use the answers in the Key to Section 6.1. There are no further
computations necessary.

25. The two matrices in Exercise 16, Section 6.1.
26. The two matrices in Exercise 17, Section 6.1.
27. The two matrices in Exercise 18, Section 6.1.
28. The three matrices in Exercise 19, Section 6.1.
29. The three matrices in Exercise 20, Section 6.1.
30. The three matrices in Exercise 21, Section 6.1.
31. The two matrices in Exercise 22, Section 6.1.
32. The two matrices in Exercise 23, Section 6.1.

For Exercises 33 to 52: Use the diagonal matrix D and diagonalizing matrix C to find the 5th
power of the following matrices. You will need to find C1 for these matrices. Use technology, if
allowed by your instructor, to find C1.

33. The matrix in Exercise 2 above.
34. The matrix in Exercise 4 above.
35. The matrix in Exercise 5 above.
36. The matrix in Exercise 7 above.
37. The matrix in Exercise 8 above.
38. The matrix in Exercise 12 above.
39. The matrix in Exercise 14 above.
40. The matrix in Exercise 15 above.
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41. The matrix in Exercise 18 above.
42. The matrix in Exercise 19 above.
43. The matrix in Exercise 20 above.
44. The matrix in Exercise 21 above.
45. The matrix in Exercise 23 above.
46. The matrix in Exercise 24 above.
47. The matrix in Exercise 16 (a), Section 6.1.
48. The matrix in Exercise 17 (a), Section 6.1.
49. The matrix in Exercise 18 (a), Section 6.1.
50. The matrix in Exercise 19 (b), Section 6.1.
51. The matrix in Exercise 20 (c), Section 6.1.
52. The matrix in Exercise 21 (b), Section 6.1.
53. Suppose that A is a 9  9 matrix, and:

v1, v2, v3 is a basis for EigA,2, v4, v5 is a basis for EigA, 3, and
v6, v7, v8, v9 is a basis for EigA, 7.

Prove that the set S  v1, v2, v3, v4, v5, v6, v7, v8, v9 is linearly independent, and therefore, A
is diagonalizable.

54. Suppose that A is a 10  10 matrix, and:

v1, v2 is a basis for EigA,4, v3, v4, v5 is a basis for EigA,1,
v6, v7, v8 is a basis for EigA, 2, and v9, v10 is a basis for EigA, 5.

Prove that the set S  v1, v2, v3, v4, v5, v6, v7, v8, v9, v10 is linearly independent, and
therefore, A is diagonalizable.

55. We will generalize the two previous Exercises: let A be an n  n matrix with distinct eigenvalues
1, 2, . . . , k. Our goal in this Exercise is to prove that:

A is diagonalizable if and only if 
i1

k

dimEigA,  i   n.

In other words, the dimensions of the eigenspaces of A must add up to n.
a. Suppose that A is diagonalizable. Use the linearly independent set of n eigenvectors

guaranteed by the main Theorem on diagonalizability to show that the dimensions of the
eigenspaces of A must add up to n. The fact that distinct eigenspaces intersect only in the
zero vector is also useful.

b. Now, suppose that the dimensions of the eigenspaces of A add up to n. Let us construct a
basis for each eigenspace (using double-subscript notation):

v1,1, v1,2,  , v1,n1 , a basis for EigA, 1 ;
v2,1, v2,2,  , v2,n2 , a basis for EigA, 2 ; 
vk,1, vk,2,  , vk,nk , a basis for EigA, k ,

where n1  n2   nk  n. Prove that the aggregate set of basis vectors:

S  v1,1, v1,2,  , v1,n1 , v2,1, v2,2,  , v2,n2 , . . . , vk,1, vk,2,  , vk,nk 
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is itself linearly independent, and consequently A is diagonalizable by the Basis Test for
Diagonalizability. Hint: write down a dependence equation for S and use the fact that a set
of eigenvectors from distinct eigenspaces is linearly independent.

56. Let A be an n  n matrix. Prove that A is diagonalizable if and only if for all of its eigenvalues
 i, the geometric multiplicity of  i is exactly equal to its algebraic multiplicity. Hint: use the
Theorem from Algebraic Geometry that the geometric multiplicity is always at most equal to the
algebraic multiplicity, and use the previous Exercise.

57. Let A be an n  n matrix, and T : n  n the corresponding operator such that T  A. Prove
that A is diagonalizable if and only if there exists a diagonal matrix D and a basis B for n such
that T B  D. Note that T  is the standard matrix for T, whereas T B is the matrix of T with
respect to the basis B.

58. Prove that if A is invertible and diagonalizable, with A  CDC1, then A1  CD1C1. As part
of your proof, explain why D must also be invertible.

59. Let A be an invertible and diagonalizable n  n matrix. Prove that if the characteristic polynomial
of A factors as:

pA    1 n1    2 n2      k nk ,
where the  i are unique, then the characteristic polynomial of A1 factors as:

pA1    1
1

n1
   1

2

n2
     1

k

nk
.

Hint: use the Exercise in Section 6.2 on the eigentheory of an invertible matrix. As part of your
proof, show that EigA,  i   EigA1,  i

1  for all i.
60. Let D  Diagc1, c2, . . . , cn  be a diagonal matrix. We know that the eigenvalues of D are c1

through cn.
a. Show that the standard basis vector ei is an eigenvector for   c i for every i  1n.
b. Show that if the c i are all distinct, then every eigenvector of c i is a non-zero multiple of ei.
c. Let D  Diag3,2, 3. Give an example of an eigenvector for   3 which is not a

multiple of a standard basis vector.
61. True or False: Determine if the statement is true or false. If the statement is true, cite a definition

or Theorem that supports your conclusion, or give a convincing argument why the statement is
true. If the statement is false, cite a definition or Theorem that supports your conclusion, provide
a counterexample, or give a convincing argument why the statement is false.
a. An invertible matrix is automatically diagonalizable.
b. A diagonalizable matrix is automatically invertible.
c. If all of the eigenvalues of a matrix are real, then the matrix is diagonalizable.
d. If a matrix A has characteristic polynomial p  4  292  100,

then A has to be diagonalizable.
e. If a matrix A has characteristic polynomial p    92  5,

then A is not diagonalizable.
f. If a matrix A has characteristic polynomial p  2  9  5,

then A is not diagonalizable. Why is this different from e?
g. A triangular matrix is automatically diagonalizable.
h. A diagonal matrix is automatically diagonalizable. (This isn’t as obvious as it looks!)
i. We can diagonalize a triangular matrix whose entries on the main diagonal are all distinct.
j. If a matrix is diagonalizable, then all the eigenspaces have dimension 1.
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6.4 The Exponential of a Matrix

In Pre-Calculus, we encounter the natural exponential function, ex, where Euler’s number e is:

e  limn 1  1
n

n
.

Although we don’t fully understand the concept of a limit at this level, we can see by experiment that
as n gets bigger and bigger, the expression above converges or gets closer and closer to a familiar
number:

1  1
100

100
 1. 01100  2. 7048,

1  1
10000

100000
 1. 00001100000  2. 7183,

and so on. The graph of ex is of course strictly increasing over the real numbers, so we can define its
inverse, the natural logarithmic function or lnx. Later, we reverse this chronology by using the
Fundamental Theorem of Calculus to first define lnx as the definite integral:

lnx  
1

x 1
t dt, where x  0,

and define ex as the inverse of this one-to-one function. However, it is not until we get to the study of
Taylor and Maclaurin Series that we are able to compute as many digits to e as we want, using the
famous formula:

ex  
n0

 1
n! xn, so in particular,

e  
n0

 1
n!  1  1  1

2  1
6  1

24  1
120   2. 718281828

We will use this Maclaurin series to extend the operation of exponentiation to square matrices:

Definition — The Exponential of a Square Matrix:
Let A be an m  m matrix. We define the exponential of A, denoted eA, by the infinite series:

eA  
n0

 1
n! An  Im  A  1

2 A2  1
6 A3  1

24 A4 

This definition seems easy and straightforward enough, but there are certainly some issues that we
have to deal with. First, we know how to compute a linear combination of matrices, but what is the
meaning of an infinite series of matrices? We can answer this, as usual, by taking a limit. We can
compute the sequence of partial sums:

SkA k1
 , where SkA  

n0

k 1
n! An.

These are just polynomial evaluations of A, so they certainly exist. The next issue is now: what does it
mean for a sequence of matrices to converge to a limit matrix B? We can define it in the natural way:
we will say that:
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lim
k

SkA  B

if the entry in row i, column j of SkA converges to the corresponding entry B i,j.
Although these definitions are of course precise and quantifiable, they do not give us an easy way to
compute eA for an arbitrary matrix A, or even allow us to know if we have a reasonable approximation
for eA. Fortunately, we will be sidestepping these technical issues by focusing on the case when A is a
diagonalizable matrix. As our next step, let us see what happens when A is itself a diagonal matrix:

Theorem: Suppose that D  Diagd1, d2, , dm  is a diagonal matrix. Then:

eD  Diaged1 , ed2 ,  , edm .

Proof: We know from Section 2.9 that for a diagonal matrix in the notation above:

Dn  Diagd1
n, d2

n, , dm
n , and so

1
n! Dn  Diag 1

n! d1
n, 1

n! d2
n, , 1

n! dm
n , and


n0

 1
n! Dn  Diag 

n0

 1
n! d1

n, 
n0

 1
n! d2

n, , 
n0

 1
n! dm

n

 Diaged1 , ed2 ,  , edm . 

This now gives us an easy way to compute the exponential of a diagonalizable matrix:

Theorem: Suppose that A is an m  m diagonalizable matrix, with A  CDC1, for some
invertible matrix C and diagonal matrix D  Diagd1, d2, , dm . Then:

eA  C  eD  C1  C  Diaged1 , ed2 ,  , edm   C1.

In particular, if t is a real variable, we have:

e tA  C  eDt  C1  C  Diaged1t, ed2t,  , edmt   C1.

Proof: We know from Section 6.3 that in the notation above:
An  CDnC1, and so

1
n! An  1

n! CDnC1, and


n1

 1
n! An  

n1

 1
n! CDnC1  C  

n1

 1
n! Dn  C1  C  eD  C1. 

The expression e tA is important in a course in Differential Equations. In this case, the matrix A
usually represents the coefficients of a system of linear ordinary differential equations in the variable t,
with a given initial or boundary condition. The expression e tA appears in the solution to this system.
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Example: Consider the matrix from Section 6.3: A 

1 2 2
2 2 1
1 0 3

.

We saw that A is diagonalizable, with:

D 

0 0 0
0 1 0
0 0 3

, C 

6 2 0
5 3 1
2 1 1

, and C1 

1/3 1/3 1/3
1/2 1 1
1/6 1/3 4/3

.

Thus, we can find the matrix exponential:

eA  C  eD  C1 

6 2 0
5 3 1
2 1 1

e0 0 0
0 e1 0
0 0 e3

1/3 1/3 1/3
1/2 1 1
1/6 1/3 4/3



e  2 2e  2 2e  2
3
2 e  1

6 e3  5
3 3e  1

3 e3  5
3 3e  4

3 e3  5
3

1
2 e  1

6 e3  2
3 e  1

3 e3  2
3 e  4

3 e3  2
3

.

If we wanted e tA, we would get:

e tA  C  eDt  C1 

6 2 0
5 3 1
2 1 1

e0 0 0
0 e t 0
0 0 e3t

1/3 1/3 1/3
1/2 1 1
1/6 1/3 4/3



e t  2 2e t  2 2e t  2
3
2 e t  1

6 e3t  5
3 3e t  1

3 e3t  5
3 3e t  4

3 e3t  5
3

1
2 e t  1

6 e3t  2
3 e t  1

3 e3t  2
3 e t  4

3 e3t  2
3

. 

Notice that we get eA by substituting t  1 into our answer for e tA.

6.4 Section Summary

Let A be an m  m matrix. We define the exponential of A, denoted eA, by the infinite series:

eA  
n0

 1
n! An  Im  A  1

2 A2  1
6 A3  1

24 A4 

If D  Diagd1, d2, , dm  is a diagonal matrix, then:

eD  Diaged1 , ed2 ,  , edm .

542 Section 6.4 TheExponential of a Matrix



Suppose that A is an m  m diagonalizable matrix, with A  CDC1, for some invertible matrix C and
diagonal matrix D  Diagd1, d2, , dm . Then:

eA  CeDC1  C  Diaged1 , ed2 ,  , edm   C1.

In particular, if t is a real variable, we have:

e tA  CeDtC1  C  Diaged1t, ed2t,  , edmt   C1.

6.4 Exercises

For Exercises (1) to (20): Find eA and e tA for the following matrices A, which were diagonalized in
Exercises (33) to (52) of Section 6.3. You may use the matrices C and D which are found in the
Answer Key. For your reference, the item also indicates the Exercise where the matrix originally
appears (in either Section 6.1 or 6.2).

1. Exercise 33. (see Exercise 4, Section 6.1)

2. Exercise 34. (see Exercise 13, Section 6.1)

3. Exercise 35. (see Exercise 7, Section 6.1)

4. Exercise 36. (see Exercise 10, Section 6.1)

5. Exercise 37. (see Exercise 1, Section 6.2)

6. Exercise 38. (see Exercise 10, Section 6.2)

7. Exercise 39. (see Exercise 12, Section 6.2)

8. Exercise 40. (see Exercise 13, Section 6.2)

9. Exercise 41. (see Exercise 16, Section 6.2)

10. Exercise 42. (see Exercise 22, Section 6.2)

11. Exercise 43. (see Exercise 24, Section 6.2)

12. Exercise 44. (see Exercise 25, Section 6.2)

13. Exercise 45. (see Exercise 27, Section 6.2)

14. Exercise 46. (see Exercise 29, Section 6.2)

15. Exercise 47. (see Exercise 16 (a), Section 6.1)

16. Exercise 48. (see Exercise 17 (a), Section 6.1)

17. Exercise 49. (see Exercise 18 (a), Section 6.1)

18. Exercise 50. (see Exercise 19 (b), Section 6.1)

19. Exercise 51. (see Exercise 20 (c), Section 6.1)

20. Exercise 52. (see Exercise 21 (b), Section 6.1)
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6.5 Change of Basis and Linear Transformations

on Euclidean Spaces

In this Section, we will find out how to relate the coordinates of the same vector v from n, with
respect to two different bases for n. We will use this relationship in order to construct different
matrices for the same linear transformations T : n  m. These ideas will be generalized in Section
6.6 for a general linear transformation T : V  W.

The Change of Basis Matrix

If B and B / are two bases for a vector space V, let us investigate the relationship between the two
coordinate matrices v B and v B / . We will focus on n for now, but we will consider the general
case in the next Section. The relationship for coordinates in n is given as follows:

Theorem/Definition: For any bases B and B / for n, there exists an invertible n  n matrix
CB,B / , which depends only on B and B /, such that for all vectors v of n:

v B /  CB,B / v B.
The matrix CB,B / is called the change of basis matrix from B to B /. We can explicitly find
CB,B / by performing the Gauss-Jordan algorithm on the augmented matrix:

B / | B ,
where this notation means that we assemble as the columns of this matrix the vectors in B /,
followed by the vectors of B. At the end of the process, we will obtain:

In | CB,B / .

Consequently, CB,B /  B / 1B, and the columns of CB,B / are the coordinate matrices of
the members of B with respect to B /. In other words, if B  v1, v2, . . . , vn, then:

CB,B /  B / 1B  v1 B / v2 B /  vn B / .
Furthermore, CB,B / is invertible, and:

C
B,B /
1  CB /,B  B1B / .

Proof: In keeping with the notation above, we denote by B (pronounced the matrix of B) the n  n
matrix whose columns are the vectors of B  w 1, w 2, . . . , w n:

B  w 1 w 2w n ,

and similarly for B / . Both B and B /  are invertible matrices since B and B / are both bases for n.
Now, for any vector v  n, we have:

v  Bv B, and v  B / v B / ,

which follow directly from the definition of a matrix product Ax as a linear combination of the columns
of A with coefficients from x. Thus:

B / v B /  Bv B,
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and therefore:

v B /  B / 1Bv B.

Notice that this equation does not depend on v. Thus, we get:

CB,B /  B / 1B,

which is an invertible matrix, since it is the product of two invertible matrices. The recipe to compute
CB,B / by performing the Gauss-Jordan Algorithm on:

B / | B ,

now follows from the Proof in Section 2.7 regarding the computation of the inverse of a matrix, except
this time B is on the right side of the augmented matrix instead of In. Recall that the idea is that every
elementary row operation corresponds to an elementary matrix E. Thus, if:

En    E2  E1  B /   In,

then:

B / 1  En    E2  E1.

Therefore, at the end of the Gauss-Jordan Algorithm applied to B / | B , we obtain:

In | En    E2  E1  B ,

and the right side is thus B / 1B, which is exactly what we want. The formula for CB,B / now follows
because the solution to the augmented system B / | B is the coordinate matrix of each member of B
with respect to B /. Finally, we get CB,B /

1  CB /,B by reversing the roles of B and B / in this proof.

Example: Consider the two bases for 3:
B   1, 0, 1, 1, 1, 0, 0,1, 1 , and

B /   1,1,2, 0,1,3, 0, 0, 2 .
Let us find v B and v B / for v  4, 8,2.

We perform the Gauss-Jordan Algorithm on the augmented matrices:

1 1 0 | 4
0 1 1 | 8
1 0 1 | 2

and
1 0 0 | 4
1 1 0 | 8
2 3 2 | 2

.

The rrefs of these two matrices are:

1 0 0 | 1
0 1 0 | 5
0 0 1 | 3

and
1 0 0 | 4
0 1 0 | 4
0 0 1 | 11

.

Thus v B  1, 5,3 and v B /  4,4,11. Notice that one desirable by-product of this
computation is a verification that the sets B and B / are indeed bases, because the rrefs have I3 in the
first three columns.
Let us find the change of basis matrix from B to B /. We form the augmented matrix:
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1 0 0 | 1 1 0
1 1 0 | 0 1 1
2 3 2 | 1 0 1

.

The rref of this augmented matrix is:

1 0 0 | 1 1 0
0 1 0 | 1 0 1
0 0 1 | 0 1 2

.

Thus CB,B / 

1 1 0
1 0 1

0 1 2

. We can verify the formula:

v B /  CB,B / v B



1 1 0
1 0 1

0 1 2

1
5
3



4
4
11

.

Therefore, v B /  4,4,11, just as we computed.

Change of Basis for Span(S)

We saw in Section 1.9 that if S  w 1, w 2,  , w k  n, and W  SpanS, we can find a basis for
W in two different ways. If A  w 1 w 2  w k , with the vectors in S assembled into the columns
of A, then, The Minimizing Theorem tells us that the columns of A corresponding to the leading 1’s in
the rref R of A form a basis B for W. However, if R / is the rref of A, whose rows are the vectors in S,
then the non-zero rows in the rref R / of C also form a basis B / for W. Let us see how to construct the
change of basis matrices in this situation.

Example: Consider the set:
S  v1, v2, v3, v4, v5   1, 2,3, 1,6,5 , 3,4,1,2, 9, 1 , 3, 2, 11, 1, 0, 13 ,

4, 7,7, 3,17,12 , 4, 18,62, 7,59,86  
and consider W  SpanS  6. Assembling the vectors in S into columns, we get:

A 

1 3 3 4 4
2 4 2 7 18
3 1 11 7 62
1 2 1 3 7
6 9 0 17 59
5 1 13 12 86

, with rref R 

1 0 3 0 9
0 1 2 0 7
0 0 0 1 4
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

.

546 Section 6.5 Change of Basis and Linear Transformations on Euclidean Spaces



Thus, W is 3-dimensional, and columns 1, 2 and 4 form a basis B for W:

B  v1, v2, v4   1, 2,3, 1,6,5 , 3,4,1,2, 9, 1 , 4, 7,7, 3,17,12 .

We can also see from R the coordinates of the rejected vectors with respect to B:

v3  3v1  2v2, and
v5  9v1  7v2  4v4,

so v3 B  3,2, 0 , and v5 B  9, 7, 4 .

Now, transposing A, so that the v1 through v5 are now in rows, we get:

A 

1 2 3 1 6 5
3 4 1 2 9 1
3 2 11 1 0 13
4 7 7 3 17 12
4 18 62 7 59 86

, with rref R / 

1 0 7 0 3 9
0 1 5 0 2 6
0 0 0 1 5 2
0 0 0 0 0 0
0 0 0 0 0 0

.

Thus, our second basis for W is made of the three non-zero rows of R /:

B /   1, 0, 7, 0, 3, 9 , 0, 1,5, 0,2,6, 0, 0, 0, 1,5,2    w 1, w 2, w 3.

This time, to construct CB,B / , we will use the alternative formula where the columns of CB,B / are the
coordinates of the vectors in B  v1, v2, v4 with respect to our second basis B /  w 1, w 2, w 3.
We can easily do this by looking at the 1st, 2nd and 4th components of these vectors:

v1  1 , 2 ,3, 1 ,6,5  w 1  2w 2  w 3,

v2  3 , 4 ,1, 2 , 9, 1  3w 1  4w 2  2w 3, and

v4  4 , 7 ,7, 3 ,17,12  4w 1  7w 2  3w 3.

Notice that it is easier to find the coordinates of the vectors in B with respect to B /, instead of the other
way around.
Now, we assemble the three coordinate vectors into columns to form:

CB,B / 

1 3 4
2 4 7
1 2 3

, with inverse CB /,B 

2 1 5
1 1 1
0 1 2

.

Earlier, we found out that v3 B  3,2, 0 , and v5 B  9, 7, 4 , where
v3  3, 2, 11, 1, 0, 13 , and v5  4, 18,62, 7,59,86 . We can check that:

1 3 4
2 4 7
1 2 3

3
2
0



3
2
1

 v3 B / , and
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1 3 4
2 4 7
1 2 3

9
7
4



4
18
7

 v5 B / .

Again, we can check using the 1st, 2nd and 4th coordinates of v3 and v5 that these coordinate are
correct.
Going in the other direction, the columns of CB /,B give us the coordinates of the vectors in B / with
respect to B. For example, the 3rd column of CB /,B tells us that:

w 3 B  5,1,2 , and we verify that:

w 3  5v1  v2  2v4

 51, 2,3, 1,6,5   3,4,1,2, 9, 1   24, 7,7, 3,17,12 
 0, 0, 0, 1,5,2 . 

Matrices for Linear Transformations of Euclidean Spaces

You might be wondering: why are we making things more complicated than they have to be? Wouldn’t
it be simpler if we computed everything in terms of the standard bases? Of course, the answer is
usually yes, but sometimes, we are given linear transformations that are best described using vectors
that are not from the standard bases. We would therefore like to be able to reconstruct the standard
matrix T if we are given the less convenient matrix TB,B / :

Theorem: Let T : n  m be a linear transformation, B a basis for n, and B / a basis for
m. Then: the standard matrix T is related to TB,B / via:

T  B / TB,B / B1,

where again, B is the invertible matrix whose columns are the vectors of B, and similarly
for B / . In particular, if T : n  n is an operator, and B is a basis for n (used to encode
both the domain and the codomain), then:

T  BTBB
1.

Proof: We will prove that T  B / TB,B / B1 by proving instead that:

TB  B / TB,B / .
Notice, we got this equation by multiplying both sides of the previous equation on the right by B.
Now, all we have to do is compare the columns of each matrix product.
Let B  w 1, w 2, . . . , w n. Column i of TB is thus Tw i   Tw i .
But column i of TB,B / , by definition, is Tw i B / , that is, the coordinate matrix of Tw i  with respect
to B /. Thus, column i of B / TB,B / is a linear combination of the vectors of B / with coefficients from
Tw i B / . But this is exactly the decoding process for Tw i . Thus the two matrix products are
equal.
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Example: Let B   1, 0,1, 1, 1, 1, 0,1, 1. Let us assemble the matrix with B in the first
three columns and I3 in the last three. We obtain:

1 1 0 | 1 0 0
0 1 1 | 0 1 0
1 1 1 | 0 0 1

with rref

1 0 0 | 2
3  1

3  1
3

0 1 0 | 1
3

1
3

1
3

0 0 1 | 1
3  2

3
1
3

.

Thus, B is a basis and we find B1 in the last three columns:

B1 

2
3  1

3  1
3

1
3

1
3

1
3

1
3  2

3
1
3

.

Let us put aside B1 for a minute. Suppose we are given that T : 3  4, with:

TB,B / 

2 5 4
1 6 3

4 2 1
7 3 9

,

where B is the basis above, and B / is the basis:

 1,1, 0, 1, 0, 1,1, 1, 1, 1,1, 1, 1, 0, 0,1 .

Let us compute Tv for v  8,1, 5. First, we need to encode 8,1, 5 using B, so we must solve:

1 1 0 | 8
0 1 1 | 1
1 1 1 | 5

, with rref:
1 0 0 | 4
0 1 0 | 4
0 0 1 | 5

.

Thus v B  4, 4, 5. However, since we already found B1 above, we could also have found this
vector using a simpler matrix product:

2
3  1

3  1
3

1
3

1
3

1
3

1
3  2

3
1
3

8
1

5



4
4
5

.

Next step, we now multiply:

TBv B 

2 5 4
1 6 3

4 2 1
7 3 9

4
4
5



8
35
3

85

.

Now, we can decode, this time using B /:
Tv  81,1, 0, 1  350, 1,1, 1  31, 1,1, 1  851, 0, 0,1  96, 30,38,39 .
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This was a lot of work just to find Tv. Let us find T to simplify the process:

T  BTBB
1



1 0 1 1
1 1 1 0
0 1 1 0
1 1 1 1

2 5 4
1 6 3

4 2 1
7 3 9

2
3  1

3  1
3

1
3

1
3

1
3

1
3  2

3
1
3



12 5 1
7
3  14

3
4
3

4 1 1
3 10 1

.

Now, we can compute Tv by direct multiplication:

12 5 1
7
3  14

3
4
3

4 1 1
3 10 1

8
1

5



96
30
38
39

,

thus giving us 96, 30,38,39 , as before. Of course, this “easier” computation came with a price:
we have to compute B1 and the matrix product BTBB

1. 

Incidentally, the idea behind finding TB,B / also gives us a different perspective on CB,B / . We leave the
proof of the following Theorem as an Exercise.

Theorem: Let In : n  n be the identity operator, and let B and B / be bases for n.
Then: In B,B /  CB,B / .

Revisiting Projections and Reflections

Let us present a third method to find the matrix for the projection and reflection operators onto and
across a plane through the origin in 3. Recall that in our second method in Section 3.6, we saw that
one of the steps felt a lot like finding the inverse of a matrix. Now that we have some understanding of
the change of basis matrix, we shall see why this is not a coincidence.

Example: Suppose that  is the plane with equation: 5x  2y  6z  0.
This is exactly the same plane that we studied in the last Example in Section 3.6. Recall that we chose
B   2,5, 0, 0, 3, 1, 5, 2,6 for our basis for 3, where the first two vectors are on  and
the third is a normal vector n to .
This time, let us kill two birds with one stone: let us find proj B, proj , refl B, and refl  at
the same time. Again, because v1 and v2 are both on , their projections onto  and their reflections
across  are themselves:

proj2,5, 0  2,5, 0, proj0, 3, 1  0, 3, 1, and

refl2,5, 0  2,5, 0, refl0, 3, 1  0, 3, 1.
On the other hand, since n  5, 2,6 is already orthogonal to , we have:
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proj5, 2,6  0, 0, 0 and refl5, 2,6   5, 2,6.

Thus, we can see that:

proj B 

1 0 0
0 1 0
0 0 0

, and refl B 

1 0 0
0 1 0
0 0 1

.

To apply the formula in the previous Theorem, we must assemble B and compute B1:

B 
2 0 5
5 3 2
0 1 6

, and B1  1
65

20 5 15
30 12 29
5 2 6

.

Note that this is exactly the same matrix that we saw in Section 3.6 that contained the coordinates of
e1, e2 and e3 with respect to B in its columns. Now, to get the standard matrices for our projection and
reflection operators, we apply the formula:

T  BTBB
1,

one at a time, to proj B and refl B:

proj  
2 0 5
5 3 2
0 1 6



1 0 0
0 1 0
0 0 0

 1
65

20 5 15
30 12 29
5 2 6

 1
65

40 10 30
10 61 12
30 12 29

;

refl  
2 0 5
5 3 2
0 1 6



1 0 0
0 1 0
0 0 1

 1
65

20 5 15
30 12 29
5 2 6

 1
65

15 20 60
20 57 24
60 24 7

.

We can check from the ready-made formulas in Section 2.2 that these are correct. A similar idea can be
applied to find projL .

6.5 Section Summary

For any bases B and B / for n, there exists an invertible n  n matrix CB,B / such that for all vectors v
of n, v B /  CB,B / v B.

The matrix CB,B / is called the change of basis matrix from B to B /. We can explicitly find CB,B / by
performing the Gauss-Jordan algorithm on the augmented matrix B / | B , where this notation means
that we assemble as the columns of this matrix the vectors in B /, followed by the vectors of B.
At the end of the process, we obtain In|CB,B / .

Consequently, the columns of CB,B / are the coordinate matrices of the members of B with respect to
B /, that is, if B  v1, v2, . . . , vn, then: CB,B /  v1 B / v2 B /vn B / .
Moreover, CB,B /

1  CB /,B.
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Let T : n  m be a linear transformation, B a basis for n, and B / a basis for m. Then:

T  B / TB,B / B1,

where B is the matrix whose columns are the vectors of B, and similarly for B / .
In particular, if T : n  n is an operator, and B is a basis for n (used to encode both the domain
and the codomain), then T  BTBB

1.

6.5 Exercises

1. Let v  4,3, 7, and consider the following bases for 3:
B   1, 0,1, 1, 1, 2, 0, 1, 1, and

B /   0,1, 1, 1,1, 1, 1, 2, 1.

a. Find v B and v B / using the Gauss-Jordan algorithm.
b. Explain why your computations in (a) prove that B and B / are indeed bases for 3.
c. Find CB,B / .
d. Verify by direct matrix multiplication that v B /  CB,B / v B.

2. Repeat Exercise 1 with v  5, 3, 1,4 and the following bases for 4:
B   1, 0,1, 1, 2, 1, 1, 0, 3, 1, 0, 0, 2, 0, 0, 0,

B /   1, 0, 1, 2, 0, 1, 1,1, 0, 0, 2, 1, 0, 0, 0,1.

3. Let:
B   1, 0,1, 1, 2, 1, 1, 0, 3, 1, 0, 0, 2, 0, 0, 0

be the first basis for 4 in Exercise 2, and let:

B /   0,1, 1, 1,1, 1, 1, 2, 1

be the second basis for 3 in Exercise 1. Suppose that a linear transformation T : 4  3 is
given by:

TB,B / 

5 3 2 1
3 1 4 0
2 0 3 2

a. Compute Tv, where v  5, 3, 1,4. Express your final answer as an ordinary vector in
3 (which means that you should not forget to decode). Use part of your answer in Exercise
2.

b. Find the standard matrix of T.
c. Recompute Tv using your standard matrix.

4. Now, let:
B   1, 0,1, 1, 1, 2, 0, 1, 1,

be the first basis for 3 in Exercise 1, and let:

B /   1, 0, 1, 2, 0, 1, 1,1, 0, 0, 2, 1, 0, 0, 0,1
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be the second basis for 4 in Exercise 2. Suppose that a linear transformation T : 3  4 is
given by:

TB,B / 

4 3 1
3 1 0
5 2 4
0 1 2

.

a. Compute Tv, where v  4,3, 7. Express your final answer as an ordinary vector in
4. Use part of your answer in Exercise 1.

b. Find the standard matrix of T.
c. Recompute Tv using your standard matrix.

5. Let:
B   1, 0,1, 1, 1, 2, 0, 1, 1

be the first basis for 3 in Exercise 1. Suppose that an operator T : 3  3 is given by:

TB 

6 3 1
2 1 0
7 2 4

.

a. Compute Tv, where v  4,3, 7. Express your final answer as an ordinary vector in
3. Use part of your answer in Exercise 1.

b. Find the standard matrix of T.
c. Recompute Tv using your standard matrix.

6. Suppose that an operator T : 3  3 is given by its standard matrix:

T 
7 3 1
1 4 0
3 5 2

.

a. Compute Tv, where v  4,3, 7.
b. Suppose that:

B   1, 0,1, 1, 1, 2, 0, 1, 1,

is the first basis for 3 in Exercise 1. Find TB.
c. Recompute Tv using TB.

For Exercises (7) to (14): You are given the set of vectors S  v1, v2,  , vk , and suppose
that W  SpanS.
(a) Find a basis B for W using the Minimizing Theorem;

(b) Find a basis B / for W by assembling S into the rows of a matrix and finding its rref;

(c) Express the non-basis vectors in S in terms of the basis B from part (a);

(d) Express the non-basis vectors in S in terms of the basis B / from part (c);
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(e) Find the change of basis matrix CB,B / ;

(f) Verify that v B /  CB,B / v B, for every non-basis vector v.

7. S   3, 1, 6,5, 4, 2,4,4, 18, 4,24,2, 1, 4, 7, 3 

8. S   3, 1, 6,5, 4, 2,4,4, 1, 4, 7, 3, 10,3, 1,42 

9. S   3, 12, 5, 2,2, 1,4, 4, 3,4, 4,16,6,4, 18 

10. S   3,4,2, 9, 1, 1, 1, 2, 4, 9, 11,11, 4, 3, 5, 16, 1, 8,

21,36,26, 59,45, 79, 20,37,23, 84,43, 88

11. S  5, 3,3, 2,14,4, 3,4,7,5,21, 7, 21, 17, 5, 16, 0,26,

2,1, 2, 0, 11, 2, 1, 2, 5, 3, 17,8

12. S   4,5,1, 3, 7, 1, 2, 3,1,1,8, 9, 2,1,5, 3,10, 29,

1, 0,4, 2, 2, 1, 3, 2, 6,5,4,12 

13. S   3, 1, 4,21,20, 4, 2, 3,36,37 , 2, 4, 5,26,23 ,

9, 9, 16, 59, 84, 1, 11, 1,45,43 , 1,11, 8, 79, 88  

14. S   4,5, 3, 19, 2,8 , 8,1, 2,28, 3,26 , 2, 2,1,5, 0, 15 ,
7, 3,4, 5,5,8, 8, 7,10,32,8,57  

For Exercises 15 to 18: Your goal is to find the matrices proj , refl  and projL  for the
following planes  (with normal line L  Spann ) that appear in Exercises 28 to 31 in
Section 3.6. The answers can be found in the Key to Section 3.6. Review the last Example in this
Section, and follow this outline:

(a) Find two non-parallel vectors v1 and v2 on .
Keep it simple by choosing vectors with integer coordinates, where one coordinate is 0.

(b) Form the matrix B, where B  v1, v2, n is a basis for 3.

(c) Find B1.

(d) Write proj B, refl B and projL B as diagonal matrices.

(e) Use the formula T  BTBB
1 three times to find proj ,  refl  and projL .

15.  : 3x  7y  8z  0.

16.  : 5x  3y  7z  0.

17.  : 2x  y  5z  0.

18.  : x  2
3 z. As in Section 3.6, think very carefully about part (a). Hint: which coordinate axis is

contained in ?

19. Prove that if In : n  n is the identity operator, then:

In B,B /  CB,B /

for any bases B and B / of n. Hint: start by writing down the definitions of both sides of this
equation, and then unwind these definitions.
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6.6 Change of Basis for Abstract Spaces

and Determinants for Operators

We will now use the ideas from the previous Section in order to extend the concept of a change of
basis matrix for coordinate vectors in abstract vector spaces and the linear transformations that act on
them. This will also enable us to find the determinant of a linear operator, and in the next Section, a
characteristic equation, eigenvalues and eigenspaces for them.

Change of Basis for Abstract Vector Spaces

The computations in Section 6.4 can usually be adapted to abstract vectors spaces when we have a nice
“standard basis” that we can use. For the polynomial spaces n, for example, we have the monomials
1, x, x2, . . . , xn. Similarly, we defined other finite-dimensional function spaces as
Span f1x, . . . , fnx, so we can use this indicated set as a standard basis. Let us begin with the
following generalization:

Definition/Theorem: For any bases B and B / for a vector space V, with dimV  n, there
exists an invertible n  n matrix CB,B / such that for all v  V:

v B /  CB,B / v B.

The matrix CB,B / is called the change of basis matrix from B to B /.
The columns of CB,B / are the coordinate matrices of the members of B with respect to B /,
that is, if B  v1, v2, . . . , vn, then:

CB,B /   v1 B / v2 B / . . . vn B / .

Notice that we left out the part where we derive how to efficiently compute CB,B / , but this is simply
because the members of B and B / are not necessarily from n. Thus, it doesn’t make sense to enter the
members of B and B / as the columns of a matrix. But this is easily fixed by using any arbitrary basis,
let’s call it S, for our vector space V. The most convenient choice for S would most often be a
“standard basis” for this space. Let us make this more explicit:
Suppose B  v1, v2, . . . , vn and B /  w 1, w 2, . . . , w n are two arbitrary bases for V, and S some
kind of a “standard basis” for V. Let us denote by BS and B / S the n  n matrices:

BS  v1 S v2 S . . . vn S , and

B / S  w 1 S w 2 S . . . w n S .

With this notation, we can explicitly find CB,B / by performing the Gauss-Jordan algorithm on the
augmented matrix:

B / S |BS ,
At the end of the process, we obtain:

In |CB,B / .

Analogous to our Theorem in Section 3.8, we have the formula:
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CB,B /  B / S
1BS.

Example: Let V  SpanS, where S   sinx, cosx. First, we saw in Chapter 3 that S is linearly
independent, so V is 2-dimensional. Consider:

B  3 sinx  2 cosx, 2 sinx  cosx, and

B /   sinx  3 cosx, sinx  4 cosx.

We easily see that the two vectors in B and B / are not parallel, so they also form bases for V. Now, let
us find the associated coordinate matrices:

BS 
3 2
2 1

, and B / S 
1 1
3 4

.

Let us find CB,B / in two different ways.

First Solution: we perform the Gauss Jordan Algorithm on the augmented matrix:

B / S |BS 
1 1 | 3 2
3 4 | 2 1

,

whose rref is:

1 0 | 10 7
0 1 | 7 5

.

Thus, the change of basis matrix is CB,B / 
10 7
7 5

.

Second Solution: We find B / S
1 using our formula for 2  2 matrices:

B / S
1  1

4  3
4 1
3 1


4 1
3 1

.

Next, we perform a matrix product to get, as before:

CB,B /  B / S
1BS 

4 1
3 1

3 2
2 1


10 7
7 5

. 

Matrices for Linear Transformations of Abstract Vector Spaces

We can use the generalization above to find different matrices for a linear transformation from one
abstract vector space to another. With the notation that we established in the previous theorem, we
have the following:
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Theorem: Let T : V  W be a linear transformation of finite dimensional vector spaces, B
and S bases for V, and B / and S / bases for W. Then:

T S,S /  B / S / T B,B / BS
1,

where, again, BS is the matrix whose columns are the coordinate vectors of the members
of B with respect to S, and similarly for B / S / .

In particular, if T : V  V is an operator, then:
T S  BST BBS

1.

Example: Consider the bases:
B  2, 3  x, 5  7x  x2, and B /  3, 2  x, 1  x2, x  x3.

for 2 and 3, respectively. Now, let T : 2  3, whose matrix with respect to B and B / is:

T B,B / 

7 1 5
2 6 2
3 8 0

4 2 3

.

As a warm-up, let us remember how to compute Tv , where v  6  4x  3x2.
First, we need to encode this polynomial using the basis B. Fortunately, the degrees of the members of
B are all distinct, so starting with the quadratic member, we find the coefficients by inspection, as:

6  4x  3x2  422  253  x  35  7x  x2 ,

thus v B  42, 25, 3. Now, we multiply:

TvB /  T B,B / v B 

7 1 5
2 6 2
3 8 0

4 2 3

42
25

3



304
60

326
109

.

Finally, we decode these coefficients using B / to get:

Tv   3043  602  x  3261  x2   109x  x3 

 1358  49x  326x2  109x3.
Clearly TB,B / is not a very convenient matrix to use. Let us therefore find the matrix of T with respect
to the standard bases S  1, x, x2 for 2 and S /  1, x, x2, x3 for 3. We have:

BS 

2 3 5
0 1 7
0 0 1

and B / S / 

3 2 1 0
0 1 0 1
0 0 1 0
0 0 0 1

.
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We use the Gauss-Jordan algorithm or technology to find the inverse of the first matrix:

BS
1 

1/2 3/2 13
0 1 7
0 0 1

.

Now, we are ready to apply the formula to obtain our standard matrix:
T S,S /  B / S/ T B,B / BS

1



3 2 1 0
0 1 0 1
0 0 1 0
0 0 0 1

7 1 5
2 6 2
3 8 0

4 2 3

1/2 3/2 13
0 1 7
0 0 1



10 53 402
3 1 21

3/2 25/2 95
2 4 35

.

To check that this matrix is correct, we recompute T6  4x  3x2 . This time, we encode v using the
standard basis S, thus producing v S, and then we multiply T S,S / by this matrix:

TvS/  T S,S / v S 

10 53 402
3 1 21

3/2 25/2 95
2 4 35

6
4

3



1358
49
326
109

.

Finally, we decode this result with respect to the standard basis S / as:
Tv   1358  49x  326x2  109x3.

As expected, we get the same answer, so we can be fairly confident that our standard matrix is
correct.

The Determinant of an Operator

We are now in a position to extend the concepts of the determinant and eigentheory to linear operators
T : V  V. This would almost seem like a natural thing to do because any matrix for T with respect to
some basis S would be be a square matrix T S. It would thus be a simple matter of computing the
determinant, characteristic polynomial, and eigenvectors of this matrix. The million dollar question,
though, is: Will we get the same answers regardless of the choice of the basis S? The answer, of
course, is yes. The key is the equation:

T S  BST BBS
1,

where B and S are any two bases for V, and BS is the matrix whose columns are the coordinate
vectors of the members of B with respect to S. Notice that all of the matrices involved in this equation
are n  n matrices, where n  dimV. This equation immediately leads us to our first goal:

Definition/Theorem: Let S and B be bases for a finite dimensional vector space V, and let
T : V  V be a linear operator acting on V. Then: detT S   detT B .
Thus, we can define: detT  |T |  detT B , where B is any basis for V.
This number does not depend on the choice of basis B.
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Proof: By the multiplicative property of determinants, and the determinant of the inverse of a matrix,
we have:
detT S   det BST BBS

1  detBS   detT B   det BS
1

 detBS   detT B   detBS 
1  detT B   detBS   detBS 

1  detT B .

Notice that we are free to rearrange the three factors above since a determinant is just a number and
not a matrix.

Example: Let us bring back our old friends, the projection and reflection operators onto and across a
plane . In Section 2.2, we saw that for the plane  given by the equation 3x  5y  2z  0, the
standard matrices of these two operators are:

proj   1
38

29 15 6
15 13 10
6 10 34

and refl   1
19

10 15 6
15 6 10
6 10 15

.

It would not be a terrible chore to find the determinants of these two matrices, but it wouldn’t exactly
be a pleasant one either. It is also quite likely that you will make one or two arithmetic mistakes along
the way. Fortunately, we can find these determinants by looking at two very different but simpler
matrices. Recall that in Section 3.8, Exercise 7, we chose two linearly independent vectors
v1  5, 3, 0 and v2  0, 2, 5 that are on the plane , and n  3,5, 2 the obvious normal for the
plane. The set B  n, v1, v2 is a basis for 3. With respect to this basis, we get:

proj B  Diag0, 1, 1, and

refl B  Diag1, 1, 1.

Obviously, it is much easier to find the determinant of a diagonal matrix. We immediately get:
detproj B   0  1  1  0, and
detrefl B   1  1  1  1. 

Example: Let T : 2  2 be the linear operator given by:
Tpx  2px  x  5p /x  x2  3x  7p //x.

We leave the reader to check that T is indeed additive and homogeneous. Let us find its matrix with
respect to the standard basis S  1, x, x2:

T1  2  0  0  2,
Tx  2x  x  5  1  0  5  3x, and

Tx2   2x2  x  5  2x  x2  3x  7  2  14  4x  6x2.

We encode their coefficients into the columns of:

T S 

2 5 14
0 3 4
0 0 6

.

This is an upper triangular matrix, and thus we easily find: detT  2  3  6  36. 
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As a bonus, we leave it as an Exercise for you to prove:

Theorem: Let T : V  V be a linear operator acting on a finite dimensional vector space V.
Then T is invertible if and only if detT  0.

Example: Let T : 2  2 be the linear operator from the previous Example. We saw that
detT  36, so this operator is invertible. This means that if qx is any polynomial from 2, then we
can find another polynomial px from 2 so that:

2px  x  5p /x  x2  3x  7p //x  qx,

and therefore this differential equation is solvable for any choice of qx.

6.6 Section Summary

For any bases B and B / for a vector space V, with n  dimV, there exists an invertible n  n matrix
CB,B / such that for all vectors v  V, v B /  CB,B / v B.

The matrix CB,B / is called the change of basis matrix from B to B /. The columns of CB,B / are the
coordinate matrices of the members of B with respect to B /, that is, if B  v1, v2, . . . , vn, then:
CB,B /   v1 B / v2 B / . . . vn B /   BB / , the matrix whose columns are the coordinate matrices of
the vi with respect to B /.
Let T : V  W be a linear transformation of finite dimensional vector spaces, B and S bases for V, and
B / and S / bases for W. Then: T S,S/  B / S/ T B,B / BS

1.

In particular, if T : V  V is an operator, then: T S  BST BBS
1.

Let S and B be bases for a finite dimensional vector space V, and let T : V  V be a linear operator
acting on V. Then: detT S   detT B . Thus, we can define: detT   |T |  detT B , where B
is any basis for V. This number does not depend on the choice of basis B.
Let T : V  V be a linear operator acting on a finite dimensional vector space V. Then T is invertible
if and only if detT   0.

6.6 Exercises

1. Let B  1  x2, 1  x  x2, 1  x, B /  x  x2, 1  x, 2  x2 and v  4  3x  5x2.
a. Find v B and v B / . using the Gauss-Jordan algorithm.
b. Explain why your computations in a prove that B and B / are bases for 2.
c. Find CB,B / .
d. Verify by direct matrix multiplication that v B /  CB,B / v B.

2. Repeat Exercise 1, with B  1  x  x3, 2  x  x2, 5  x, 2,
B /  1  3x2  x3, x  x2  x3, x2  5x3,  x3, and
v  5  3x  4x2  2x3, with 2 replaced with 3 in part (b).

3. Let B  1  x  x3, 2  x  x2, 5  x, 2 be the first basis for 3 in Exercise 2, and
B /  x  x2, 1  x, 2  x2 the second basis for 2 in Exercise 1.
Suppose that a linear transformation T : 3  2 is given by:
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T B,B / 

4 3 2 1
3 1 1 8

2 7 4 2

.

a. Compute Tv, where v  5  3x  4x2  2x3. Express your final answer as an ordinary
vector in 2 (which means that you should not forget to decode). Use part of your answer
in Exercise 2.

b. Let S  1, x, x2, x3 and S /  1, x, x2. Find T S,S/ .
c. Recompute Tv , where v  5  3x  4x2  2x3, using T S,S/ .

4. Let B  1  x2, 1  x  x2, 1  x be the first basis for 2 in Exercise 1, and
B /  1  3x2  x3, x  x2  x3, x2  5x3,  x3 the second basis for 3 in Exercise 2.
Suppose that a linear transformation T : 2  3 is given by:

T B,B / 

0 3 5
3 1 1
2 1 4
1 7 6

.

a. Compute Tv , where v  4  3x  5x2. Express your final answer as an ordinary vector in
3. Use part of your answer in Exercise 1.

b. Let S  1, x, x2 and S /  1, x, x2, x3. Find T S,S/ .
c. Recompute Tv , where v  4  3x  5x2, using T S,S/ .

5. Suppose that T : 2  2 is an operator, with:

T B 

1 1 1
0 1 3
1 2 1

,

where B  1  x2, 1  x  x2, 1  x is the first basis from Exercise 1.
a. Compute Tv  where v  4  3x  5x2 is the vector from Exercise 1.
b. Let S  1, x, x2. Find the change of basis matrix BS and its inverse BS

1.
c. Use the formula T S  BST BBS

1 to find T S.
d. Recompute Tv , where v  4  3x  5x2, using T S.
e. Compute detT .
f. Is T invertible? If so, find T 1 B.

6. Suppose that T : 3  3 is an operator, with:

T B 

1 0 2 3
1 2 1 4
0 1 3 2
1 1 1 1

,
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where B  1  x  x3, 2  x  x2, 5  x, 2 is the first basis from Exercise 2.
a. Compute Tv  where v  5  3x  4x2  2x3 is the vector from Exercise 2.
b. Let S  1, x, x2, x3. Find the change of basis matrix BS and its inverse BS

1.
c. Use the formula T S  BST BBS

1 to find TS.
d. Recompute Tv, where v  5  3x  4x2  2x3, using TS.
e. Compute detT .
f. Is T invertible? If so, find T1 B.

7. Let D : 2  2 be the differentiation operator, and let B  1  x2, 1  x  x2, 1  x be the
first basis from Exercise 1.
a. Find DB.
b. Let S  1, x, x2. Use the formula T S  BST BBS

1 to find DS. You may use
your work from Exercise 5.

c. Compute detT .
d. Is T invertible? If so, find T 1 B.

8. Repeat the previous Exercise for the differentiation operator D : 3  3, where:

B  1  x  x3, 2  x  x2, 5  x, 2

is the first basis for 3 from Exercise 2 and S  1, x, x2, x3. You may use your work from
Exercise 6.

9. Let V  SpanB, where B   sinx, cosx, and B /   sinx  /6, sinx  /3.
a. Show that B / is also a basis for V. Reminder: you must show that B / is a subset of V to

begin with.
b. Find the change of basis matrix from B to B /.

c. Suppose that T : V  V is given by: T B / 
1 3
3 7

. Find T B.

d. Compute detT .
e. Is T invertible? If so, find T 1 B.
f. Suppose that D : V  V is the differentiation operator. Find DB.
g. Compute detD.
h. Is D invertible? If so, find D1 B.

10. Let V  SpanB, where B  e2x, x  e2x, x2  e2x, and D the differentiation operator
D : V  V.
a. Find DB.
b. Compute detD.
c. Is D invertible? If so, find D1 B.

11. Let T : V  V be a linear operator acting on a finite dimensional vector space V. Prove that T is
invertible if and only if detT   0.

12. Prove that if IV : V  V is the identity operator of V, then IVB,B /  CB,B / , for any bases B and
B / of V. Note: this is analogous to the last Exercise from the previous Section, and the proof is
exactly the same idea there.
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6.7 Similarity and The Eigentheory of Operators

You may have noticed that in the last few Sections, we saw two equations that bear some resemblance.
We said that a square matrix A is diagonalizable if we can find an invertible matrix C of the same
dimension such that:

D  C1AC,
where D is a diagonal matrix. We also saw the equation:

T S  BST BBS
1,

relating two different matrices for the same linear transformation T. Both of these equations involve a
product of three matrices, where the middle matrix is essentially “sandwiched” by a matrix and its
inverse. We called this a conjugation process. This kind of matrix expression is of such importance in
Linear Algebra that we generalize its role in the following:

Definition: Let P and Q be n  n matrices. We say that P is similar to Q if we can find an
invertible n  n matrix R such that:

P  R1QR.
We also say that Q is conjugated by R to produce P, and vice versa.

This definition says that a square matrix A is diagonalizable if we can find a diagonal matrix D that is
similar to A. It also says that the matrix of a linear transformation T with respect to one basis S is
similar to the matrix of T with respect to any other basis B.

Example: Let R 
4 3
3 2

, an invertible matrix with R1 
2 3

3 4
.

Let Q 
5 9
3 7

. Then:

P  R1QR 
2 3

3 4
5 9
3 7

4 3
3 2


67 51
105 79

.

Thus, we can say that:

Q 
5 9
3 7

is similar to P 
67 51
105 79

,

even though you might insist that they don’t “look” at all “similar” in the everyday sense. Clearly, there
are deeper issues involved here, and we will explore them further.

Equivalence Relations and Similarity

The relationship of “similarity” is an example of an important class of relationships in mathematics that
are called equivalence relations. First, let us make a general definition for the term “relation”:
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Definitions: A relation  on the members of a set X is a function that gives a value of either
true or false given an ordered pair x, y of members of X.
If the value of  is true for the pair x, y, we write this symbolically as x  y. We also say
that “x is related to y. "
If the value of  is false for the pair x, y, we write x  y and say that “x is not related to
y. "

Example: We can construct a relation among the set of integers  by saying that:

x  y if and only if x  y is an even integer.

Thus, 6  2, and 11  5, because both 6  2  4 and 11  5  6 are even numbers. However, 9  6,
because 9  6  3, which is odd. We could also have said that x  y if and only if both x and y are
even, or both x and y are odd (keeping in mind that 0 is an even number).

This particular Example of a relation has three important qualities that elevate it to a special status:

Definitions: We say that a relation  is an equivalence relation if it satisfies three properties:
for any x, y and z  X :

1.  is reflexive: x  x, that is, every x is related to itself.
2.  is symmetric: if x  y, then y  x.
3.  is transitive: if x  y and y  z, then x  z.

Example: The simplest equivalence relation among the members of any set X is the relation “is equal
to” : (1) any member x of X is equal to itself, thus x  x, which we know as the reflexive property of
equality; (2) if x  y, then y  x, which we know as the symmetric property of equality; and (3) if
x  y and y  z, then x  z, which we know as the transitive property of equality.

Example: In science, “has the same blood type” is an equivalence relation among the set of all
people: a person has the same blood type as himself or herself; if Ed has the same blood type as Sue,
then Sue has the same blood type as Ed. If Ed has the same blood type as Sue, and Sue has the same
blood type as Pat, then Ed has the same blood type as Pat. Notice we don’t say that “two people are
equal,” but we say that “two people have the same blood type.”

Example: The relationship “is a sibling of” among human beings (i.e., is a brother or sister of, or
more precisely, have the same mother and father) is not an equivalence relation because it is not
reflexive: we do not say that we are our own sibling.

Example: In mathematics, the relationship “less than or equal to” or “” is not an equivalence
relation on the set of real numbers because it is not symmetric: 3  8, but 8  3. 

Equivalence Classes

Equivalence relations can give us a way to separate X into subsets where the members of each subset
are related to each other:
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Definition/Theorem: Any equivalence relation  acting on a set X partitions X into
equivalence classes:

X  X1  X2   Xk ,
where x, y  X belong to the same equivalence class X i if and only if x  y. Furthermore,
every element x  X belongs to exactly one equivalence class X i. We can thus visualize X
partitioned into these equivalence classes:

 
X1 X2 X3

. . . Xk . . .
X

.

.

where two distinct equivalence classes do not intersect.
Note: it is possible to have an infinite number of equivalence classes.

Proof: The only statement that needs to be proved is that every element x  X belongs to exactly one
equivalence class X i. Since x  x, x belongs to its own equivalence class, according to the definition.
Suppose that x belongs to two equivalence classes:

x  X i and x  X j.

We must show that X i  X j. So suppose y  X i. Then, by definition, x  y. But since x  X j and
x  y, then again, by definition, y  X j. Thus X i  X j. Repeating the argument with z  X j, we also
see that X j  X i. Thus, X i  X j.

Examples: In our first Example, we defined a relation on the set of integers  by saying that:

x  y if and only if x  y is an even integer.
Let us check that this is an equivalence relation. For any x  , x  x  0, which is an even integer, so
x  x and the relation is reflexive. Now, if x  y, then x  y  2n for some integer n. But then
y  x  2n  2n, which is also an even integer, and so the relation is symmetric. Finally, if x  y
and y  z, then:

x  y  2n, and y  z  2m, thus:
x  z  2n  2m  2n  m,

for some integers n and m. Since 2n  m is also an even integer, x  z and the relation is transitive.
Let us think of the equivalence classes of  under . Consider the integer 0. Under our relation, x  0
if and only if x  0  2n, so in other words, x is an even integer. Thus, one equivalence class is:

X1  even integers .
This leads us to suspect that the odd numbers must form another equivalence class. Indeed, the number
1 is not a member of X1. Under our relation, x  1 if and only if x  1  2n, so in other words, x is
an odd integer. Since every integer is either even or odd, we can therefore conclude that there is only
one other equivalence class, and that is:

X2  odd integers .

Thus, we have the partitioning of X into two equivalence classes:
  X1  X2  even integers  odd integers . 
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Example: The relation “has the same blood type” is an equivalence relation, and this partitions the set
of all human beings into those of type A, type B, type AB and type O, thus creating four equivalence
classes (or eight, if you want to monkey around with Rhesus positives and negatives).

Similarity as an Equivalence Relation

Now let us go back to similarity of matrices:

Theorem: The relationship “is similar to,” symbolized by , is an equivalence relation on
the set of all n  n matrices.
In other words, for all n  n matrices P, Q and S:

1. Similarity is Reflexive: P  P.

2. Similarity is Symmetric: If P  Q, then Q  P.

3. Similarity is Transitive: If P  Q and Q  S, then P  S.

Because of the symmetric property, we can say that P and Q are similar to each other.

Proof:

The Reflexive Property: The identity matrix In is invertible, and P  InPIn
1.

Thus, P is similar to itself.

The Symmetric Property: If P is similar to Q, then we can find an invertible matrix R such that:

P  R1QR.

But we can also move R1 and R to the left side of the equation, yielding: RPR1  Q.
This equation now says that Q is similar to P.

The Transitive Property: If P is similar to Q, and Q is similar to S, then we can find two invertible
matrices R1 and R2 such that:

P  R1QR1
1, and Q  R2SR2

1.

Now, we substitute the second equation into the first, and get:

P  R1R2SR2
1 R1

1  R1R2 SR2
1R1

1   R1R2 SR1R2 1,

and thus P is similar to S. Notice that we used the formula for the inverse of a product, and the fact that
the product of two invertible matrices is also invertible.

Invariant Properties under Similarity

As expected, the word “similar” is loaded with meaning, and has many consequences. We list below
properties that are shared by two similar matrices, starting with one we have already proven. The
proofs of the rest of the properties are left as Exercises:
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Theorem: Let P and Q be similar n  n matrices, that is, P  Q. Then, the following
properties are true:

1. Equality of Determinants detP  detQ
2. Equality of Nullities nullityP  nullityQ
3. Equality of Ranks rankP  rankQ
4. Equality of Traces trP  trQ
5. Equality of Characteristic detIn  P  detIn  Q

Polynomials
6. Common Eigenvalues The eigenvalues of P are identical

to the eigenvalues of Q.
7. Equality of Algebraic If  is a common eigenvalue

Multiplicities . . . of P and Q, then
AlgMultP,  AlgMultQ,

8. . . . and Geometric and
Multiplicities dimEigP,  dimEigQ,.

9. Invariance of P is invertible if and
Invertibility only if Q is invertible.

10. Invariance of P is diagonalizable if and
Diagonalizability only if Q is diagonalizable.

Notice that the properties above are necessary if two matrices are similar to each other, but they are
not sufficient to prove that two matrices are indeed similar to each other. Thus, if two matrices have
different ranks, then they cannot possibly be similar. However, two matrices with the same rank may
or may not be similar.
Also, we should point out that eigenvectors are not preserved by similarity. Even though P and Q have
identical eigenvalues, an eigenvector for P with respect to  may not be an eigenvector for Q with
respect to . We will see in the Exercises, though, that there is an elegant connection between the
associated eigenspaces.
Let us bring back the definition of the trace function, which we saw in Exercise 28 of Section 3.5,
where you were asked to prove its linearity properties:

Definition: The trace of an n  n matrix A is the linear transformation:
tr : Matn, n  , given by:

trA  a1,1  a2,2   an,n.

Example: Let A 

5 3 2
7 4 6
2 0 3

. Then trA  5  4  3  6. 
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Example: Consider the matrices P 
3 2
0 3

, and Q 
3 0
0 3

.

Both P and Q have determinant 9, trace 6, and characteristic polynomial p    32. So it looks
like P and Q should be similar to each other. However, Q  3I2, so if R is invertible, then:

R1QR  R13I2 R  3R1R  3I2  Q,
so it is impossible to get P no matter what R is. Thus, P and Q are not similar. In fact, the above
computation shows that Q is the only matrix that is similar to Q! We can also rephrase this by saying
that Q is the only only member of its equivalence class under similarity. 

Eigentheory for Operators

We are now ready to define the characteristic polynomial, eigenvalues, eigenvectors and eigenspaces
for linear operators:

Definition/Theorem: If T : V  V is a linear operator acting on a finite dimensional vector
space V, then we can define the characteristic polynomial of T to be the characteristic
polynomial of any matrix TS for T, that is, with respect to any basis S of V.
We say that  is an eigenvalue of T if  is a root of the characteristic polynomial of T. We
say that a non-zero vector v  V is an eigenvector for T associated to , if:

T Sv S  v S,
again, for any choice of basis S.
More generally, if V is infinite dimensional, we say that  is an eigenvalue for T and a
non-zero vector v  V is an eigenvector for T associated to  if:

Tv   v.
We will denote the corresponding eigenspace by:

EigT,  v  V |Tv  v,
which is a subspace of V. Again, 0V  EigT,, even though 0V is never an eigenvector.

Proof: We already know that any two matrices for T (with respect to two different bases), are similar,
thus we have the same characteristic polynomials and the same eigenvalues. Now, if a non-zero vector
v  V is an eigenvector for T associated to , and S and B are two different bases for V, we have to
show that:

T Sv S  v S if and only if TBv B  v B,

that is, it does not matter how we choose coordinates for V and T. But from the previous Sections, we
have the relationships:

v S  CB,Sv B, and TS  BSTBBS
1,

where CB,S is the change of basis matrix from B to S. In general, we saw that if B, B / and S are any
three bases for V, then:

CB,B /  B / S
1BS.

Thus, if we let B /  S, we get:
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CB,S  SS
1BS  In

1BS  BS,

since the coordinates of the members of S with respect to S form the identity matrix. Thus, we are
ready to substitute:

TSv S  BSTBBS
1  CB,Sv B

 BSTBBS
1  BSv B  BSTBv B.

Thus, we always get TSv S  BSTBv B.

Now, suppose TBv B  v B. We must show that TSv S  v S. But:

TSv S  BSTBv B  BS  v B    BSv B    v S,

using the Change of Basis Formula in the last step.
Similarly, we can reverse this process because BS is an invertible matrix, and BS

1  SB. Thus,
the eigenvectors of T with respect to  do not depend on the choice of basis for V. The proof that
EigV, is a subspace of V is identical to our proof for eigenspaces of a matrix A as subspaces of
n.

Example: Consider the differentiation operator D on the infinite dimensional function space C1.
The constant functions f x  c are the only functions with zero derivatives, and thus they are
eigenvectors for   0 (in other words, they make up the nullspace of this operator). Similarly:

d
dx e5x  5e5x,

and therefore f x  e5x is an eigenvector for   5. More generally, f x  ex is an eigenvector for
any real number . Notice that we do not have a characteristic polynomial to help us find these
eigenvalues and eigenvectors. We will need a course in Differential Equations to prove that in fact the
only eigenvectors of D from C1 associated to  are of the form f x  Cex. 

Example: Let us bring back T : 2  2, the linear operator given by:
Tpx  2px  x  5p /x  x2  3x  7p //x.

We found that its matrix with respect to the standard basis S  1, x, x2 is:

TS 

2 5 14
0 3 4
0 0 6

.

Since this is upper triangular, the characteristic polynomial is: p    2  3  6, with
distinct eigenvalues   2, 3 and 6. Thus, each eigenspace must be 1-dimensional, as we saw in
Section 6.3. As before, let us simultaneously find the eigenvectors by finding the reduced row echelon
forms of the matrices TS  I3 for each of the values of :

TS  2I3 

0 5 14
0 1 4
0 0 4

, with rref
0 1 0
0 0 1
0 0 0

;
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TS  3I3 

1 5 14
0 0 4
0 0 3

, with rref
1 5 0
0 0 1
0 0 0

, and

TS  6I3 

4 5 14
0 3 4
0 0 0

, with rref
1 0 31/6
0 1 4/3
0 0 0

.

The coordinates with respect to S of the single basis vector for each of the respective eigenspaces are
therefore:

1, 0, 0, 5, 1, 0 and 31, 8, 6.
Lastly, we decode these coordinates using the standard basis S  1, x, x2, and get:

EigT, 2  Span1,
EigT, 3  Span5  x, and
EigT, 6  Span31  8x  6x2.

We can compute their images under T:

T1  2  2  1,
T5  x  25  x  x  5  1  3  5  x, and

T31  8x  6x2   231  8x  6x2   x  58  12x  x2  3x  712
 186  48x  36x2  6  31  8x  6x2 .

and see that they are indeed eigenvectors, respectively, for   2, 3 and 6. 

Diagonalization of Operators

Now that we know how to find eigenvalues and eigenspaces for linear operators, we can generalize the
diagonalization process to operators:

Definition/Theorem: Let T : V  V be a linear operator acting on a
finite dimensional vector space V.
We say that T is diagonalizable if we can find a basis B for V such that
TB is a diagonal matrix.
Thus, T is diagonalizable if and only if TS is a diagonalizable matrix
for any choice of basis S of V.

Example: Our previous operator T : 2  2 is diagonalizable because TS has 3 distinct
eigenvalues. Thus, with respect to the basis:

B  1, 5  x, 31  8x  6x2

consisting of eigenvectors, the matrix of T is diagonal:
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TB 

2 0 0
0 3 0
0 0 6

.

Notice also that if we construct BS, where S  1, x, x2, then:

BS 

1 5 31
0 1 8
0 0 6

, with inverse: BS
1 

1 5 3/2
0 1 4/3
0 0 1/6

, and so:

BS
1TSBS 

1 5 3/2
0 1 4/3
0 0 1/6

2 5 14
0 3 4
0 0 6

1 5 31
0 1 8
0 0 6



2 0 0
0 3 0
0 0 6

 TB,

as it should be.

6.7 Section Summary

Let P and Q be n  n matrices. We say that P is similar to Q, and write P  Q if we can find an
invertible n  n matrix R such that P  R1QR.

The relationship  is an equivalence relation on the set of n  n matrices. This means that for all n  n
matrices P, Q and S:
1. Similarity is Reflexive: P  P.
2. Similarity is Symmetric: If P  Q, then Q  P.
3. Similarity is Transitive: If P  Q, and Q  S, then P  S.

Similarity preserves many properties: If P  Q, then:
 detP  detQ.
 P is invertible if and only if Q is invertible.
 nullityP  nullityQ.
 rankP  rankQ.
 the characteristic polynomial of P and Q are exactly the same.
 the eigenvalues of P are exactly the same as the eigenvalues of Q.

 if  is a common eigenvalue, then the algebraic and geometric multiplicities of  are the same
for P and Q.

 P is diagonalizable if and only if Q is diagonalizable.
 trP  trQ, where the trace of A is: trA  a1,1  a2,2   an,n.
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The converses of these implications can be false: for example, two matrices can have exactly the same
characteristic polynomial, but they may not be similar.
If T : V  V is a linear operator acting on a finite dimensional vector space V, then we can define the
characteristic polynomial of T to be the characteristic polynomial of any matrix TS for T, that is, with
respect to any basis S of V.
We say that  is an eigenvalue of T if  is a root of the characteristic polynomial of T. We say that a
non-zero vector v  V is an eigenvector for T associated to , if TSv S  v S, again, for any
choice of basis S. More generally, even if V is infinite dimensional, we say that  is an eigenvalue for T
and a non-zero vector v  V is an eigenvector for T associated to , if Tv  v.
We denote the corresponding eigenspace by EigT,   v  V | Tv  v  V.
If V is finite dimensional, we say that T is diagonalizable if we can find a basis B for V such that TB
is a diagonal matrix. Thus, T is diagonalizable if and only if TS is a diagonalizable matrix for any
choice of basis S of V.

6.7 Exercises

For Exercises (1) to (5): For each of the operators below: (a) find TS, (b) find detT, (c) find the
characteristic polynomial of T, (d) find the eigenvalues of T, (e) find a basis for each eigenspace of T,
properly decoded as vectors of V, (f) diagonalize T, if possible, that is, find a basis B for which TB is
diagonal, and find TB itself. You may assume (or convince yourself mentally) that T is indeed linear.
If V is given as SpanS, you may safely assume that S is linearly independent and use S as the
standard basis for V.

1. T : 2  2, given by: Tpx  3x  5p /x  4x2  7p //x; S  1, x, x2.
2. T : 3  3, given by: Tpx  4px  2x  5p /x  3x2  2x  4p //x;

S  1, x, x2, x3.
3. D : V  V, where D is the differentiation operator and: V  Span sin5x, cos5x.
4. D : V  V, where D is the differentiation operator and: V  Spanex, e2x, e5x .
5. D : V  V, where D is the differentiation operator and: V  Spane3x, xe3x, x2e3x .

Warning: don’t forget the product rule and chain rule for this problem.

6. Let D2  D  D be the second derivative operator: D2 : C2  C0, acting on the vector
space of all twice differentiable functions with continuous first and second derivatives defined on
all real numbers. Note that both of these spaces are infinite dimensional, so we cannot construct a
matrix for D2, and thus we do not have a characteristic polynomial to work with either.

a. Show that f x  sinx and g x  cosx are both eigenvectors for D2.
What are the corresponding eigenvalues?

b. Show that h x  ekx is an eigenvector for D2 for all real numbers k.
What is the corresponding eigenvalue?

c. Show that every positive number  is an eigenvalue for D2, and find at least one
eigenvector.

d. Show that p x  sinkx is an eigenvector for D2 for all real numbers k.
What is the corresponding eigenvalue?

e. What can we conclude for q x  coskx?
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f. Show that f x  sinx and g x  cosx are both eigenvectors for D4  D2  D2, and
they have the same eigenvalue.

7. Suppose that T : 2  2 is an operator whose matrix with respect to S  1, x, x2 is:

TS 

5 2 3
0 1 6
0 0 4

.

Show that T is diagonalizable, find a basis B for 2 such that TB is diagonal, and find TB.

8. Suppose that T : 2  2 is an operator whose matrix is: TB  Diag4,7, 3, with respect to
the basis B  3  5x, 2  x2, 1  x  x2.
Find TS, where S is the standard basis S  1, x, x2.

9. Show that the relationship x  y among human beings, where x  y if x and y have the same
birthday is an equivalence relation (not necessarily on the same year).
How many equivalence classes are there?

10. Fix an integer n  1. Define a relation on  via: x  y if and only if x  y is a multiple of n, in
other words, x  y  kn for some integer k.

a. Show that this is an equivalence relation.
b. If n  2, show that the equivalence classes of  under this relation are the sets of even and

odd integers, as seen in one of the Examples.
c. If n  3, show that there are 3 equivalence classes of  under this relation.
d. In general, show that there are n equivalence classes of  under this relation. What is the

smallest positive member in each of these equivalence classes?

11. Suppose that S is the set of all vector spaces (both finite and infinite dimensional spaces). Define
a relation on S via: V  W if and only if V is isomorphic to W.
Recall this means that there exists a linear transformation T : V  W that is both one-to-one and
onto. Prove that  is an equivalence relation.
Follow up: suppose that V has dimension n. Describe the other members of the equivalence class
of V.

12. Prove that for every fixed scalar k, the only matrix that is similar to k  In is k  In itself.

13. Suppose that D  Diagd1, d2, . . . , dn  is a diagonal matrix, and E is another n  n diagonal
matrix that contains the same entries on the main diagonal as D, except possibly in a different
order. Prove that E is similar to D.
Note: the entries do not have to be distinct. Hint: Think of permutations and row operations.

14. Prove that if S  1, 2, . . . , n  is a set of n distinct real numbers, and A and B are n  n
matrices whose eigenvalues are exactly the members of S, then A and B are similar.
Warning: you are not allowed to use any of the properties that are preserved by similarity, since
you may only use these properties if you already know that A and B are similar. Instead, recall
what we know about matrices with distinct eigenvalues from Section 6.3.

15. Prove that for any two n  n matrices A and B: trAB  trBA. Hint: all you need to do is look
at each diagonal entry of both AB and BA.
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16. Properties Preserved by Similarity: We will complete the proofs of the properties stated in the
main theorem for similar matrices. Suppose that P and Q are n  n matrices and P  Q, that is, P
is similar to Q.

a. Write down the definition of P  Q.

b. Use (a) directly to show that detP  detQ.
c. Use (a) directly to show that P is invertible if and only if Q is invertible.

d. Show that the characteristic polynomials of P and Q are exactly the same.

Hint: First show that In  R1InR, which is basically the idea behind Exercise 13
above.

e. Show that the eigenvalues of P are exactly the same as the eigenvalues of Q.

f. Show that if  is a common eigenvalue of P and Q, then the algebraic multiplicity of  with
respect to P is the same as its algebraic multiplicity with respect to Q.

g. Preliminary to the next part: Suppose that v1, v2, . . . , vk  is a linearly independent set of
vectors from EigQ,. Prove that the set of vectors: R1v1, R1v2, . . . , R1vk  is a
linearly independent set of vectors from EigP,, where P  R1QR.

Hint: slowly compute R1QRR1vi , and use the fact that R is invertible.
State and prove an analogous statement regarding a set of vectors from EigP,.

h. Show that if  is a common eigenvalue of P and Q, then the geometric multiplicity of 
with respect to P is the same as its geometric multiplicity with respect to Q.

Hint: use the previous Exercise to convert a basis for EigP, to a set of linearly
independent vectors from EigQ,, and vice versa, starting with a basis for EigQ,.
What does each construction imply about the relative dimensions of EigQ, and
EigP,?

i. Show that nullityP  nullityQ. Hint: consider two cases: both P and Q are invertible
and both P and Q are not invertible.

j. Show that rankP  rankQ.
k. Show that P is diagonalizable if and only if Q is also diagonalizable.

Reminder: you must show both implications.

l. Show that trP  trQ. Hint: Use Exercise 15.

17. Suppose that A is a diagonalizable n  n matrix, with eigenvalues 1, 2, , n (possibly with
repetitions). Prove that:

trA  1  2   n.

Thus, the trace of a diagonalizable matrix is the sum of all its eigenvalues, taking into account
multiplicities.

18. Let T : V  V be an operator on a finite-dimensional vector space V. Prove that T is
diagonalizable if and only if there exists a basis B for V consisting of eigenvectors for T.
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A Summary of Chapter 6

In this Chapter, all matrices are n  n or square.
We say that  is an eigenvalue of A, and v is an eigenvector for A associated to , or simply an
eigenvector for , if Av  v, where v is a non-zero vector of n.
We can find an eigenvalue  and an eigenvector v  n such that Av  v if and only if
detIn  A  0. This equation is called the characteristic equation of A. The determinant in this

equation is a polynomial whose highest term is n. It is called the characteristic polynomial of A,
denoted pA, or simply p.
Let A be a triangular n  n matrix, with main diagonal entries c1, c2, . . . , cn. Then:
p    c1   c2   cn , and the eigenvalues are c1, c2, . . . , cn.
A is invertible if and only if   0 is not an eigenvalue for A.
If  is a fixed eigenvalue of A, we define the eigenspace of A associated to , to be:

EigA,  v  n |Av  v  n.

We say that A is diagonalizable if we can find an invertible matrix C such that
C1AC  Diag1, 2, . . . , n . We also say that C diagonalizes A.
A is diagonalizable if and only if we can find a set of n linearly independent eigenvectors for A, say
v1, v2, . . . , vn . If this is the case, then the diagonalizing matrix C is the matrix whose columns are
v1, v2, . . . , vn, and the diagonal matrix D contains the corresponding eigenvalues along the main
diagonal.
Let S  v1, v2, . . . , vk  be an ordered set of eigenvectors for A, and suppose that the corresponding
eigenvalues 1, 2, . . . , k for these eigenvectors are all distinct. Then, S is linearly independent.
Let A have distinct (possibly imaginary) eigenvalues 1, 2,  , k. Suppose p factors as
p    1 n1    2 n2      k nk .
We call n i the algebraic multiplicity of  i, and dimEigA, i  the geometric multiplicity of  i. We
agree that dimEigA, i   0 if  i is an imaginary eigenvalue (this will be upgraded in Chapter 8).
For any eigenvalue  i of A, the geometric multiplicity of  i is at most equal to the algebraic
multiplicity of  i. Thus, A is diagonalizable if and only if the geometric multiplicity of  i is exactly
equal to its algebraic multiplicity, for all  i.
If A has n distinct (real) eigenvalues, then A is diagonalizable.
For any bases B and B / for n, there exists an invertible n  n matrix CB,B / such that for all vectors v
of n, v B /  CB,B / v B.

The matrix CB,B / is called the change of basis matrix from B to B /. We can explicitly find CB,B / by
performing the Gauss-Jordan algorithm on the augmented matrix B / | B , where this notation means
that we assemble as the columns of this matrix the vectors in B /, followed by the vectors of B. At the
end of the process, we obtain In | CB,B / .

Consequently, the columns of CB,B / are simply the coordinate matrices of the members of B with
respect to B /, that is, if B  v1, v2, . . . , vn, then:

CB,B /  v1 B / v2 B /  vn B / .
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Moreover, C
B,B /
1  CB /,B.

Let T : n  m be a linear transformation, B a basis for n, and B / a basis for m. Then:
T   B / T B,B / B1, where B is the matrix whose columns are the vectors of B, and similarly for
B / . In particular, if T : n  n is an operator, and B is a basis for n (used to encode both the
domain and the codomain), then T   BT BB

1.
More generally, for any two bases B and B / for a vector space V, with n  dimV, there exists an
invertible n  n matrix CB,B / such that for all vectors v  V, v B /  CB,B / v B. The matrix CB,B / is
called the change of basis matrix from B to B /.
Let T : V  W be a linear transformation of finite dimensional vector spaces, B and S bases for V, and
B / and S / bases for W. Then: T S,S/  B / S/ T B,B / BS

1.

In particular, if T : V  V is an operator, then T S  BST BBS
1.

Let P and Q be n  n matrices. We say that P is similar to Q, and write P  Q if we can find an
invertible n  n matrix R such that P  R1QR.
Similarity is an equivalence relation on the set of n  n matrices, that is, for all n  n matrices P, Q
and S: (a) P  P, (b) If P  Q, then Q  P, (c) If P  Q, and Q  S, then P  S.

Similarity preserves many properties: If P  Q, then:
 detP  detQ.
 P is invertible if and only if Q is invertible.
 nullityP  nullityQ.
 rankP  rankQ.
 the characteristic polynomial of P and Q are exactly the same.
 the eigenvalues of P are exactly the same as the eigenvalues of Q.
 if  is a common eigenvalue, then the algebraic and geometric multiplicities of  are the same

with respect to P or Q.
 P is diagonalizable if and only if Q is diagonalizable.
 trP  trQ, where trA  a1,1  a2,2   an,n.

Let T : V  V be a linear operator acting on a finite dimensional vector space V. If S and B are bases
for V, then T S is similar to T B . Thus, we can define the determinant of T as:
detT  |T |  detT B  , where B is any basis for V, and this number does not depend on the choice
of B. The characteristic polynomial of T is the characteristic polynomial of any matrix T B for T.

We say that  is an eigenvalue of T if  is a root of the characteristic polynomial of T. We say that a
non-zero vector v  V is an eigenvector for T associated to , if T Bv B  v B , again, for any
choice of basis B.

More generally, even if V is infinite dimensional, we say that  is an eigenvalue for T and a non-zero
vector v  V is an eigenvector for T associated to , if Tv  v. We denote the corresponding
eigenspace by EigT,  v  V |Tv   v  V.

If V is finite dimensional, we say that T is diagonalizable if we can find a basis B for V such that T B

is a diagonal matrix. Thus, T is diagonalizable if and only if T S is a diagonalizable matrix for
any choice of basis S of V.
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Chapter 7
Geometry in the Abstract:

Inner Product Spaces
In this Chapter, we will look for generalizations of the dot product operation in abstract vector spaces,
which are called inner products. We will require that these inner products possess four of the
properties that dot products possess, and from these properties, derive other properties that are shared
with the dot product. Because of these properties, we will see that the Cauchy-Schwarz Inequality
from Chapter 1 is still true in such an inner product space, and thus we will be able to generalize the
concepts of the length of a vector, and the angle and distance between two vectors. In particular, we
will be able to decide when two vectors are orthogonal or perpendicular to each other.
We will show that for any subspace W of an inner product space, we can construct the orthogonal
complement, W, such than any member of W is orthogonal to any member of W. Recall that we did
this in Chapter 1 for subspaces of Euclidean space, and to find a basis for W, we find the nullspace of
a matrix whose rows form a basis for W. Unfortunately, this does not generalize well in an abstract
inner product space, but The Gram-Schmidt Algorithm will do this for us.
When we constructed the projection and reflection operators across lines and planes in 2- and
3-dimensional Euclidean space back in Chapter 2, we first showed that we can always decompose a
vector in these spaces as the sum of a vector on the given line or plane, and a vector orthogonal to this
line or plane. Similarly, we will generalize this orthogonal decomposition in terms of pairs of
subspaces W and W of an inner product space: any vector v  V can be expressed as a sum:
v  w 1  w 2, where w 1  W and w 2  W. Likewise we will generalize the construction of a
projection operator onto a subspace W of V.

We will see a special family of invertible matrices, called orthogonal matrices, that have the special
property that their inverse is simply their transpose. This will require an orthogonality condition among
the rows and columns of the matrix. We will demonstrate that symmetric matrices can always be
diagonalized by an orthogonal matrix, but this property will be proven in Chapter 8 in greater
generality. We will find approximate solutions to inconsistent linear systems using The Method of
Least Squares and factor a matrix with independent columns into an orthogonal and upper triangular
matrix (called the QR-decomposition).

577



7.1 Axioms for an Inner Product Space

Way back in Chapter 1, at the beginning of our voyage, we saw the dot product in n:

u  v  u1v1  u2v2   unvn,
where u  u1, u2, . . . , un  and v  v1, v2, . . . , vn  as usual. The dot product takes two vectors u and
v and gives a scalar as its value. We derived several desirable properties of the dot product, and we
will use four of them in order to generalize its construction in abstract vector spaces:

Definition — The Axioms of an Inner Product Space:
Let V be a vector space. A bilinear form  |  on V is a function that takes two vectors u,
v  V, and produces a scalar, denoted u |v .
An inner product on V is a bilinear form on V, such that the following properties are
satisfied by all vectors u, v and w  V:

1. The Symmetric Property u |v   v |u .

2. The Homogeneity Property k  u |v   k  u |v .

3. The Additivity Property u  v |w   u |w   v |w .

4. The Positivity Property If v  0V, then v |v   0.

We also say that V is an inner product space under the inner product  | .

Notice that the Positivity Property deals only with non-zero vectors. It turns out that the Additivity and
Symmetric Properties are enough to show that the inner product of the zero vector with any vector, as
expected, is zero:

Theorem: Let V be an inner product space. Then, for any v  V:

v |0V  0V |v  0.

In particular:
0V |0V  0.

Proof: Since we know that 0V  0V  0V, we get:

v |0V  v |0V  0V  v |0V  v |0V ,

by the Additivity Property. Since v |0V is some real number, it has a negative. We can add this
negative to both sides of the equation and get:

v |0V   v |0V  v |0V  v |0V   v |0V , thus

0  v |0V  0  v |0V .

By the Symmetric Property, 0V |v  v |0V  0 as well. 
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Note that the Symmetric Property gives us Homogeneity and Additivity properties in the right vector
as well, that is:

u |k  v   k  u |v , and
u |v  w   u |v   u |w .

If k  1, we also have:
u  v |w   u  1  v |w   u |w   1  v |w 

 u |w   v |w  and similarly,
u |v  w   u |v   u |w .

Euclidean spaces under the ordinary dot product are inner product spaces according to our definition
above, where we write u  v instead of u |v . Obviously, there are many other kinds of inner products,
and we will now see several types and examples of them.

Weighted Dot Products

The easiest way to change the dot product is to incorporate a list of weights for each term. For this
purpose, let 1, 2, . . . , n be n positive numbers. We define a new inner product on n by:

u |v   1u1v1  2u2v2   nunvn.

Example: Let us consider 3 under the bilinear form:

u |v   3u1v1  5u2v2  2u3v3,

where u and v are written as usual. Here, our weights are 3, 5 and 2. For example, if u  4,1, 6
and v  2, 2,3, then:

u |v   3  4  2  5  1  2  2  6  3  22.

Note that in contrast, u  v  8  2  18  12.
The bilinear form is obviously symmetric (we can reverse u i and v i and homogeneous (we can factor
out k). Let us verify that it is additive:

u  v |w   3u1  v1 w1  5u2  v2 w2  2u3  v3 w3

 3u1w1  3v1w1  5u2w2  5v2w2  2u3w3  2v3w3

 u |w   v |w ,

after some rearrangements. Now, suppose v  3 is a non-zero vector, and consider:

v |v   3v1
2  5v2

2  2v3
2.

Since at least one coordinate v1, v2 or v3 is not zero, one of these squares is strictly positive, and thus
v |v   0. Therefore our inner product is positive.

The ideas behind these calculations can of course be generalized to show that this bilinear form is an
inner product for all positive weights 1, 2, . . . , n.
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Inner Products Generated by Isomorphisms

We can generalize the dot product in n further by considering any isomorphism:

T : n  n,
(that is, a one-to-one and onto operator) and define a new inner product on n by:

u |v   Tu  Tv.

This looks fairly abstract, but recall that T is an invertible n  n matrix, and we will use this
invertibility to show that all the properties of an inner product are satisfied.

Example: Let T : 2  2 be given by:

T 
5 3
3 2

.

Since detT  1, T is invertible. Now, suppose u  4,7 and v  1, 6. Then:

Tu  
5 3
3 2

4
7


1
2

, and

Tv  
5 3
3 2

1
6


13
9

.

Thus, we have:

u |v   Tu  Tv  1,2  13, 9  1  13  2  9  31.

Again, note that u  v  41  7  6  46 is different from u |v   31.
Now let us verify the four properties, where T : n  n is any isomorphism. The bilinear form is
obviously symmetric because the dot product is symmetric. It is also homogenous because T is
homogenous:

k  u |v   Tk  u  Tv  k  Tu  Tv  k  u |v .

Likewise, we will leave it to the reader to show that the bilinear form is additive because T is additive.
Finally, suppose v  n. Then:

v |v   Tv  Tv  Tv2,

where we used the property that x2  x  x for any vector x  n, and x is the length of x. But
we know that if v  0 n, then Tv  0 n because T is an isomorphism and thus kerT  0 n only.
Thus Tv2  0 and our inner product is positive. 

In the Exercises, you will prove that this can be further generalized to abstract vector spaces, and not
just Euclidean spaces.
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Polynomial Evaluations

Let us now look at an example of an inner product in our polynomial spaces n. Let us randomly
choose n  1 distinct numbers x1, x2, . . . , xn1. Now, define:

px |qx   px1 qx1   px2 qx2    pxn qxn   pxn1 qxn1 .

Example: Let us consider 2, x1  2, x2  0, x3  1, and the bilinear form:

 px |qx  p2q2  p0q0  p1q1.

For example, let px  3x2  5x  2, and qx  7x  6. In order to compute the inner product, let us
make a table of values:

x i px i  qx i 

2 24 20
0 2 6
1 0 1

Thus we get:

3x2  5x  2 |7x  6   2420  26  0  1  492.

Let us proceed with checking the four properties:

The bilinear form is clearly symmetric and homogeneous from the definition (just change order and
factor out the k, respectively). Let us check the additivity property:

 px  qx |rx 

  p2  q2r2   p0  q0r0   p1  q1r1

 p2r2  q2r2  p0r0  q0r0  p1r1  q1r1

 p2r2  p0r0  p1r1  q2r2  q0r0  q1r1

  px |rx   qx |rx,

so the inner product is additive. Lastly, if px is any non-zero polynomial, then:

 px |px    p2 2   p0 2   p1 2.

Since px has degree at most 2, it has at most 2 real roots. Thus, at least one of the three values
p2, p0 or p1 is non-zero, and therefore the corresponding square is strictly positive. Thus
 px |px  0, and the inner product is positive. 

This proof also shows that we need to evaluate our polynomials at n  1 distinct x-coordinates to define
our inner product, in order to guarantee the positivity property for a polynomial of degree at most n.
Recall that the dimension of n is n  1, and it is not a coincidence that we need this many scalars.
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Inner Products Induced by Integrals

Let us bring Calculus into the picture. We will consider all continuous functions on a closed interval
I  a, b, that is, the members of the vector space CI. We will define an inner product on this
space as:

 f x |g x   
a

b
f x  g xdx.

We know that the product of two continuous functions is again continuous, so this integral definitely
exists.

Example: Let I  0,/2, so we have:

 f x |g x   
0

/2
f x  g xdx.

Suppose f x  sinx and g x  cosx. Then:

 sinx | cosx  
0

/2
sinx  cosxdx  1

2 sin2x
0

/2
 1

2 .

where we used the substitution u  sinx in order to find the antiderivative.

Now let us check that the four properties of an inner product space are valid for any interval
I  a, b. Again, the symmetric and homogenous properties are easily verified. As for the additive
property:

 f x  g x |h x   
a

b
  f x  g x  h xdx

 
a

b
f x  h xdx  

a

b
g x  h xdx

  f x |h x  g x |h x,

and thus additivity is inherited from the additivity of the definite integral that we know is true from
Calculus. However, it is again the positivity property that is most difficult to prove. Let f x be any
continuous function on I. Then:

 f x | f x   
a

b
 f x 2 dx.

If f x is not the zero function, then we must have f c  0 for at least one point c  a, b. Thus,
 f c2  0. To simplify our notation for the rest of the proof, let us write:

gx   f x2, a continuous function on all of a, b, with
gx  0 for all x  a, b, and gc  0.

Notice that we used the property that the product of two continuous functions is also continuous, and
so  f x2 is also continuous.
In order to prove the positivity property, we will need to rigorously define two terms from Calculus.
Since we are dealing with a continuous function, we will first recall the definition of continuity:
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Definition: We say that g x is continuous at x  c if limxc g x  g c.

Since it appears above, the second concept we must recall is the definition of a limit:

Definition: We say that limxc g x  L if for any positive number , we can find another
positive number , such that: if 0  |x  c |  , then |g x  L |  .

We include the inequality 0  |x  c | in the definition above to indicate that |g x  L |   except
possibly at x  c, because it is not necessary for a function to be defined at x  c in order for it to
have a limit at this point. Notice, however, that if gx is also continuous at x  c, then L  gc, so
gx  L  0, and thus |g x  L |   is automatically true. Thus, the concluding implication above
can be slightly simplified to:

if |x  c |  , then |g x  L |  .

Now we are ready for our Proof. For simplicity, let us assume that c is not an endpoint of a, b. By
the definition of continuity, we must have:

limxc g x  g c.

Now, the definition of “limit” says that we can choose any positive number  so that another positive
number  exists such that the displayed implication above is true. For reasons we will see below, we
will choose the positive number   1

2 g c. The definition guarantees that we can find  such that:

if |x  c|  , then |g x  g c |  1
2 g c.

We can simplify the two inequalities above into compound inequalities:

if c    x  c  , then g c  1
2 g c  g x  g c  1

2 g c.

Finally, simplifying this, we get:

if c    x  c  , then 1
2 g c  g x  3

2 g c.

We may also assume that c  , c   is safely within a, b. These two inequalities are illustrated in
the diagram below:

The Definition of Limit Applied at c, gc
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The crucial part is that g x  1
2 g c  0 on the interval c  , c  . Within the intervals

a, c   and c  , b, all we know is that g x  0, and so the integral of g x over these two
intervals is also at least zero.

Now, let us break up the integral that we started with into three parts and get:


a

b
 f x2 dx  

a

b
g xdx

 
a

c
g xdx  

c

c
g xdx  

c

b
g xdx

 0  
c

c 1
2 g cdx  0

 1
2 g c 2

  f c2,

which is a strictly positive number. Thus the inner product is positive.
This argument can be modified if the point c such that f c  0 happens to be an endpoint of the
interval a, b, i.e. if we are only told that f a  0 or f b  0, by using the definitions of right and
left continuity. This is found in the Exercises.

A Non-Example

Recall that when we created abstract vector spaces, we could define different and strange kinds of
“vector addition” and “scalar multiplication,” but we had to make sure that all Ten Axioms of a vector
space are fulfilled. Similarly, just because we specify how to compute a bilinear form, it doesn’t mean
that all four properties of an inner product space are fulfilled by this bilinear form.

(Non-)Example: Let 2 be given the bilinear form:

u |v   u1v2  u2v1,

where u  u1, u2  and v  v1, v2  as usual. Notice that the subscripts of v are now switched.
However, this bilinear form is still symmetric because:

v |u   v1u2  v2u1  u1v2  u2v1  u |v .
It is still homogeneous because:

k  u |v   ku1 v2  ku2 v1  k  u |v .
Is it still additive?

u  v |w   u1  v1 w2  u2  v2 w1

 u1w2  u2w1  v1w2  v2w1

 u |w   v |w .
Yes! So far so good. Now, consider:

v |v   v1v2  v2v1  2v1v2.
Thus, if v1 and v2 are of opposite signs, then v |v   0. Thus, we violate the positive property, and
this bilinear form is not an inner product on 2. 

584 Section 7.1 Axioms for an Inner Product Space



7.1 Section Summary

Let V be a vector space. An inner product on V is a bilinear form  |  on V, that is, a function that
takes two vectors u, v  V, and produces a scalar, denoted u |v , such that the following properties
are satisfied by all vectors u, v and w  V:

1. The Symmetric Property u |v   v |u .

2. The Homogenous Property k  u |v   k  u |v .

3. The Additive Property u  v |w   u |w   v |w .

4. The Positive Property If v  0V, then v |v   0.

We say that V is an inner product space under the inner product  | .

Let V be an inner product space. Then, for any v  V, we have: v |0V  0V |v  0. In particular,
0V |0V  0.

Let 1, 2, . . . , n be a list of n positive numbers. We can define a weighted inner product on n by:
u |v   1u1v1  2u2v2   nunvn.
Any isomorphism T : n  n defines a new inner product on n by:

u |v   Tu  Tv.

If c1, c2, . . . , cn1 are distinct real numbers, we can define an inner product on n by:

 px |qx   pc1 qc1   pc2 qc2    pcn qcn   pcn1 qcn1 .

We can define an inner product on Ca, b by:  f x |g x   
a

b f x  g xdx.

7.1 Exercises

For Exercises 1 to 8: Prove that the following bilinear forms are inner products in the indicated
vector spaces V:

1. V  3, and for u  u1, u2, u3  and v  v1, v2, v3 :

u |v   2u1v1  u2v2  5u3v3.

2. V  3, and for u  u1, u2, u3  and v  v1, v2, v3 :

u |v   2
5 u1v1  1

5 u2v2  2
5 u3v3.

3. V  4, and for u  u1, u2, u3, u4  and v  v1, v2, v3, v4 :

u |v   4u1v1  u2v2  3u3v3  6u4v4.

4. V  3, and for u, v  3: u |v   Tu  Tv, where T : 3  3 is given by:

T 
2 1 4
0 1 1
0 0 3

.
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5. V  3, and for u, v  3: u |v   Tu  Tv, where T : 3  3 is given by:

T 
1 1 0
1 1 1

0 1 1

.

6. V  4, and for u, v  4: u |v   Tu  Tv, where T : 4  4 is given by:

T 

2 0 0 0
1 1 0 0
0 1 4 0
4 1 3 5

.

7. V  2, and for px, qx  2:

 px |qx   p2q2  p0q0  p1q1.

8. V  3, and for px, qx  3:

 px |qx   p1q1  p1q1  p2q2  p4q4.

For Exercises 9 to 18: Find the inner product of each pair of vectors in the indicated space:
9. u  6, 2, 4, v  1, 3,2 under the inner product of Exercise 1.
10. u  6, 2, 4, v  1, 3,2 under the inner product of Exercise 2.
11. u  3,7, 2, 1, v  1, 2,2, 5 under the inner product of Exercise 3.
12. u  6, 2, 4, v  1, 3,2 under the inner product of Exercise 4.
13. u  6, 2, 4, v  1, 3,2 under the inner product of Exercise 5.
14. u  3,7, 2, 1, v  1, 2,2, 5 under the inner product of Exercise 6.
15. px  5  2x  x2, qx  7  3x2 under the inner product of Exercise 7.
16. px  5  2x  x3, qx  7  5x2  x3 under the inner product of Exercise 8.
17. f x  cosx, g x  sinx, under the inner product given by:

 f x |g x  
0

/2
f x  g xdx.

18. f x  cosx, g x  sinx, under the inner product given by:

 f x |g x  
/4

/4
f x  g xdx.

19. Consider the bilinear form on 4 given by:

 px |qx   p1q1  p1q1  p2q2  p4q4,

which is the bilinear form on 3 from Exercise 8. Show that this is not an inner product on 4 by
finding a non-zero polynomial rx  4 such that  rx |rx   0. Hint: think of a factored
form for rx.

20. Decide whether or not the bilinear form on 3 given by:

u |v   4u1v3  5u2v1  7u3v2

is an inner product, where as usual, u  u1, u2, u3  and v  v1, v2, v3 .
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21. Decide whether or not the bilinear form on 2 given by:

 px |qx   p1q1  p0q0  p1q1

is an inner product. Look very carefully!
22. Decide whether or not the bilinear form on 2 given by:

 px |qx   3p2q2  p0q0  2p4q4.

is an inner product.
23. A “Weighted” Integral:

a. Show that if a fixed function kx  Ca, b is always positive on a, b, then the bilinear
form on Ca, b given by:

 f x |g x  
a

b
f x  g x  k xdx

is an inner product.
b. Find sinx | cosx under the inner product given by:

 f x |g x  
0


f x  g x x  1dx

24. Show that the weighted inner product on n with positive weights 1 through n is exactly the
same as the inner product on n generated by the isomorphism:

Tx1, x2, . . . , xn   1 x1, 2 x2, . . . , n xn .

25. Prove that if W is an inner product space under  | W and T : V  W is a one-to-one linear
transformation of vector spaces, then we can also construct an inner product  | V on V by:

u |v V  Tu |TvW.

(we use the subscripts V and W on the symbol  |  so as not to confuse the two inner products).
Note that it is the codomain that needs to have an inner product, not the domain. Hint: you will
need the additivity and homogeneity properties of T. Furthermore, if T is one-to-one, then its
kernel . . .
Use Exercise 25 to prove Exercises 26 to 28:

26. Prove that if T : V  n is a one-to-one linear transformation, then we can construct an inner
product on V by:

u |v V  Tu  Tv.

27. Prove that if B is a fixed basis of a finite dimensional vector space V, then we can construct an
inner product on V by:

u |v V  u B  v B.

28. An Inner Product for Oz: Show that:
x |y   lnx  lny

is an inner product on the vector space  of positive real numbers under ordinary multiplication
and exponentiation, as seen in Section 3.1.

29. Suppose that f x is continuous and f a  0. Modify the proof in this Section to show that


a

b
 f x2 dx is still positive. You will need to write down the definitions of the terms right

continuity and right limit.
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30. Suppose f x is the piecewise function given as:

f x 
1 if x  1/2
0 if 0  x  1/2 or 1/2  x  1

a. Explain precisely (using the definitions stated in this Section) why f x is not continuous on
0, 1.

b. What type of discontinuity does f x have? Recall that the three common types are: (i)
removable, (ii) jump and (iii) infinite discontinuities.

c. Show that 
0

1
 f x2 dx  0, although f x itself is not the zero function.

This shows that continuity is essential for our integral example to be an inner product. Note:
since this is strictly speaking an improper integral, you must compute it by breaking it up
into two integrals and taking limits:


0

1
 f x2 dx  lim

a 1/2


0

a
 f x2 dx  lim

b 1/2


b

1
 f x2 dx.

d. Show that for any positive integer n, we can create a function f x that is not zero at n
distinct points, but 

0

1
 f x2 dx is still zero.

31. Inner Products on Spaces of Infinite Series:
Recall that a seriesn1

 an is absolutely convergent ifn1
 |an | converges.

A seriesn1
 an is only conditionally convergent ifn1

 an converges butn1
 |an | diverges.

a. Supposen1
 an andn1

 bn are both absolutely convergent series. Prove thatn1
 anbn

is also absolutely convergent.

Hint: Use the Ordinary Comparison Test, and explain why |an |  1 if n is “big enough.”

b. Part (a) shows that the bilinear form:


n1


an |

n1


bn  

n1


anbn

is a well defined quantity for two absolutely convergent infinite series, that is, the series on
the right will converge. Show that it is in fact an inner product on the vector space of
absolutely convergent infinite series. Notice that this looks like an infinite version of the
ordinary dot product.

c. Find n1
 1

2n |n1
 1

3n . What kind of a series do you get?

d. Find n1
 1n

3n |n1
 1

5n .

e. Find an example of two conditionally convergent series whose inner product, under the
definition above, is infinite, in other words, it is undefined. This shows that the inner product
above is not well-defined on the vector space of convergent series.
Hint: use two alternating p-series of the form

n1

 1n

np , where 0  p  1.

Why are these series only conditionally convergent?
How should you choose the p’s so that the inner product of the two series is infinite?
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7.2 Geometric Constructions in Inner Product Spaces

The four axioms of an inner product space are sufficient for us to prove properties similar to those of
the dot product that we saw in Chapter 1. We can also construct the concept of the length of a vector,
the distance between two vectors and the angle between two vectors in any inner product space, and
not just Euclidean space.

Further Properties of Inner Products

Aside from the four basic properties that an inner product must possess, we summarize other
properties that every inner product space must possess below, some of which we have already proven.
The rest are left as Exercises.

Theorem: Let V be an inner product space under the bilinear form  | . Then the following
properties also hold, for all vectors u, v and w  V, and for all k  :
1.  u |k  v   k  u |v 
2. u |v  w   u |v   u |w 
3. u  v | , w   u |w   v |w 
4. u |v  w   u |v   u |w 
5. u  v |u  v   u |u   2u |v   v |v 
6. u  v |u  v   u |u   2u |v   v |v 
7. u  v |u  v   u |u   v |v 
8. u |0V  0  0V |u

Notice that Properties 5, 6 and 7 look like formulas that we see in basic algebra, such as:

a  ba  b  a2  2ab  b2 and a  ba  b  a2  b2.

Again, we are only allowed to use the four axioms of inner product spaces in order to prove the
additional eight properties above.

Norms and Distances

The positivity property allows us to generalize the concept of the norm or length of a vector in an inner
product space as well as distances between two vectors:

Definition: Let v, u  V, an inner product space. Define the norm or the length of v by:

v  v |v  , in other words:

v2  v |v .

In particular, we say that v is a unit vector if v  1.
The set of all unit vectors in V is called the unit sphere or unit circle of V.
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We can also define the distance between two vectors by:
d u, v   u  v.

We can thus interpret the distance between two vectors geometrically as the separation between the
heads of u and v, when their tails are together, as we did in Chapter 1:

 

.

d ( u , v )

v

u

.

u  v

Geometric Interpretation of d u, v 

Example: Let px  3x2  5x  2  2, under the inner product:

 px |qx   p2q2  p0q0  p1q1.

Since p2  24, p0  2 and p1  0, we get:

 px |px   242  22  02  580, so

px  580 .

If we want a unit vector parallel to px, we have the choice of either:

1
580

3x2  5x  2 or  1
580

3x2  5x  2. 

Example: Consider the weighted inner product on 2 given by:

u |v   4u1v1  9u2v2.

Let us describe the “unit sphere” in 2 under this new inner product. We must find all the unit vectors:

1  u | u  4u1
2  9u2

2.

But notice we can rewrite this as the equation:

u1
2

1/22  u2
2

1/32  1.

This is simply an ellipse in u1 and u2, with major axis along u1 of length 1/2, and minor axis along u2
of length 1/3. Thus, the “unit sphere” is the set of all vectors in 2 that, when drawn in standard
position, have their endpoints on the ellipse:
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.

u2





u1

.

Some Vectors on The “Unit Circle” of 2 under u |v   4u1v1  9u2v2

In general, therefore, we can say that the weighted inner product in n generates a unit sphere that is
actually an ellipsoid, as we call them in Multivariable Calculus.

The norm and distance functions induced by an abstract inner product enjoy the following familiar
properties. We leave their proofs as Exercises.

Theorem: For all vectors u, v in an inner product space V, and all k  :
1. k  u  |k |  u.
2. d u, v   d v, u .
3. d k  u, k  v   |k |  d u, v .

The Cauchy-Schwarz Inequality

The Theorem with this name that we saw in Chapter 1 is true in general for any inner product space,
again, thanks to the four axioms:

Theorem — The Cauchy-Schwarz Inequality:
For all vectors u and v from an inner product space V:

|u |v  |  u  v,

or equivalently: u |v 2  u |u   v |v .

Proof: Although the proof is virtually identical in spirit to the version in Chapter 1, the Theorem’s
importance makes the proof worth revisiting and rewriting in terms of a general inner product and not
just the dot product:

Case 1. Suppose either u or v is the zero vector. We know that 0V  0, and from the additional
properties of the inner product, that u | 0V  0 and 0V | v  0. Thus, both sides of the
inequality are 0, and thus it is true.
Case 2. Suppose neither u nor v is the zero vector. Thus u  0 (i.e. its length is strictly positive).
Let us construct the linear combination w  ru  sv, where r and s are any two scalars. We know that
for any r and s:
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0  w2   ru  sv |ru  sv 

  ru |ru   2 ru |sv    sv |sv 

 r2  u |u   2rs  u |v   s2  v |v,

again, by our eight additional properties. Now, suppose we let s  u |u . We get:

0  r2  u |u   2r  u |u   u |v   u |u 2  v |v,

and since u |u   u2 is positive, we can divide it out, and get:

0  r2  2r  u |v   u |u   v |v.

Finally, we let r  u |v , and we get:

0  u |v 2  2  u |v   u |v   u |u   v |v
  u |v 2  u |u   v |v,

and this simplifies to:
u |v 2  u |u   v |v,

which is the second (equivalent) version of the Cauchy-Schwarz Inequality.

Example: In Section 7.1, we saw that 2 is an inner product space under:

 px |qx   p2q2  p0q0  p1q1.

For px  3x2  5x  2, and qx  7x  6, we constructed the table of values:

c i pc i  qc i 

2 24 20
0 2 6
1 0 1

and found that  px |qx   492. The same table of values will give us:

3x2  5x  2 |3x2  5x  2   242  22  02  580, and

7x  6 |7x  6   202  62  12  437.

Thus, we verify that: |492|  580  437  503. 45 as guaranteed. 

The Angle Between Two Vectors

Recall that in Chapter 1, we used the Law of Cosines to obtain the alternative formula:
u  v  uvcos

in 2 or 3, where  is the angle between the two non-zero vectors u and v, when they are in standard
position. This was because we visualize vectors in 2 or 3 as directed line segments, and so u and v
naturally form a triangle that we can actually see. Since we do not always have that ability in an
arbitrary vector space, The Cauchy-Schwarz Inequality is the key that allows us to define an angle
between any two vectors in an inner product space V.
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First, if neither u nor v is 0V, then their lengths are both positive, and the Cauchy-Schwarz Inequality
says that:

|u |v  |
uv

 1, or equivalently:  1  u |v 
uv

 1.

Since the cosine of any angle  satisfies 1  cos  1, we can define the angle between u and v to
be the angle  between 0 and , such that:

cos  u |v 
uv

.

In particular, if cos  0  u |v , then   /2, and we will say that u and v are orthogonal to
each other.

Now, if either vector is 0V, then we saw that both sides of the Cauchy-Schwarz Inequality are zero.
Thus, both the numerator and the denominator in our formula for cos are zero. But still, we have:

u |0V  0 or 0V |v  0.

Since we defined two non-zero vectors u and v to be orthogonal if u |v   0, then for the sake of
convention, we will agree that 0V is orthogonal to any other vector. Summarizing all this, we make the
following:

Definitions: If u and v are non-zero vectors in V, we define the angle between them as the
angle , where 0    , such that:

cos  u |v 
uv

.

Furthermore, we will say that u and v are orthogonal or perpendicular to each other if and
only if u |v   0. We write this symbolically as:

u  v if and only if u |v   0.

In particular, 0V is orthogonal to all vectors in V.

Example: Continuing with our previous example regarding 2 and the two indicated polynomials px
and qx, we have:

cos  492
580  437

 0. 977.

Note that this is quite close to 1, so in a sense, px  3x2  5x  2, and qx  7x  6 are almost
“opposite” to each other. The angle between them is not , but rather:

  cos10. 977  2. 9267 radians or 167.7 degrees.

Other Consequences of the Cauchy-Schwarz Inequality

As in Euclidean spaces and the dot product, the Cauchy-Schwarz Inequality produces an inequality
with a famous name, that we show below in two guises. We leave their proofs as Exercises:
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Theorem — The Triangle Inequality (Norm Version):
For any two vectors u and v in an inner product space V:

u  v  u  v.

Theorem — The Triangle Inequality (Distance Version):
For any three vectors u, v and w in an inner product space V:

d u, v   d u, w   d w, v .

Again, the Theorem gets its name from the ordinary triangle, where any side has smaller measure than
the sum of the measures of the two other sides. We can interpret these two versions as follows:

 

d (  u , v  )
d (  v , w  )

d (  u , w  )

u
v

.

.

||  v  ||

||  u + v  ||
u + v

||  u  ||

u

v

w

.

u  v  u  v d u, v   d u, w   d w, v 

The Two Triangle Inequalities

Similarly, as inspired by right triangles, we have a modern version of an ancient Greek’s discovery,
whose proof is also left as an Exercise:

Theorem — The Generalized Pythagorean Theorem:
Suppose that u and v are vectors from some inner product space V. Then: u and v are
orthogonal to each other if and only if:

u2  v2  u  v2.

 

||  u + v  ||

u

v

.

.

u + v

||  u  ||

||  v  ||

The Generalized Pythagorean Theorem
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7.2 Section Summary

Let V be an inner product space under  | . Then the following properties also hold, for all vectors u, v
and w  V:
1.  u |k  v   k  u |v 
2. u |v  w   u |v   u |w 
3. u  v | , w   u |w   v |w 
4. u |v  w   u |v   u |w 
5. u  v |u  v   u |u   2u |v   v |v 
6. u  v |u  v   u |u   2u |v   v |v 
7. u  v |u  v   u |u   v |v 

8. u |0V  0  0V |u

Let v, u  V. Define the norm or the length of v by:

v  v |v  , in other words, v2  v |v .

In particular, we say that v is a unit vector if v  1. The set of all unit vectors in V is called the unit
sphere or unit circle of V. We can also define the distance between two vectors by
d u, v   u  v.

For all vectors u, v in an inner product space V, and all k  :
1. k  u  |k |  u
2. d u, v   d v, u 
3. d k  u, k  v   |k |  d u, v 

The Cauchy-Schwarz Inequality: Let V be an inner product space with respect to  | . Then, for all
vectors u, v  V:

|u |v  |  u  v,
or equivalently: u |v 2  u |u   v |v .

If u and v are non-zero vectors in V, we define the angle between them as the angle  such that
cos  u |v /uv, where 0    .

Furthermore, we will say that u is orthogonal to v if and only if u |v   0. We write this
symbolically as: u  v  u |v   0. In particular, 0V is orthogonal to all vectors in V.

The Triangle Inequality (Norm Version): For any two vectors u and v in an inner product space
V: u  v  u  v.

The Triangle Inequality (Distance Version): For any three vectors u, v and w in an inner product
space V: d u, v   d u, w   d w, v .

The Generalized Pythagorean Theorem: Suppose that u and v are vectors from some inner product
space V. Then: u and v are orthogonal to each other if and only if u2  v2  u  v2.
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7.2 Exercises

For Exercises 1 to 5: Find the length of the following vectors under the indicated inner product
(these were seen in the Exercises in Section 7.1), and the two unit vectors that are parallel to them
(Note: all vectors in n are represented as u  u1, u2, , un , as usual):

1. u  3,4, 7  3, under the weighted dot product:

u |v   2u1v1  u2v2  5u3v3.

2. u  4,7,2, 6  4, under the weighted dot product:

u |v   4u1v1  u2v2  3u3v3  6u4v4.

3. u  6, 3,4  3, under the inner product u |v   Tu  Tv, where T : 3  3 is given
by:

T 
1 1 0
1 1 1

0 1 1

4. px  7  2x  5x2  2, under the inner product:

 px |qx   p2q2  p0q0  p1q1.

5. px  5  7x  3x2  x3  3 under the inner product:

 px |qx   p1q1  p1q1  p2q2  p4q4.

For Exercises 6 to 10: Find the (approximate) angle between the two vectors and the distance
between them, under the indicated inner product:

6. u  3,4, 7, v  2,5, 8, under the inner product of Exercise 1.
7. u  3,7, 2, 1, v  1, 2,2, 5, under the inner product of Exercise 2.
8. u  6, 2, 4, v  1, 3,2, under the inner product of Exercise 3.
9. px  7  2x  5x2, qx  3  4x  2x2, under the inner product of Exercise 4.
10. px  5  2x  x3, qx  7  5x2  x3 under the inner product of Exercise 5.

11. We found the length of px  3x2  5x  2  2 to be 580 , under the inner product of the
third Example. Find the length of px with respect to the inner product induced by the definite
integral:

 px |qx   
0

2
pxqxdx

(which is also valid, because polynomials are in C0, 2.)
12. Find the exact cosine and the approximate angle (in radians) between f x  sinx and

gx  cosx under the inner product:

 f x |g x   
0

/4
f x  g xdx.

13. Draw the graph of the unit circle in 2 under the weighted inner product:

u |v   49u1v1  25u2v2.
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14. Draw the graph of the unit circle in 2 under the weighted inner product:

u |v   1
49 u1v1  1

25 u2v2.

15. Draw a graph of the unit sphere in 3 under the weighted inner product:

u |v   4u1v1  u2v2  25u3v3.

16. Suppose in an inner product space V, we have two vectors u and v such that u |v   18,
u  5 and v  7. What is the length of 3u  11v?

17. Suppose someone told you that in an inner product space V, there are two vectors u and v such
that u |v   19, u  5 and v  3. Should you believe them?

18. Suppose in an inner product space V, we have two vectors u and v such that 2u  5v  981 ,
4u  3v  3313 , and u |v   16. Find u and v.

For Exercises 19 to 25: Prove that the following properties are true in any inner product
space V, for all u, v  V and all k  :

19. u  v |u  v   u |u   2u |v   v |v 
20. u  v |u  v   u |u   2u |v   v |v 
21. u  v |u  v   u |u   v |v 
22. k  u |k  v   k2  u |v 

23. k  u  |k |  u. Hint: how do you simplify k2 ?

24. d u, v   d v, u 
25. d k  u, k  v   |k |  d u, v 

For Exercises 26 to 32: The following are all manifestations of the Cauchy-Schwarz
Inequality. In other words, we can show they are true because we can find a vector space V and
an inner product on V, such that the conclusion of the Cauchy-Schwarz Inequality is the
indicated inequality. Your job is to prove these inequalities by finding the vector space V and the
inner product on V, and then unwinding the conclusion of the Cauchy-Schwarz Inequality to
obtain the indicated inequality. Do not try to prove these inequalities directly!

26. For any invertible n  n matrix A and u, v  n:

Au  Av2  Au  Au  Av  Av.

27. For any real numbers r, t and :

r cos  t sin2  r2  t2.

28. For any two continuous functions f x and g x on an interval a, b:


a

b
f x  g xdx

2
 

a

b
 f x2 dx 

a

b
 g x2 dx .

29. For any continuous function f x on 0, 2:


0

2
f x  sinxdx

2
  

0

2
 f x2 dx.
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30. For any continuous function f x on 0, 1:


0

1
x  f xdx

2
 1

3 0

1
 f x2 dx.

31. For any continuous function f x on 0, 1:


0

1
x  f xdx

2
 1

2 0

1
 f x2 dx

32. For any continuous function f x on 0, /4:


0

/4 f x
cosx

dx
2
 

0

/4
 f x2 dx

For Exercises 33 and 34: Use the Cauchy-Schwarz Inequality to prove the two versions of
The Triangle Inequalities:

33. Norm Version: For any two vectors u and v in an inner product space V:

u  v  u  v.

Hint: Since both sides of the inequality involve non-negative quantities, it is equivalent to the
inequality where both sides have been squared.

34. Distance Version: For all vectors u, v and w in an inner product space V:

d u, v   d u, w   d w, v .

Hint: u  v  u  w  w  v.

For Exercises 35 and 36: Use the property that x2  x |x , for any vector x  V, to prove
the following:

35. The Generalized Pythagorean Theorem: Suppose that u and v are vectors from some inner
product space V. Then: u and v are orthogonal to each other if and only if:

u2  v2  u  v2.

36. The Parallelogram Principles: Prove that for any two vectors u and v in any inner product space
V, we have:

u  v2  u  v2  2u2  2v2,

and also:
u  v2  u  v2  4u |v .

See the diagram of the same name on page 29.

37. Use the previous Exercise to show that if u and v are two vectors in an inner product space V,
then u and v are orthogonal to each other if and only if:

u  v  u  v.

Draw a vector diagram that represents what this Exercise is saying if V  2 under the ordinary
dot product. What kind of a triangle do you get?
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7.3 Orthonormal Sets and The Gram-Schmidt Algorithm

The standard basis S  e1, e2, . . . , en of n has the convenient property that any two distinct
members of the set are orthogonal to each other (under the ordinary dot product), and every vector in
S is a unit vector. Such sets of vectors are very important, and so we call them by a special name:

Definition: Let S  v1, v2, . . . , vk  be a set of vectors in an inner product space V. We say
that S is an orthonormal set if:

vi |vj   0 if i  j, and
vi |vi   1 for i  1. . k.

If we remove the condition that each member of S must be a unit vector but insist that all of
the vectors be non-zero, we call S an orthogonal set.

Notice that we can convert an orthogonal set to an orthonormal set by dividing each member by its
length, so all that separates these two kinds of sets is an easy normalizing process. Thus, for
convenience, we will focus most of our attention on orthonormal sets. We will construct these sets in
abstract inner product spaces in just a little bit, but first, let us describe the easiest case:

Example: Let us find all the orthonormal sets in 2 under the ordinary dot product. The unit vectors
are the vectors:

u  x, y such that x2  y2  1.

In other words, their endpoints lie on the unit circle when they are in standard position. From
Trigonometry, we can parametrize such vectors with an angle , as:

u  x, y   cos, sin.

Thus, there are two choices of a vector that will be orthogonal to u, namely:
v   cos  /2, sin  /2   sin, cos or
v   cos  /2, sin  /2   sin,cos.

For example, suppose u   cos/3, sin/3  1/2, 3 /2 . Then we can choose:

v   cos/3  /2, sin/3  /2   cos5/6, sin5/6   3 /2, 1/2 .

Let us see these orthogonal vectors below:
 

v

. y

x1

1

.

u

v   3 /2, 1/2 and u  1/2, 3 /2
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They certainly look perpendicular to each other, and a quick check of the dot product:

1/2, 3 /2   3 /2, 1/2   3 /4  3 /4  0

shows that these two vectors are indeed orthogonal to each other.

Could we include a third vector in S such that the new set is still orthonormal? By our analysis above,
the only other choice for a third vector would be w   cos/6, sin/6  3 /2,1/2 , in
order for w to be orthogonal to u. But this is the negative of v, and thus v  w  1, so we cannot
include this vector. Thus, S is as big as possible, and the orthonormal sets in 2 are of the form:

  cos, sin ,  sin, cos  or   cos, sin ,  sin,cos .

for some number . It is of course no coincidence that 2 is 2-dimensional and our orthonormal sets S
could contain at most 2 vectors. The following Theorem says that this will be true in general:

Theorem: An orthonormal set S in an inner product space V is linearly independent.
Consequently, if dimV  n, and S  v1, v2, . . . , vk  is an orthonormal set, then k  n,
and any set with more than n vectors cannot be orthonormal.

A similar Theorem with the word “orthogonal” replacing “orthonormal” is still true.

Proof: Let S be the orthonormal set as written above, and suppose that:

c1v1  c2v2   ckvk  0V.

We must show that each coefficient c i is zero. To exploit the orthonormal property, all we have to do is
take the inner product of both sides of the equation with each vi, one at a time, starting with v1:

v1 |c1v1  c2v2   ckvk   v1 | 0V , and expanding as usual:

c1v1 |v1   c2v1 |v2    ckv1 |vk   0.

Now, since v1 |v1   1 and v1 |v2     v1 |vk   0, we get c1  0. We repeat this process
with v2, and so on, thus concluding that each c i  0. The rest of the Theorem easily follows because
the number of vectors in a linearly independent set cannot exceed the dimension of a vector space.

Example: Let 2 be an inner product space under:

 px |qx  p2q2  p0q0  p1q1,
as in our last two Sections. Let us construct an orthonormal set of 3 vectors from 2. The idea is to
pick 3 quadratics which have value 0 at two out of three of the input values 2, 0, 1. In other words,
each has a root at two of these points. Thus, we can pick:

p1x  xx  1, p2x  x  2x  1, and p3x  x  2x.
It is obvious that:

 p1x |p2x   p1x |p3x   p2x |p3x  0
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However, since p12  6, p20  2, and p31  3, the length of these vectors are 6, 2 and 3,
respectively. Although we can choose to divide each vector by either its length or the negative of its
length, we will choose the orthonormal basis u1x, u2x, u3x, where:

u1x  1
6 xx  1, u2x   1

2 x  2x  1, and u3x  1
3 x  2x.

These quadratics have the property that they are zero at two out of the three input values 2, 0, 1,
and they are normalized so that they have value 1 at the remaining input value, making them unit
vectors. Thus, we can think of them as analogs to the standard basis vectors 1, 0, 0 , 0, 1, 0  and
0, 0, 1  of 3. 

Orthonormal Bases

Since an orthonormal set is automatically linearly independent, The Two-for-One-Theorem now
implies that an orthonormal set B whose size is the dimension of V must be a basis for V. Our
standard basis set e1, e2, . . . , en in n is of course such a basis, under the ordinary dot product.
Notice that we can easily find the coordinates of any vector in n with respect to the standard basis.
For any ordinary basis B, we would normally have to solve a system of equations to find the
coordinates of an arbitrary vector with respect to B. However, if B is orthonormal, all we need to do is
compute some inner products (which is usually a lot more pleasant than solving systems of equations):

Definition/Theorem: Let V be a finite dimensional inner product space with dimV  n.
An orthonormal set B  u1, u2, . . . , un with n vectors is called an orthonormal basis for
V. If v is an arbitrary member of V, and B is an orthonormal basis for V, and:

v B  c1, c2, . . . , cn , then:

c i  v |ui  for i  1. . n.
In other words:

v  v |u1   u1  v |u2   u2   v |un   un.

Proof: If v  V, we know that we can express v as a linear combination of the member of any basis B
in exactly one way, say:

v  c1u1  c2u2   cnun,
and these coefficients form v B  c1, c2, . . . , cn .

To compute each coefficient, we will use the same trick that we saw in the previous Theorem, that is,
to take the inner product of both sides of the equation with each ui, one at a time. Thus:

v |u1   c1u1  c2u2   cnun |u1 

 c1u1 |u1   c2u2 |u1    cnun |u1 

 c1  1  c2  0   cn  0  c1.
Similarly, v |u2   c2, and so on.

Note: In Mathematics, when a “trick” is used more than once, we promote it to a technique.
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Example: Consider the set:

B  5
13 , 12

13 ,  12
13 , 5

13 .

We can easily check that both are unit vectors, and their dot product is zero, thus B is an orthonormal
set in 2. To find v B for v  8,11, we compute:

v  u1  8 5
13  11 12

13   92
13 , and

v  u2  8  12
13  11 5

13   151
13 .

Thus, v B   92
13 , 151

13 . We can check that:

 92
13

5
13 , 12

13  151
13  12

13 , 5
13 

925  15112
169 , 9212  1515

169  8,11. 

The Gram-Schmidt Algorithm

Now we are ready to construct orthonormal sets in any inner product space on an industrial scale. The
idea behind the algorithm, called the Gram-Schmidt Algorithm, is basically the same idea that we used
to compute the projection of a vector in 2 onto a line L through the origin.
Suppose that dimV  n. Let B  w 1, w 2,  , w n be any basis for V. The input to the
Gram-Schmidt Algorithm will be this basis B. The output will be an orthogonal set:

S  v1, v2,  , vn,
with the special property that:

Spanw 1, w 2,  , w k  Spanv1, v2,  , vk for all k  1n.

In other words:
Spanw 1  Spanv1,

Spanw 1, w 2  Spanv1, v2,
Spanw 1, w 2, w 3  Spanv1, v2, v3, 

and so on. By dividing each vector by its length, we can thus obtain an orthonormal basis S / for V.
The version of the Gram-Schmidt Algorithm that we show below varies slightly from the standard, but
has the advantage of avoiding radicals, fractions, and large numbers, to some extent:
Step 1. Let v1  w 1. If v1 contains fractions or common factors, divide v1 by a suitable scalar to
eliminate both. If dimV  1, we normalize the set v1 to obtain an orthonormal basis for V,
otherwise, proceed to Step 2.
Step 2. We want to produce a vector v2 that is orthogonal to v1. We will find v2 by subtracting a
suitable multiple of v1 from w 2. In other words, we ask: is there a scalar k such that:

v2  w 2  kv1

is orthogonal to v1? But to find k, we can apply the inner product to both sides:

v2 |v1   w 2  kv1 |v1   w 2 |v1   kv1 |v1 .

Since we want v2 |v1   0, this means that we can solve for k as:
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k  w 2 |v1 
v1 |v1 

.

Note that this is well-defined because v1  0V, thus v1 |v1  is positive. We get v2 as:

v2  w 2 
w 2 |v1 
v1 |v1 

v1.

For good measure, let us check that v2 is orthogonal to v1:

v2 |v1   w 2 
w 2 |v1 
v1 |v1 

v1 |v1  w 2 |v1  
w 2 |v1 
v1 |v1 

v1 |v1   0.

It is important to point out two observations:

 v2 is a non-zero vector, because otherwise, we would get:

w 2 
w 2 |v1 
v1 |v1 

v1.

This is impossible, because w 2 is not parallel to w 1, which happens to be v1.

 v2 is a linear combination of w 2 and v1 (and again, this happens to be w 1. Thus:

Spanv1, v2  Spanv1, w 2  Spanw 1, w 2.

Again, if v2 contains fractions or common factors, divide v2 by a suitable scalar to eliminate both. If
dimV  2, we normalize the orthogonal set v1, v2 to obtain an orthonormal basis for V, otherwise,
proceed to Step 3.

Step 3. We want to produce a vector v3 that is orthogonal to both v2 and v1. Given the success of our
formula for v2 above, let us guess that a reasonable formula for v3 would be:

v3  w 3 
w 3 |v1 
v1 |v1 

v1 
w 3 |v2 
v2 |v2 

v2.

This is not exactly an illegal act: like other sciences, Mathematics is also experimental. But to validate
our formula, we must check that indeed v3 is orthogonal to both v2 and v1:

v3 |v1   w 3 
w 3 |v1 
v1 |v1 

v1 
w 3 |v2 
v2 |v2 

v2 |v1

 w 3 |v1  
w 3 |v1 
v1 |v1 

v1 |v1  
w 3 |v2 
v2 |v2 

v2 |v1 

 w 3 |v1   w 3 |v1   0  0.

Note that we used the fact that v2 |v1   0. Similarly, we can check that:
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v3 |v2   w 3 
w 3 |v1 
v1 |v1 

v1 
w 3 |v2 
v2 |v2 

v2 |v2

 w 3 |v2  
w 3 |v1 
v1 |v1 

v1 |v2  
w 3 |v2 
v2 |v2 

v2 |v2 

 w 3 |v2   0  w 3 |v2   0.

As we did at the end of Step 2, we point out two observations:
 v3 is a non-zero vector, because otherwise, we would get:

w 3 
w 3 |v1 
v1 |v1 

v1 
w 3 |v2 
v2 |v2 

v2.

This is impossible, because w 3 is not a member of Spanw 1, w 2, and we noted that this was
exactly the same as Spanv1, v2.

 v3 is a linear combination of w 3, v1 and v2, therefore, by The Equality of Spans Theorem:

Spanv1, v2, v3  Spanv1, v2, w 3  Spanw 1, w 2, w 3.

Again, if v3 contains fractions or common factors, divide v3 by a suitable scalar to eliminate both. If
dimV  3, we normalize the three vectors in v1, v2, v3 to obtain an orthonormal basis for V,
otherwise, proceed to the next step.

Step k  1. We are now ready to generalize the process of finding the next vector, vk1, by Induction.
Suppose we have already constructed v1, v2,  , vk, an orthogonal set of vectors with the property
that:

Spanv1, v2,  , vk  Spanw 1, w 2,  , w k.

Let us again guess that a reasonable formula for the next vector vk1 would be:

vk1  w k1 
w k1 |v1 
v1 |v1 

v1 
w k1 |v2 
v2 |v2 

v2  
w k1 |vk 
vk |vk 

vk.

Again, by computing vk1 |v1 , vk1 |v2 ,  , vk1 |vk , we find that all of these inner products are
zero. For instance:

vk1 |v1 

 w k1 
w k1 |v1 
v1 |v1 

v1 
w k1 |v2 
v2 |v2 

v2  
w k1 |vk 
vk |vk 

vk |v1

 w k1 |v1  
w k1 |v1 
v1 |v1 

v1 |v1  
w k1 |v2 
v2 |v2 

v2 |v1   
w k1 |vk 
vk |vk 

vk |v1 

 w k1 |v1  
w k1 |v1 
v1 |v1 

v1 |v1   0.

As before, we can see that vk1 is not the zero vector, for otherwise we would get:

w k1  Spanv1, v2,  , vk  Spanw 1, w 2,  , w k,
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and this would be impossible since B is a basis for V, and is thus linearly independent.
Finally, we also see that, by solving for w k1 above, that this vector is a linear combination of v1
through vk1. Similarly, vk1 is also a linear combination of v1 through vk and w k1. But since we
assumed that v1 through vk are linear combinations of w 1 through w k, then vk1 is also a linear
combination of w 1 through w k1. Thus:

Spanv1, v2,  , vk, vk1  Spanw 1, w 2,  , w k, w k1.

If we denote by Wk the subspace Spanw 1, w 2,  , w k, we note that we can write vk1 as:

vk1  w k1  w k
/ , in other words:

w k1  vk1  w k
/ , where:

w k
/ 

w k1 |v1 
v1 |v1 

v1 
w k1 |v2 
v2 |v2 

v2  
w k1 |vk 
vk |vk 

vk  Wk.

We can thus visualize the abstract meaning of w k
/ and vk1 in the following diagram:

 

V

.

Wk

v  k

w k

w k
/

.

Constructing the Next Vector vk1 in the Gram-Schmidt Algorithm

Notice that except for the labeling, this is essentially the same diagram that we used to visualize
decomposing a vector v  3 into a sum v  w 1  w 2 where w 2  , a plane through the origin, and
w 1  L, its normal line.
We also see that once we choose v1  w 1, we need to compute the inner products:

v1 |v1 , w 2 |v1 , w 3 |v1 ,  , w n |v1 ,

in Steps 2 through n, so we may as well do these computations after we perform Step 1. Similarly,
after we obtain v2, we should check that v1 |v2   0, but we also need to compute the inner products:

v2 |v2 , w 3 |v2 , w 4 |v2 ,  , w n |v2 ,

for Steps 3 through n, so we should perform these after Step 2. We repeat these ideas after Step 3, and
so on — checking that vk1 is orthogonal to v1 through vk, and computing the inner products involving
vk1 that we will need in future Steps. Once we have v1, v2,  , vn, we divide each vector by its
length to produce an orthonormal basis for V.

Example: Let us construct an orthonormal basis for 4 under the ordinary dot product by starting with
the basis:

B  w 1, w 2, w 3, w 4   1,1, 1, 0, 1, 0, 1,1, 1, 1, 1, 1, 1, 1, 1,1 .
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We can check with technology that B has determinant 2, so B is a basis for 4. Since there are four
vectors, there will be four major steps in the Gram-Schmidt Algorithm:
Step 1. v1  w 1  1,1, 1, 0.
To prepare for Steps 2, 3 and 4, we want to compute:

v1  v1  1,1, 1, 0  1,1, 1, 0  1  1  1  0  3,
w 2  v1  1, 0, 1,1  1,1, 1, 0  1  0  1  0  2,
w 3  v1  1, 1, 1, 1  1,1, 1, 0  1  1  1  0  1, and
w 4  v1  1, 1, 1,1  1,1, 1, 0  1  1  1  0  1.

Step 2.

v2  w 2  w 2  v1
v1  v1

 v1

 1, 0, 1,1  2
3 1,1, 1, 0  1

3 , 2
3 , 1

3 ,1

To avoid fractions, we multiply this by 3 and get a better vector: v2  1, 2, 1,3. We verify that:

v1  v2  1,1, 1, 0  1, 2, 1,3  1  2  1  0  0.

To prepare for Steps 3 and 4, we compute:
v2  v2  1, 2, 1,3  1, 2, 1,3  1  4  1  9  15,
w 3  v2  1, 1, 1, 1  1, 2, 1,3  1  2  1  3  1, and
w 4  v2  1, 1, 1,1  1, 2, 1,3  1  2  1  3  7.

Step 3.

v3  w 3  w 3  v1
v1  v1

 v1  w 3  v2
v2  v2

 v2

 1, 1, 1, 1  1
3 1,1, 1, 0  1

15 1, 2, 1,3

  9
15 , 12

15 , 21
15 , 12

15   3
5 , 4

5 , 7
5 , 4

5 .

We multiply this vector by 5, and get a better vector: v3  3, 4, 7, 4. We verify that:
v1  v3  1,1, 1, 0  3, 4, 7, 4  3  4  7  0  0, and
v2  v3  1, 2, 1,3  3, 4, 7, 4  3  8  7  12  0.

To prepare for Step 4, we compute:
v3  v3  3, 4, 7, 4  3, 4, 7, 4  9  16  49  16  90, and
w 4  v3  1, 1, 1,1  3, 4, 7, 4  3  4  7  4  4.

Step 4.

v4  w 4  w 4  v1
v1  v1

 v1  w 4  v2
v2  v2

 v2  w 4  v3
v3  v3

 v3

 1, 1, 1,1  1
3 1,1, 1, 0  7

15 1, 2, 1,3  4
90 3, 4, 7, 4

 15
45 , 10

45 , 5
45 , 10

45  3
9 , 2

9 , 1
9 , 2

9 .
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We multiply this vector by 9 and get the better vector: v4  3, 2,1, 2. We check that v4 is
orthogonal to v1, v2 and v3:

v1  v4  1,1, 1, 0  3, 2,1, 2  3  2  1  0  0, and
v2  v4  1, 2, 1,3  3, 2,1, 2  3  4  1  6  0
v3  v4  3, 4, 7, 4  3, 2,1, 2  9  8  7  8  0.

The only missing piece of information is the length of v4, which we get from:
v4  v4  3, 2,1, 2  3, 2,1, 2  9  4  1  4  18.

The length of our four output vectors are:

v1  3 , v2  15 , v3  90 , and v4  18 .

To get an orthonormal basis for 4, we divide each vector by its length, and obtain:

S  1
3
1,1, 1, 0, 1

15
1, 2, 1,3, 1

90
3, 4, 7, 4, 1

18
3, 2,1, 2 . 

Example: Let 2 be an inner product space under:

px | qx  p2q2  p0q0  p1q1,

which we have already seen in several previous Examples. Let us construct an orthonormal basis for
2 starting with the standard basis:

B  1, x, x2.

Since 2 is a 3-dimensional space, there will be three major steps, but the inner product is more
complicated because we need to evaluate our polynomials at the three given points.
Step 1.

w 1x  v1x  1.

To prepare for Steps 2 and 3, we compute:

For v1x  1: v12  1, v10  1, v11  1;
For w 2x  x: w 22  2, w 20  0, w 11  1;
For w 3x  x2: w 32  4, w 30  0, w 31  1;

v1x |v1x  1 |1  1  1  1  3;
w 2x |v1x  x |1  2  0  1  1; and
w 3x |v1x  x2 |1  4  0  1  5.

Step 2.

v2x  w 2x 
w 2x |v1x
v1x |v1x

 v1x

 x  1
3  1  x  1

3 .
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To avoid fractions, we multiply this by 3 and get a better: v2x  3x  1. We compute:

v22  5, v20  1, v21  4;

v1x |v2x  1 |3x  1  5  1  4  0;

v2x |v2x  3x  1 |3x  1  15  1  16  32;

w 3x |v2x  x2 |3x  1  20  0  4  16.

The 2nd line checks that v1, v2  1, 3x  1 is an orthogonal set .
Step 3.

v3x  w 3x 
w 3x |v1x
v1x |v1x

 v1x 
w 3x |v2x
v2x |v2x

 v2x

 x2  5
3  1  16

42  3x  1  x2  8
7 x  9

7 .

As with v2, we multiply v3 by 7, and get a better v3x  7x2  8x  9. Although this is the final
vector, we still need to evaluate it at the three points in order to compute its length, and to check that it
is orthogonal to the first two output vectors:

v32  3, v30  9, v31  6

v1x |v3x  1 |7x2  8x  9  1  3  1  9  1  6  0, and

v2x |v3x  3x  1 |7x2  8x  9  5  3  1  9  4  6  0.

Thus, we get an orthogonal set 1, 3x  1, 7x2  8x  9. The length of the third vector is
9  81  36  126 . To get an orthonormal basis for 2, we just divide each vector by its length,

and obtain:

S  1
3

, 1
42

3x  1, 1
126

7x2  8x  9 . 

We note that on a practical basis, we can assemble our data in a table, which will grow as we add more
polynomials that result from our computations. For this Example, we will get the table:

2 0 1
w 1x  v1x  1 1 1 1
w 2x  x 2 0 1
w 3x  x2 4 0 1
v2x  3x  1 5 1 4
v3x  7x2  8x  9 3 9 6

Generalization to Infinite Sets

The concept of an orthonormal or orthogonal set of vectors can be generalized to an infinite set of
vectors. However, the Gram-Schmidt Algorithm can only be extended to any countable set of vectors.
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Definition/Theorem: Let S  vi | i  I  be an infinite set of vectors in an inner product
space V, for some indexing set I  . We say that S is an orthonormal set if:

vi |vj   0 if i  j, where i, j  I, and
vi |vi   1 for any i  I.

If we remove the condition that each member of S must be a unit vector but insist that all of
the vectors be non-zero, we call S an orthogonal set.
An infinite orthogonal set is also linearly independent.
If S  vi | i    is any countable set of vectors in V, then we can apply the Gram-Schmidt
Algorithm inductively in order to produce an infinite orthonormal set, S /  w i | i   ,
with the special property that for every k  :

Spanv0, v1, . . . , vk   Spanw 0, w 1, . . . , w k .

Technically, since S is a countably infinite set, the Gram-Schmidt algorithm will not terminate,
although it would be possible to produce an orthonormal set of k vectors for any positive integer k.

In the Exercises, we will see how these concepts apply to S   sinnx, cosnx |n   under an
inner product that involves a definite integral. This set is central to the study of Fourier Series.

7.3 Section Summary

Let S  v1, v2, . . . , vk  be a set of vectors in an inner product space V. We say that S is an
orthonormal set if vi | vj  0 when i  j, and vi | vi  1 for i  1. . k.

If we remove the condition that each member of S is a unit vector but insist that all of the vectors be
non-zero, we call S an orthogonal set.
In 2, the orthonormal sets are of the form:

S   cos, sin,  sin, cos or S   cos, sin,  sin,cos,

for some number .
An orthonormal set S in an inner product space V is linearly independent. Consequently, if
dimV  n, and S  v1, v2, . . . , vk  is an orthonormal set, then k  n, and any set with more than n
vectors cannot be orthonormal. A similar Theorem with the word “orthogonal” replacing
“orthonormal” is still true.
Let V be a finite dimensional inner product space with dimV  n. An orthonormal set
S  u1, u2, . . . , un with n vectors is called an orthonormal basis for V. If v is an arbitrary member
of V, and S is an orthonormal basis for V, and vS  c1, c2, . . . , cn , then c i  v | ui for i  1. . n.

In other words: v  v |u1   u1  v |u2   u2   v |un   un.
The Gram-Schmidt Algorithm:
Let B  w 1, w 2,  , w n be any basis for V.

1. Let v1  w 1. If dimV  1, proceed to Step 4, otherwise:

2. Let v2  w 2  w 2 |v1  
v1

v1
2 .
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Scale v2, if necessary, so that fractions or common factors do not appear.
If dimV  2, proceed to Step 4, otherwise:

3. For k  2 to n  1, construct:

vk1  w k1  w k1 |v1  
v1

v1
2  w k1 |v2  

v2

v2
2   w k1 |vk  

vk

vk
2 .

Again, scale each vk1 so that fractions do not appear.

4. Normalize the set v1, v2, . . . , vn by dividing each vector by its length to get an orthonormal
basis S for V.

7.3 Exercises

For Exercises 1 to 15: Use the Gram-Schmidt Algorithm to construct an orthonormal basis
beginning with the specified basis B for the indicated vector spaces V, under the specified inner
product (you may safely assume that the sets B have been verified to be bases):

1. B   1, 1,1, 0,1, 1, 2, 0, 1 for 3 under the ordinary dot product.
2. B   1, 0, 1, 2,1, 0, 1, 1,1 for 3 under the ordinary dot product.
3. B   1, 1,1, 0,1, 1, 2, 0, 1 for 3 under the weighted dot product:

u |v  4u1v1  5u2v2  3u3v3.

Do you get the same answer as in Exercise 1?
4. B   1, 0, 1, 2,1, 0, 1, 1,1 for 3 under the weighted dot product of Exercise 3. Do

you get the same answer as Exercise 2?
5. B   1, 1,1, 0,1, 1, 2, 0, 1 for 3 under the inner product generated by the

isomorphism:

T 
1 1 0
1 1 1

0 1 1

.

Do you get the same answer as in Exercise 1 or 3?
6. B   1, 0, 1, 2,1, 0, 1, 1,1 for 3 under the inner product of Exercise 5. Do you get

the same answer as in Exercise 2 or 4?
7. B   1,1, 1,1, 1, 0,1, 1, 1, 1, 0,1, 1, 1, 1,1 for 4 under the ordinary dot

product.
8. B   1,1, 0, 1, 1, 0,1, 1, 1, 2, 0,1, 1, 1,1, 1 for 4 under the ordinary dot

product.
9. B   1,1, 1,1, 1, 0,1, 1, 1, 1, 0,1, 1, 1, 1,1 for 4 under the weighted dot

product:

u |v  4u1v1  u2v2  3u3v3  6u4v4.

Do you get the same answer as in Exercise 7?
10. B   1,1, 0, 1, 1, 0,1, 1, 1, 2, 0,1, 1, 1,1, 1 for 4 under the weighted dot

product of Exercise 9. Do you get the same answer as in Exercise 8?
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11. B  x2, x, 1 for 2 under the inner product:

 px |qx   p2q2  p0q0  p1q1.

12. B  x2  1, x  1, 1 for 2 under the inner product of Exercise 11.
13. B  x2, x, 1 for 2 under the inner product:  px |qx   

0

1 px  qxdx.

14. B  1, x, x2 for 2 under the same inner product as Exercise 11. Do you get the same answer
as in Exercise 11?

15. B  x3, x2, x, 1 for 3 under the inner product:  px |qx   
0

1 px  qxdx.

For Exercises 16 to 30: Find the coordinates u S and v S for the two indicated vectors,
with respect to the orthonormal basis S that was output by the Gram-Schmidt Algorithm in the
indicated Exercise above. Use the formula in the 2nd Theorem of this Section. Do not solve a
system of linear equations.

16. u  2,4, 1, v  3, 5, 8; Exercise 1.

17. u  2,4, 1, v  3, 5, 8; Exercise 2.

18. u  2,4, 1, v  3, 5, 8; Exercise 3.

19. u  2,4, 1, v  3, 5, 8; Exercise 4.

20. u  2,4, 1, v  3, 5, 8; Exercise 5.

21. u  2,4, 1, v  3, 5, 8; Exercise 6.

22. u  3, 6,2,4, v  5,2, 7,3; Exercise 7.

23. u  3, 6,2,4, v  5,2, 7,3; Exercise 8.

24. u  3, 6,2,4, v  5,2, 7,3; Exercise 9.

25. u  3, 6,2,4, v  5,2, 7,3; Exercise 10.

26. u  x2  2x  5, v  3x2  6x  4; Exercise 11.

27. u  x2  2x  5, v  3x2  6x  4; Exercise 12.

28. u  x2  2x  5, v  3x2  6x  4; Exercise 13.

29. u  x2  2x  5, v  3x2  6x  4; Exercise 14.

30. u  2x3  5x2  x  3, v  x3  x2  7x  5; Exercise 15.

31. Consider V  SpanB, where B   sinx, cosx, sin2x, and V is an inner product space
under:  f x |gx  

0

2 f x  gxdx.

a. Compute the inner product of all the pairs of functions f x and g x from B. There should
be 6 such pairs. Note: You will need the techniques of Power Reduction Formulas, or
Integration by Parts, or Product-to-Sum Formulas from Trigonometry.

b. Use the Gram-Schmidt Algorithm to find an orthonormal basis S using the natural basis B
as the input to the algorithm.

c. Find the coordinates of:

f x  2 sinx  7 cosx  3 sin2x and gx  5 sinx  2 cosx  sin2x,

with respect to the orthonormal basis S that you found in (b).
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32. Suppose that somebody gave you a set of vectors B  w 1, w 2, . . . , w 5 from some n, and you
were told to apply the Gram-Schmidt Algorithm on B. After a few minutes, you found that
v4  0n (although v1, v2, and v3 were non-zero). What does this tell you about B? Be as specific
as possible.

33. In Exercise 15 of Section 1.3 and Exercise 37 of Section 5.1, we saw the cross product of two
vectors from 3. Use the properties and ideas in those Exercises to show that the orthonormal
sets of vectors in 3 all have the form:

u, v, u  v or u, v,  u  v,

where u and v are orthonormal vectors from 3. In other words, u and v are already orthogonal to
each other, and they are both unit vectors.

34. Consider 3 under the inner product:

 px |qx   p2q2  p0q0  p1q1  p2q2.

Construct an orthonormal set u1x, u2x, u3x, u4x, where u12  0,
u10  u11  u12, and u20  1, u22  u21  u22  0, and so on. See the 2nd
Example in this Section for a similar construction in 2.

35. Introduction to Fourier Series: In a course in Differential Equations, we encounter
trigonometric polynomials, which are linear combinations from the countable infinite set:

S   sinnx, cosnx |n  ,
which includes the constant function 1. Although we allow only a finite number of terms in a
linear combination, a Fourier Series is an infinite series involving these function, so it has the
form:

c0 
n1



cn sinnx  dn cosnx.

The objective of this Exercise is to show that S is already an orthogonal set under the inner
product:

 f x |gx  
0

2
f x  g xdx,

which we saw in Exercise 31. In order to compute these integrals, though we need the following
Product-to-Sum Identities from Trigonometry:

sincos  1
2 sin    sin  

sin sin  1
2 cos    cos  

coscos  1
2 cos    cos  

a. Show that if n  m are natural numbers:

 sinnx | cosmx  0,
 sinnx | sinmx  0, and
 cosnx | cosmx  0.

b. Show that for all natural number n  0:

 sinnx | sinnx  , and
 cosnx | cosnx  .

c. Construct an orthonormal set of vectors S / from S.
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7.4 Orthogonal Complements and Decompositions

We saw in Chapter 1 that a plane  passing through the origin in 3 has a unique normal line L that
also passes through the origin. If  has equation ax  by  cz  0, then L  Spana, b, c. Notice
that  and L are subspaces of 3. More importantly, though, we can say that  and L are exhaustive:
Any vector orthogonal to  must be a member of L, and any vector orthogonal to L must be a
member of . We also saw in Chapter 2 that we can decompose any vector uniquely as a sum of a
vector on  and a vector on L. In this Section, we will generalize these concepts.

Orthogonal Complements

We are now ready to generalize an important construction in inner product spaces:

Definition/Theorem: Let W be any subspace of an inner product space V. We define the
orthogonal complement of W, another subspace of V, by:

W  v  V |  v |w   0 for all w  W .

Proof of the Subspace Property: We need to show that W is non-empty and closed under vector
addition and scalar multiplication. Since 0V is orthogonal to any vector, 0V  W, so W is non-empty.
Now, if v1 and v2 are members of W, then:

v1  v2 |w   v1 |w   v2 |w   0  0  0,

for any member w of W. Thus v1  v2  W. Similarly, k  v1 |w   k  0  0, so k  v1  W. 

We will also need the following computational device, whose proof we leave as an Exercise:

Theorem: Let B  w 1, w 2, . . . , w k  be a basis for a finite dimensional subspace W of an
inner product space V. Then v  V is a member of W if and only if:

v |w i   0 for all i  1, 2,  , k.

Thus, it is both necessary and sufficient that we check that an arbitrary vector v  V is
orthogonal to every member of a basis B for W.

In Section 1.7, we saw that if W is a subspace of n under the usual dot product, then W is the
nullspace of the matrix A whose rows Span W. This is because for any matrix A, the rowspace and the
nullspace are orthogonal complements of each other. By the Theorem above, we can again find a basis
for the orthogonal complement of a subspace W of V by solving a homogeneous system of equations.
However, the nullspace of this system needs to be decoded to find a basis for W.

Example: Let W  Span 2x  1, x2  3x  4 be a subspace of 2 under the inner product:

 px |qx  p2q2  p0q0  p1q1.

As before, we will need a table of values for w1x  2x  1 and w2x  x2  3x  4.
However, we will need the inner product of these polynomials with an arbitrary polynomial of 2:
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px  d0  d1x  d2x2.

Thus, we will include the values of pc i  in our table:

c i w1c i  w2c i  pc i 

2 5 14 d0  2d1  4d2

0 1 4 d0

1 1 2 d0  d1  d2

Thus, px is a member of W if and only if:

 px |w1x  0, and  px |w2x  0.
Using our table of values above, these two conditions translate to:

0  d0  2d1  4d2   5  d0   1  d0  d1  d2   1  5d0  11d1  19d2, and
0  d0  2d1  4d2   14  d0   4  d0  d1  d2   2  20d0  26d1  58d2.

Thus, d0, d1, d2  is a member of the nullspace of the matrix:

5 11 19
20 26 58

, whose rref is:
1 0 8/5
0 1 1

.

Thus, d2 is a free variable, and a basis for the nullspace is 8, 5, 5. But let us not forget to decode
this basis, and conclude that:

W  Span8  5x  5x2.

We can check that px  8  5x  5x2 is orthogonal to our basis vectors for W. We will need the
three values: p2  2, p0  8, and p1  2. Now we find:

 px |w1x  25  81  21  0, and

 px |w2x  214  84  22  0.

Thus px is indeed orthogonal to W, and dimW   1 

Example: Let us stay with 2, but since polynomials are continuous, we can use a definite integral to
impose an inner product on 2, such as:

 px |qx  
0

1
px  qxdx.

Let us consider the 1-dimensional subspace W  Spanx2  3. As in the previous example, to find
the orthogonal complement of W, we must consider an arbitrary member of 2:

px  d0  d1x  d2x2.

Since there is only one vector in the basis, we have to satisfy only one condition, namely:

0  
0

1
px  x2  3dx  

0

1
d0  d1x  d2x2   x2  3dx

 
0

1
d0x2  3d0  d1x3  3d1x  d2x4  3d2x2 dx
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 d0
x3

3  3d0x  d1
x4

4  3d1
x2

2  d2
x5

5  3d2
x3

3 0

1

 d0
3  3d0 

d1
4  3d1

2  d2
5  d2   8

3 d0  5
4 d1  4

5 d2  0.

Thus we have two free variables, d1 and d2, and we have:

d0   15
32 d1  3

10 d2.

We substitute this condition back into px to get:

px   15
32 d1  3

10 d2  d1x  d2x2   1
32 d115  32x  1

10 d23  10x2 .

Since the two polynomials in the set above have different degrees, they are linearly independent. Thus,
W is a 2-dimensional subspace, and:

W  Span15  32x, 3  10x2.

We can again check that these two polynomials are orthogonal to our single basis polynomial for W:


0

1
15  32x  x2  3dx  

0

1
15x2  45  32x3  96xdx

 15 x3

3  45x  32 x4

4  96 x2

2 0

1
 5  45  8  48  0,

and similarly, 
0

1
3  10x2   x2  3dx  0. 

The only vector in common between a plane  through the origin and its normal line L is the zero
vector. It should therefore come as no surprise that when it comes to subspaces and their orthogonal
complements, this is true in general:

Theorem: Let W be any subspace of an inner product space V, with orthogonal complement
W. Then: W W  0V .

Proof: Suppose that w  W W. In other words, w  W and w  W. But by definition, every
member of W is orthogonal to every member of W. Since w is a member of both subspaces, it must
therefore be orthogonal to itself, that is: w |w   0.

But by the Positivity Property, this means that w  0V. Thus, W W  0V . 

The Dimension Theorem for Orthogonal Complements

When we found a basis for W above, we solved a system of homogeneous equations in order to find
all the vectors of V which were orthogonal to every member of the basis for W. The resulting basis that
we found for W is not necessarily an orthogonal set.

Fortunately, the Gram-Schmidt process has the added advantage of helping us find an orthonormal
basis for W as well as for W. We will start with any basis B  w 1, w 2, . . . , w k for W, where
dimW  k. Next, we enlarge B to a basis:

Section 7.4 Orthogonal Complements and Decompositions 615



B /  w 1, w 2, . . . , w k, w k1, . . . , w n

for V, where dimV  n. Now, applying the Gram-Schmidt Algorithm on B /, we will get the set:
S  u1, u2, . . . , uk, uk1, . . . , un

which is an orthonormal basis for all of V. By our proof of the effectiveness of the Gram-Schmidt
Algorithm, we know that the resulting subset S1  u1, u2, . . . , uk is an orthonormal basis for
W  Wk  SpanB.
We claim that S2  uk1, . . . , un is an orthonormal basis for W.
The proof relies again on our standard technique. Since S is an orthonormal basis for V, any vector
v  V can be written uniquely as:

v  c1u1  c2u2   ckuk  ck1uk1   cnun.

For v to be a member of W, it is necessary and sufficient that ui |v  0 for i  1, 2,  , k. But
again, by taking the inner product of both sides of this equation with respect to u1, we get:

u1 |v  u1 |c1u1  c2u2   ckuk  ck1uk1   cnun 

 c1u1 |u1   c2u1 |u2    cku1 |uk   ck1u1 |uk1    cnu1 |un 

 c1.

Thus, u1 |v  0 if and only if c1  0. Continuing in this manner with u2 through uk, we must have:

v  W if and only if c1  c2  c3    ck  0.
In other words, v has the form: v  ck1uk1   cnun.
This shows that S2  uk1, . . . , un Spans W. Since S2 is a subset of an orthonormal set, it is also
an orthonormal set. Thus S2 is also linearly independent, and we can conclude that S2 is a basis for
W. We summarize the discussion above in the following:

Theorem — The Dimension Theorem for Orthogonal Complements:
Let W be a k-dimensional subspace of an n-dimensional inner product space V. Suppose
B  w 1, w 2, . . . , w k is a basis for W, and we enlarge B to B /, a basis for V, where:

B /  w 1, w 2, . . . , w k, w k1, . . . , w n.

Now, suppose we apply the Gram-Schmidt Algorithm to B /, which outputs the set:

S  u1, u2, . . . , uk, uk1, . . . , un,

an orthonormal basis for all of V. Let us denote by:

S1  u1, u2, . . . , uk and S2  uk1, . . . , un.

Then: S1 is an orthonormal basis for W  SpanB, and S2 is an orthonormal basis for
W. Consequently:

dimW  dimW   dimV  n.

More generally, if S  S1  S2 is any orthonormal basis for V, where S1 and S2 are
non-empty subsets of S with no member in common, then W1  SpanS1  and
W2  SpanS2  are orthogonal complements of each other. Thus:

W   W.
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Note: It is not necessarily true that W   W if W is a subspace of an infinite dimensional inner
product space. However, it is always true that W  W . This also generalizes our version for
subspaces W  n in Chapter 1 under the ordinary dot product: dimW  dimW   n  dimn.
The final paragraph in the Theorem will be proven in the Exercises.

Example: In the previous Section, we found an orthonormal basis for 4 (under the ordinary dot
product) using the basis:

B  w 1, w 2, w 3, w 4   1,1, 1, 0, 1, 0, 1,1, 1, 1, 1, 1, 1, 1, 1,1 ,

as input to the Gram-Schmidt Algorithm. The output was:

S  1
3
1,1, 1, 0, 1

15
1, 2, 1,3, 1

90
3, 4, 7, 4, 1

18
3, 2,1, 2 .

Now, suppose U  Span 1,1, 1, 0 , where 1,1, 1, 0 is the first member of B. According to
the Theorem above:

U  Span 1, 2, 1,3, 3, 4, 7, 4, 3, 2,1, 2.

Notice that we can ignore the normalization. Similarly:
If V  Span 1,1, 1, 0, 1, 0, 1,1 , then V  Span 3, 4, 7, 4, 3, 2,1, 2 , and

if W  Span 1,1, 1, 0, 1, 0, 1,1, 1, 1, 1, 1 , then W  Span 3, 2,1, 2 

Example: In the previous Section, we also found an orthonormal basis for 2 under the inner product:

 px |qx  p2q2  p0q0  p1q1,
by starting with the standard basis B  1, x, x2. Our final orthonormal basis was:

S  1
3

, 1
42

3x  1, 1
126

7x2  8x  9 .

Thus, if we let W  Span1, x  Span1, 3x  1, then we immediately get:
W  Span7x2  8x  9 .

Similarly, if we let U  Span1, then:
U  Span3x  1, 7x2  8x  9 . 

We emphasize that this only works if W is Spanned by the first k consecutive vectors of the basis S.

Orthogonal Decompositions

In Section 2.2, we studied the projection and reflection of a vector in 2 onto and across a line L that
passes through the origin. We showed that any vector v  2 can be expressed (uniquely) as a sum:

v  projLv  projLv,
where projLv  L and projLv  L, the unique line in 2 perpendicular to L and passing through
the origin. We referred to this as an orthogonal decomposition because the two vectors in the sum are
orthogonal to each other. We will now generalize this concept:
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Theorem: Let W be a finite-dimensional subspace of an inner product space V.
Then: any vector v  V can be expressed uniquely as a sum:

v  w 1  w 2,
where w 1  W and w 2  W .
We refer to this as the orthogonal decomposition of vwith respect to W and W .
Moreover, we can explicitly construct w 1 and w 2 as follows:
If u1, u2, , uk is any orthonormal basis for W, then:

w 1  v |u1   u1  v |u2   u2   v |uk   uk, and
w 2  v  w 1.

We call w 1 the orthogonal projection of v onto W, and w 2 the orthogonal projection of v
onto W . We write them as:

w 1  projWv and w 2  projW v.

 .

.

x

y
v

W W

w 2 w 1

.

WV

W

V

v

w 1

w 2

.

.

Orthogonal Decompositions in 2 and in a General Inner Product Space V

Proof: We can easily prove the uniqueness portion, so let us do that first. Suppose:

v  w 1  w 2  z1  z2,
where w 1 and z1 are members of W, and w 2 and z2 are members of W . Then:

w 1  z1  z2  w 2.
But by the closure property, the vector on the left is a member of W, and the vector on the right is a
member of W . The equals sign means that we are referring to the same vector, so this vector must be
a member of W W , which consists only of the zero vector. Thus:

w 1  z1  0V, and z2  w 2  0V.
In other words, w 1  z1 and z2  w 2, so the decomposition is unique.
Now, let us prove the existence portion. Let u1, u2, , uk be any orthonormal basis for W. Let us
form the vector:

w 1  v | u1 u1  v | u2 u2   v | uk uk

in our formula. Certainly, w 1  W by the basis property. Now, we must show that:

w 2  v  w 1

is a member of W , that is, it is orthogonal to every vector in u1, u2, , uk. We compute:
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u1 | w 2  u1 | v  w 1  u1 | v  v | u1 u1  v | u2 u2   v | uk uk

 u1 | v  v | u1  u1 | u1  v | u2  u1 | u2   v | uk  u1 | uk

 u1 | v  v | u1  0,

and similarly, u2 | w 2  u3 | w 2    uk | w 2  0. 

We wish to point out that this recipe for the decomposition works out for any orthonormal basis for W,
not just the basis that we produce using the Gram-Schmidt Algorithm. Thus, the Theorem is actually
more flexible, although in practice, we use the Gram-Schmidt Algorithm to construct this basis. Also,
the Theorem only requires that W is finite dimensional, but the ambient space V could be infinite
dimensional.

Example: Let us continue with our previous Example. We have the orthonormal basis:

B  1
3

, 1
42

3x  1, 1
126

7x2  8x  9

for 2 under the inner product:

 px |qx   p2q2  p0q0  p1q1.

If W  Span1, x, we found orthonormal bases for W and W , as:

W  Span 1
3

, 1
42

3x  1 and W  Span 1
126

7x2  8x  9 .

Now, let us find the orthogonal decomposition of the polynomial rx  5x2  8x  3, with respect to
W and W . To compute the inner product, we need:

r2  39, r0  3, and r1  0.
First Solution:

To apply the formula directly, we compute the coefficients:

rx | 1
3

 39 1
3
 3 1

3
 0 1

3
 42

3
, and

rx | 1
42

3x  1  39 5
42

 3 1
42

 0 4
42

 192
42

.

Thus:
w 1x  42

3
 1

3
 192

42
 1

42
3x  1

 141  32
7 3x  1  66

7  96
7 x, and

w 2x  rx  w 1x  5x2  8x  3  66
7  96

7 x

 5x2  40
7 x  45

7  5
7 7x2  8x  9.

It is clear that w 2x is a member of W , so our decomposition is correct.
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Second Solution:

Notice that W is only 1-dimensional, so we can save time by finding w 2x first:

rx | 1
126

7x2  8x  9  39 3
126

 3 9
126

 0 6
126

 90
126

and thus:

w 2x  90
126

 1
126

7x2  8x  9  5
7 7x2  8x  9.

Of course we will get the same w 1, this time using w 1x  rx  w 2x.

Third Solution:

Now, here’s the kicker. Let us completely ignore all the normalization, and consider the orthogonal
basis B /  1, 3x  1, 7x2  8x  9 for 2.
The first two vectors still form a basis for W, and the third vector forms a basis for W . But notice that
the degrees of the members are in increasing order, so we can easily find the coefficients of any vector
with respect to this basis, without too much difficulty, starting with the highest degree:

5x2  8x  3  141  32
7 3x  1  5

7 7x2  8x  9.

So again w 1x  141  32
7 3x  1  66

7  96
7 x, and w 2x  5

7 7x2  8x  9. 

This Example was still relatively simple because our space is only 3-dimensional. If the space has a
higher dimension, a good strategy would be to find the projection of w onto the subspace (either W or
W) with the smaller dimension.

7.4 Section Summary

Let W be a subspace of an inner product space V. We define the orthogonal complement of W, which
is also a subspace of V, by: W  v  V |  v |w   0 for all w  W .

Let B  w 1, w 2, . . . , w k  be a basis for a finite dimensional subspace W of an inner product space V.
Then v is a member of W if and only if v |w i   0 for all i  1, 2, . . k.
Thus, it is both necessary and sufficient that we check that an arbitrary member v of V is orthogonal to
every member of a basis for W.
The Dimension Theorem for Orthogonal Complements: Let W  SpanB  V, where
B  w 1, w 2, . . . , w k  is a basis for W. If we enlarge B to:

B /  w 1, w 2, . . . , w k, w k1, . . . , w n ,

a basis for V, and S  u1, u2, . . . , uk, uk1, . . . , un  is the orthonormal basis for V obtained after
applying the Gram-Schmidt Algorithm to B /, then S1  u1, u2, . . . , uk  is an orthonormal basis for
W, and S2  uk1, . . . , un  is an orthonormal basis for W.
Consequently: dimW  dimW   n.
More generally, if S  S1  S2 is an orthonormal basis for V, where S1 and S2 are non-empty subsets
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of S with no member in common, then W1  SpanS1  and W2  SpanS2  are orthogonal
complements of each other. Thus W   W.
Let W be a finite-dimensional subspace of an inner product space V. Then, any vector v  V can be
expressed uniquely as a sum: v  w 1  w 2, where w 1  W and w 2  W .

We refer to this as the orthogonal decomposition of v with respect to W and W . Moreover, we can
explicitly construct w 1 and w 2 as follows: If u1, u2, . . . , uk  is any orthonormal basis for W, then:

w 1  v | u1 u1  v | u2 u2   v | uk uk, and w 2  v  w 1.

We call w 1 the orthogonal projection of v onto W, and w 2 the orthogonal projection of v onto W .
We write these symbolically as w 1  projWv and w 2  projW v.

7.4 Exercises

For Exercises 1 to 14: Without using the Gram-Schmidt Algorithm, find a basis for the orthogonal
complement W of the following subspaces W of the given ambient spaces, with respect to the given
inner product:

1. W  Span 1, 0,1, 1, 1, 2  3, under the ordinary dot product.
2. W  Span1,1, 3  3, under the ordinary dot product.
3. W  Span 1, 0,1, 1, 1, 2  3, under the weighted dot product:

u |v   4u1v1  5u2v2  3u3v3.

4. W  Span1,1, 3  3, under the inner product of Exercise 3.
5. W  Span 1, 0,1, 1, 1, 1, 1, 1  4, under the ordinary dot product.
6. W  Span 1, 0,1, 1, 1, 1, 1, 1  4, under the weighted dot product:

u |v   4u1v1  u2v2  3u3v3  6u4v4.

7. W  Span 1, 0,1, 1, 1, 1, 1, 1, 1, 1, 0,1  4, under the inner product of
Exercise 6.

8. W  Span 1,1, 2, 1, 3, 1  3, under the inner product generated by the
isomorphism:

T 
1 1 0
1 1 1

0 1 1

.

9. W  Span1, 1,3  3, under the inner product of Exercise 8.
10. W  Spanx2  2, under the inner product:

px |qx  p2q2  p0q0  p1q1.

11. W  Spanx  1, x2  1  2, under the inner product of the Exercise 10.
12. W  Span4  x, 2x  x3  3, under the inner product:

px |qx  p1q1  p1q1  p2q2  p4q4.

13. W  Span4  x  3, under the inner product of Exercise 12.
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14. W  Spanx2  x  1  2 under the inner product: px |qx  
0

1 pxqxdx.
For Exercises 15 to 25: Use your answers in the Section 7.3 Exercises (as indicated, or
numbered in parentheses) to find an orthonormal basis for W and the orthogonal complement
W of the following subspaces of the indicated ambient spaces (there should be no need for
further computations). Verify the Dimension Theorem for W and W.

15. W  Span 1, 1,1, 0,1, 1  3 under the ordinary dot product (Exercise 1).
16. W  Span1, 0, 1  3 under the ordinary dot product (Exercise 2).
17. W  Span1, 1,1  3 under the weighted inner product of Exercise 3.
18. W  Span 1, 0, 1, 2,1, 0  3 under the inner product of Exercise 4.
19. W  Span 1, 0, 1, 2,1, 0  3 under the inner product of Exercise 6.
20. W  Span 1,1, 1,1, 1, 0,1, 1  4 under the ordinary dot product (Exercise 7).
21. W  Span1,1, 0, 1  4 under the ordinary dot product (Exercise 8).
22. W  Span 1,1, 1,1, 1, 0,1, 1, 1, 1, 0,1  4

under the inner product of Exercise 9.
23. W  Spanx2  2 under the inner product of Exercise 11.
24. W  Spanx2  1, x  1  2 under the inner product of Exercise 12.
25. W  Spanx2, x  2 under the inner product of Exercise 13.

For Exercises 26 to 31: Use The Extension Theorem, Exercise 27 of Section 3.2, to enlarge
the indicated basis for W, one vector at a time, using vectors from the standard basis S in the
given order, until you have a basis S / for the ambient vector space. Then use S / as input to the
Gram-Schmidt Algorithm to find an orthonormal basis for V, W and W. Note: The Exercise
numbers mentioned for certain items are from this section, 7.4.

26. W  Span5,2, 0  3  SpanS where S  e1, e2, e3, under the dot product.
27. W  Span5,2, 0  3  SpanS where S  e1, e2, e3, under the weighted inner

product of Exercise 3.
28. W  Span 1,1, 0, 1, 1, 0,3, 1  4  SpanS where S  e1, e2, e3, e4 , under the

dot product.
29. W  Span 1,1, 0, 1, 1, 0,3, 1  4  SpanS where S  e1, e2, e3, e4 , under the

weighted inner product of Exercise 6.
30. W  Spanx2  5x  2  SpanS, where S  x2, x, 1 under the inner product of Exercise

10.
31. W  Spanx2  3x, x  2  SpanS, where S  x2, x, 1 under the inner product of

Exercise 10.
32. Explain why your answers in the Section 7.3 Exercise 11 will not help you find a basis for the

orthogonal complement of W  Spanx2, 1 under the same inner product on 2.

For Exercises 33 to 41. Use your computations in the Section 7.3 Exercises and Exercises
15 to 25 above to find the orthogonal decomposition w 1  w 2 of the indicated vector with
respect to the indicated subspace W. Review the final Example of this Section and decide which
strategy works best for each Exercise.

33. u  2,4, 1, W  Span 1, 1,1, 0,1, 1  3 under the ordinary dot product.
34. v  3, 5, 8, W  Span 1, 0, 1  3 under the ordinary dot product.
35. u  2,4, 1, W  Span 1, 1,1  3 under the weighted dot product of Exercise 3.
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36. v  3, 5, 8, W  Span 1, 0, 1, 2,1, 0  3 under the inner product of Exercise 8.
37. u  3, 6,2,4, W  Span 1,1, 1,1, 1, 0,1, 1  4 under the dot product.
38. v  5,2, 7,3, W  Span 1,1, 0, 1  4 under the ordinary dot product.
39. u  3, 6,2,4, W  Span 1,1, 1,1, 1, 0,1, 1, 1, 1, 0,1  4

under the weighted dot product of Exercise 6.
40. u  x2  2x  5, W  Spanx2  2 under the inner product of Exercise 10.
41. v  3x2  6x  4, W  Spanx2, x  2 under the inner product:

px |qx  
0

1
pxqxdx.

42. Prove that for any inner product space V: V  0V , and 0V

 V.

43. Prove that if B  w 1, w 2, . . . , w k  is a basis for a subspace W of a finite dimensional inner
product space V, then v  V is a member of W if and only if:

v |w i   0 for all i  1, 2, . . k.

44. Prove that for any subspace W of an inner product space V (even if V is infinite dimensional),
then we must have: W  W .
Hint: to avoid confusion, let us write U for W. Thus, we want to show that W  U. Write
down the definitions of W and U. Stare at these two definitions for a while, and convincingly
explain why these two definitions tell you that every member of W is also a member of U.

45. The goal of this Exercise is to show that if two non-empty sets S1  v1, v2, . . . , vk and
S2  vk1, vk2, . . . , vn are disjoint (that is, they do not have any element in common) and
furthermore S1  S2 is an orthogonal basis for an inner product space V, then the two subspaces:

W  SpanS1  and U  SpanS2 

are orthogonal complements of each other, that is:

U  W and W  U.

a. Begin by writing any arbitrary vector v  V as a linear combination of the vectors in
S1  S2.

b. Use the standard technique to show that if v  W, then the coefficients of v1, v2, . . . , vk
must all be 0. Conclude that v  U, and thus W  U.

c. Next, show that if v  U, (thus, it is only a linear combination of the vectors in S2) then v is
orthogonal to every vector in S1 and thus v  W. Thus U  W and this completes the
proof that U  W.

d. Use the same ideas in (b) and (c) to show that W  U.
46. Follow the construction of the basis for W in the final Theorem of this section and explain why

the two bases obtained in this Theorem (one for W and one for W) have the required properties
for S1 and S2 that are found in the previous Exercise. This completes all the details of the proof
that W   W.

47. De Morgan’s Laws for Subspaces: In Chapter Zero, we encountered De Morgan’s Laws for
Logic, which states that if p and q are logical statements, then:

not p and q   not p or not q , and
not p or q   not p and not q .
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The goal of this Exercise is to establish analogous laws in the language of the join, intersection,
and orthogonal complement of two subspaces V and W of a finite-dimensional inner product
space U. Recall that:

V W  u  U | u  v  w for some v  V and some w  W , and

V W  u  U | u  V and u  W .

These were discussed in detail in Section 4.1. Recall also that in the same Section, we proved the
Dimension Theorem:

dimV W  dimV  dimW  dimV W,

and the formula for the intersection in terms of the orthogonal complements:

V W  V W .

We can rewrite this equation, and introduce a second equation, which will be the desired analogs
to De Morgan’s Laws:

V W  V W, and
V W  V W.

Our goal is to prove these two equations. To begin the proof, let x1, x2,  , xk  be an
orthonormal basis for V W, where without loss of generality, we assume that k  1.
a. Explain how to use the Extension Theorem and the Gram-Schmidt Algorithm to extend this

set to the following orthonormal basis for all of V:

x1, x2,  , xk, v1, v2,  , vm .

b. Explain how to use the Extension Theorem and the Gram-Schmidt Algorithm to extend this
set even further to the following orthonormal basis for V W:

x1, x2,  , xk, v1, v2,  , vm, w 1, w 2,  , w n .

c. In the notation above, explain why the following is a basis for W:

x1, x2,  , xk, w 1, w 2,  , w n .

d. Explain how to use the Extension Theorem and the Gram-Schmidt Algorithm to extend this
set even further to the following orthonormal basis for all of U:

x1, x2,  , xk, v1, v2,  , vm, w 1, w 2,  , w n, u1, u2,  , up .

e. In the notation above, what would be a basis for V W? Explain your answer.
f. In the notation above, what would be a basis for V? Explain your answer.
g. In the notation above, what would be a basis for W? Explain your answer.
h. Combine your last two answers to find a basis for V W, and show that you have the

same answer as your basis for V W. Thus, these two subspaces are exactly the same.
i. In the notation above, what would be a basis for V W? Explain your answer.
j. Use the Dimension Theorem and parts (f) and (g) above to show that dimV W   p.

See part (d) to see the role of p in the Proof.
k. Find a basis for V W, and show that you have the same answer as your basis for

V W. Thus, these two subspaces are exactly the same.

624 Section 7.4 Orthogonal Complements and Decompositions



7.5 Orthonormal Bases and Projection Operators

Orthonormal bases for a finite-dimensional inner product space V, and in particular from n, possess
many useful properties that can help us perform some computations in an easy way . We begin by
seeing that inner products essentially reduce to an ordinary dot product in the finite-dimensional case
through the use of coordinates with respect to an orthonormal basis, thus also enabling us to compute
norms, angles and distances using simpler formulas:

Theorem: Let B  u1, u2, . . . , un be an orthonormal basis for an inner product space V.
Let v and w be arbitrary members of V. If:

v B  v1, v2, . . . , vn , and w B  w1, w2, . . . , wn , then:

1. v |w   v B  w B  v1w1  v2w2   vnwn.

2. v  v B  v1
2  v2

2   vn
2 .

3. d v, w  v B  w B  v1  w1 2  v2  w2 2   vn  wn 2 .

4. cos 
v B  w B

v Bw B
, where  is the angle between v and w,

assuming that v and w are non-zero vectors.

Proof: We only need to prove part (1), because parts (2), (3) and (4) follow directly from the
definitions of the norm, distance and angle between vectors. For example, if we already know that:

v |w   v B  w B  v1w1  v2w2   vnwn, then:

v |v   v B  v B  v1v1  v2v2   vnvn, and thus:

v  v1
2  v2

2   vn
2  v B.

Proof of Property 1: Suppose B is an orthonormal basis as written above, and we have the coordinates
v B and w B also as written above. By definition of coordinates, we have:

v  v1u1  v2u2   vnun, and w  w1u1  w2u2   wnun.
Then, using the additivity, homogeneity and orthonormality properties:

v |w   v1u1  v2u2   vnun |w1u1  w2u2   wnun 

 v1u1 |w1u1  w2u2   wnun  

v2u2 |w1u1  w2u2   wnun   

vnun |w1u1  w2u2   wnun 

 v1w1u1 |u1   v1w2u1 |u2    v1wnu1 |un  

v2w1u2 |u1   v2w2u2 |u2    v2wnu2 |un   

vnw1un |u1   vnw2un |u2    vnwnun |un 

 v1w1  v2w2   vnwn.
We emphasize that these are the only surviving terms because ui |uj   0  uj |ui  if i  j,
and so only the terms involving ui |ui   1 survive.
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Example: Let 2 be an inner product space under:

 px |qx  p2q2  p0q0  p1q1,
as in our last three Sections. In the previous Section, we constructed the orthonormal basis
B  u1x, u2x, u3x, where:

u1x  1
6 xx  1, u2x   1

2 x  2x  1, and u3x  1
3 x  2x.

Let us consider two arbitrary polynomials of 2, say:

px  7x2  3x  4 and qx  5x2  2x  6.
Let us construct the value table for our polynomials:

2 0 1

u1x  1
6 xx  1 1 0 0

u2x   1
2 x  2x  1 0 1 0

u3x  1
3 x  2x 0 0 1

px  7x2  3x  4 38 4 8
qx  5x2  2x  6 18 6 3

Recall that to find the coordinates of any vector v with respect to an orthonormal basis B, we can use
the general formula:

c i  v |ui , where v B  c1, c2, . . . , cn .

Because we have chosen an orthonormal basis that behaves very similarly to e1, e2, e3 as seen in the
table above, we immediately get:

px B  38, 4, 8 , and

qx B  18, 6, 3 .

Notice that if we were to directly find the inner product:

 px |qx  p2q2  p0q0  p1q1, we get:
 px |qx  3818  46  83  636.

But this is exactly the same as:

px B  qx B  3818  46  83  636.

On the other hand, consider the other orthonormal basis:

S  v1x, v2x, v3x  1
3

, 1
42

3x  1, 1
126

7x2  8x  9

that we obtained using the Gram-Schmidt Algorithm in the previous Section. Let us construct the value
table for these polynomials, as well as the same px and qx:
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2 0 1

v1x  1
3

1
3

1
3

1
3

v2x  1
42

3x  1 5
42

1
42

4
42

v3x  1
126

7x2  8x  9 3
126

9
126

6
126

px  7x2  3x  4 38 4 8
qx  5x2  2x  6 18 6 3

This time, finding the coordinates of px and qx with respect to S is not as obvious. Applying the
same formula for c i that we have above, though, we get:

px S 
38  4  8

3
, 538  4  48

42
, 338  94  68

126

 50
3

, 154
42

, 126
126

, and

qx S 
18  6  3

3
, 518  6  43

42
, 318  96  63

126

 9
3

, 108
42

, 90
126

Despite the difference in their appearance, though, we still get:

px S  qx S 
50

3
, 154

42
, 126

126
 9

3
, 108

42
, 90

126

 50
3

9
3

 154
42

108
42

 126
126

90
126

 150  396  90  636. 

We know in general from Exercise 22 in Section 3.8 that if B  u1, u2, . . . , un  is any basis for a
vector space V, then the linear transformation obtained by the coordinatization process defined by:

T : V  n, where Tv  vB,
is an isomorphism of vector spaces. However, the previous Theorem tells us something stronger when
B is an orthonormal basis, and so we rephrase the same theorem in more elegant language:

Definition/Theorem: Let B  u1, u2, . . . , un  be an orthonormal basis for an inner
product space V. Then, the process of finding coordinates with respect to B:

T : V  n, where Tv   v B,
is an isomorphism of inner product spaces (also known as an isometry), that is, for all
vectors u, v  V:
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v |w   Tv   Tw   v B  w B.
Consequently, T also preserves norms, distances and angles, that is:
1. v  Tv   v B,

where the norm on the left is computed in V, and the norm on the right is computed in n.
2. d v, w  d Tv , Tw   d  v B, w B ,

where the distance on the left is computed in V, and the distance on the right is in n.
3. The angle between v and w under the inner product in V is the same as

the angle between v B and w B under the dot product of n.

Projection Operators and their Matrices

In Section 2.2, we found the standard matrix of the projection operators onto a line L through the origin
in 2 or 3, or a plane  through the origin in 3. Let us now formally generalize the projection
operator onto any subspace W of a Euclidean space, and find its standard matrix:

Definition/Theorem: Let W be a subspace of n, under the ordinary dot product. Then the
function projW : n  n, given by:

projWv   w 1,
where v  w 1  w 2 is the orthogonal decomposition of v with respect to W and W , is a
linear operator on n, which we call the projection operator of n onto W.
The range of projW is W, hence the use of onto in the terminology is justified.
Furthermore, if B  u1, u2, . . . , uk is any orthonormal basis for W, and
U  u1 |u2 | . . . |uk  is the n  k matrix with the vectors of B arranged in columns, then:

projW  U  U .
We refer to projW as the projection matrix representing projW.

Proof: First, let us show that projW is indeed linear. Suppose v1 and v2 are vectors of V, and we have
the decompositions:

v1  w 1  w 2, and v2  w 1
/  w 2

/ ,
where w 1 and w 1

/ are vectors of W, and w 2 and w 2
/ are members of W . Then:

v1  v2  w 1  w 2  w 1
/  w 2

/  w 1  w 1
/  w 2  w 2

/ .

Since the subspaces W and W are closed under addition, and we know that the orthogonal
decomposition of any vector is unique, we can see that:

projWv1  v2   w 1  w 1
/  projWv1   projWv2 ,

so projW is additive. Similarly, we can easily show that projW is homogeneous.
If w is already a vector in W, then projWw  w, and thus the range of projW must be all of W.
Now, let us find the matrix for projW. Suppose that B  u1, u2, . . . , uk is any orthonormal basis for
W. Let v  n. According to the projection formula from the previous Section:

w 1  projWv   v |u1 u1  v |u2 u2   v |uk uk

 v  u1 u1  v  u2 u2   v  uk uk.
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Since this is a linear combination of the vectors of B, we can write it as a matrix product:

w 1  u1 |u2 | . . . |uk 

u1  v
u2  v


uk  v

,

where we exchanged the order of the dot products, which we can do because the dot product is
commutative. But now, the column matrix on the right can again be expressed as another matrix
product, this time, viewing u1, u2, . . . , uk as the rows of a matrix:

w 1  u1 |u2 | . . . |uk 

u1  v
u2  v


uk  v

 u1 |u2 | . . . |uk 

u1

u2



uk

 v .

If we denote by U  u1 |u2 | . . . |uk , the second matrix is now U , and so by the associative
property of matrix multiplication, we get:

w 1  U  U    v.
Thus, w 1  projWv  can be obtained from v by multiplying v by U  U . By The Uniqueness of the
Standard Matrix of any linear transformation, this tells us that projW  U  U . 

Example: Let W  Span 1,1, 0, 2, 1, 3, 1,1. Let us use the Gram-Schmidt Algorithm to
find an orthonormal basis for W:

v1  1,1, 0, 2

v2  1, 3, 1,1  1, 3, 1,1  1,1, 0, 2
1,1, 0, 2  1,1, 0, 2 

1,1, 0, 2

 1, 3, 1,1  6
6 1,1, 0, 2  0, 2, 1, 1.

A quick check verifies that v1  v2  0. Normalizing, we get our basis:

1
6
1,1, 0, 2, 1

6
0, 2, 1, 1 .

Thus:

projW 

1
6

0

 1
6

2
6

0 1
6

2
6

1
6

1
6
 1

6
0 2

6

0 2
6

1
6

1
6

 1
6

1 1 0 2
1 5 2 0
0 2 1 1
2 0 1 5

.
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To test that this matrix is correct, let us use projW to orthogonally decompose v  7,5, 3, 4:

projWv  1
6

1 1 0 2
1 5 2 0
0 2 1 1
2 0 1 5

7
5

3
4

 1
6

20
26
3
37

 w 1, and

w 2  v  w 1  7,5, 3, 4  1
6 20,26,3, 37

 1
6 22,4, 21,13.

We verify that w 1  w 2  20  22  26  4  3  21  37  13/36  0, so at least for this vector, we
obtain the correct decomposition.

Notice that in this Example, projW is a symmetric matrix. This is not an accident, and you will prove
that this is true in general in the Exercises.

Example — Revisiting Projections and Reflections: Let us find yet another method to obtain the
matrix of a projection operator onto a plane in 3. Consider , the plane with equation
3x  5y  2z  0, as in Section 2.2. We need an orthonormal basis for the vectors on this plane. Let us
begin with an obvious basis for :

B   5, 3, 0, 0, 2, 5,

as we have done before. Now, we apply the Gram-Schmidt Algorithm to B:

v1  5, 3, 0, and

v2  0, 2, 5  0, 2, 5  5, 3, 0
5, 3, 0  5, 3, 0 

5, 3, 0  0, 2, 5  6
34 5, 3, 0  5

17 3, 5, 17,

or we can use v2  3, 5, 17. Thus we get the orthonormal basis:

1
34

5, 3, 0, 1
323

3, 5, 17 .

From this, we obtain the matrix:

proj  

5
34

 3
323

3
34

5
323

0 17
323

5
34

3
34

0

 3
323

5
323

17
323

 1
38

29 15 6
15 13 10
6 10 34

.

This is exactly the same matrix we obtained in Section 2.2.
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7.5 Section Summary

Let B  u1, u2, . . . , un be an orthonormal basis for an inner product space V. Let v and w be
arbitrary members of V. If:

v B  v1, v2, . . . , vn , and w B  w1, w2, . . . , wn , then:

1. v |w   v B  w B  v1w1  v2w2   vnwn.

2. v  v B  v1
2  v2

2   vn
2 .

3. d v, w  v B  w B  v1  w1 2  v2  w2 2   vn  wn 2 .

4. cos 
v B  w B

v Bw B
, where  is the angle between v and w, non-zero vectors.

Let W be a subspace of n, under the ordinary dot product. Then the function projW : n  n,
given by: projWv   w 1, where v  w 1  w 2 is the orthogonal decomposition of v, is a linear
operator of n, which we call the projection operator of n onto W.
Furthermore, if B  u1, u2, . . . , uk is an orthonormal basis for W, and U  u1 |u2 | . . . |uk  is the
n  k matrix with the vectors of B arranged in columns, then: projW  U  U .

7.5 Exercises

For Exercises 1 to 5: Use the coordinate vectors u S and v S for the two indicated vectors
which you found in Exercise 18 to 28 in Section 7.3, with respect to the indicated orthonormal
basis S, to find: (a) u |v , (b) u, (c) v, (d) d u, v, and (e) the cosine of the angle  between u
and v; (f) check (a) by directly computing u |v  using the definition of the indicated inner product.

1. u  2,4, 1 and v  3, 5, 8  from Exercise 18 of Section 7.3; S is the output of the
Gram-Schmidt Algorithm using the basis B   1, 1,1, 0,1, 1, 2, 0, 1 for 3, under the
weighted inner product: u |v   4u1v1  5u2v2  3u3v3.

2. u  2,4, 1 and v  3, 5, 8  from Exercise 21 of Section 7.3; S is the output of the
Gram-Schmidt Algorithm using the basis B   1, 0, 1, 2,1, 0, 1, 1,1 for 3 under the
inner product generated by the isomorphism:

T 
1 1 0
1 1 1

0 1 1

.

3. u  3, 6,2,4 and v  5,2, 7,3 from Exercise 24 of Section 7.3; S is the output of the
Gram-Schmidt Algorithm using the basis:

B   1,1, 1,1, 1, 0,1, 1, 1, 1, 0,1, 1, 1, 1,1

for 4 under the weighted inner product: u |v   4u1v1  u2v2  3u3v3  6u4v4.

4. u  x2  2x  5 and v  3x2  6x  4 from Exercise 26 of Section 7.3; S is the output of the
Gram-Schmidt Algorithm using the basis B  x2, x, 1 for 2 under the inner product:
 px |qx   p2q2  p0q0  p1q1.
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5. u  x2  2x  5 and v  3x2  6x  4 from Exercise 28 of Section 7.3; S is the output of the
Gram-Schmidt Algorithm using the basis B  x2, x, 1 for 2 under the inner product:

 px |qx   
0

1
pxqxdx.

For Exercises 6 to 9: Find the matrix of the projection operator with respect to the subspace
W. You may use your answers from the given Exercises. Check your answer by computing
w 1  projWv for the indicated v, and verifying that w 2  v  w 1 is orthogonal to w 1 under the
ordinary dot product.

6. W  Span 1, 1,1, 0,1, 1  3 from Exercise 15, Section 7.4; v  2,5, 3.

7. W  Span 1, 0, 1  3 from Exercise 16, Section 7.4; v  2,5, 3.

8. W  Span 1,1, 1,1, 1, 0,1, 1  4 from Exercise 20, Section 7.4;
v  2,3,7, 4.

9. W  Span 1,1, 0, 1  4 from Exercise 21, Section 7.4; v  2,3,7, 4.

10. Find the matrix of the projection operator of 4 with respect to:

W  Span 1,1, 1, 0, 1, 0,1, 1, 0, 1, 1, 1

Check your answer by computing w 1  projWv , where v  2,3,7, 4, and verifying that
w 2  v  w 1 is orthogonal to w 1 under the ordinary dot product.

11. Use the technique shown in this Section to find the standard matrix of proj where  is the plane
in 3 with Cartesian equation: 5x  3y  7z  0.

12. Repeat the previous Exercise for the plane  with Cartesian equation 7y  4z  0. Be careful
how you choose B.

13. Use the formula for projW to prove that projW is symmetric for every projection operator on
n. Hint: what is the formula for A  B?

14. Idempotent Matrices: An n  n matrix A is called idempotent if A2  A. The word
“idempotent” comes from the Latin words “idem,” which means “the same,” and “potent,” which
means “power.”

a. Let A by an n  n idempotent matrix. Show that A3  A also.

b. (continuation) Use induction to show that Ak  A for all positive integers k. Notice how the
word “idempotent” perfectly describes such a matrix.

c. Now, let W be any subspace of n. Show that projW is always an idempotent matrix.
Hint: for any v  n, let v  w 1  w 2 be the orthogonal decomposition of v with respect to
W and W. Use the linearity properties. What is projW w 1 ? What is projW w 2 ? Show
that projW projW v   projW v , and thus projW2  projW.

In the previous Exercise, we also showed that projW is symmetric for every subspace W.
Now, we have the converse:

d. Suppose that A is a symmetric and idempotent n  n matrix. Prove that there exists a
subspace W of n such that A  projW. Hints: Review Section 1.8, The Four
Fundamental Matrix Spaces of A. In particular, review which pairs of these spaces are
orthogonal complements of each other. Which one of these spaces should W be? Prove that
with this choice of W, projW  A.
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15. Norm-Preserving Transformation: Suppose that T : V  W is a linear transformation from one
inner product space to another, such that vV  Tv W. In other words, the length of a
vector in V (under the inner product of V is the same as the length of its image in W (under the
inner product of W. We also say that T is a norm-preserving transformation. Prove that T is
one-to-one. Hint: look at the kernel of T.

16. Use the previous Exercise to explain why rotations in 2, reflections across lines through the
origin in 2, and reflections across lines or planes through the origin in 3 are all isomorphisms.

17. Prove that every projection operator projW on n is diagonalizable, and describe the diagonal
matrix for projW and the basis for n under which the matrix is diagonal. Assume that W has
dimension k. Hint: think about what happens to the vectors of W and W . You must also prove
that the union of a basis for W and a basis for W yields a basis for n.

18. Non-orthogonal Decompositions: Suppose that U is an n-dimensional vector space (not
necessarily an inner product space), and V and W are both subspaces of U (not necessarily
orthogonal to each other, even if U is an inner product space), satisfying the two conditions:

V W  0U and dimV  dimW  dimU.

a. Let B  v1, v2, . . . , vk be a basis for V, and let B /  w k1, . . . , w n be a basis for W
(note that the dimension equation above tells us that these subscripts are correct). Prove that
B  B / is a linearly independent set, and therefore a basis for U. Hint: use an idea from the
uniqueness portion of the proof of the orthogonal decomposition theorem.

b. Use (a) to show that any vector u  U can be decomposed uniquely as: u  v  w, where
v  V and w  W. Hint: use the ordinary coordinatization process from Section 3.5.

c. Show that the plane V  Span 1,1, 2, 0, 3, 1 and the line W  Span1, 2,1,
both subspaces of 3, satisfy the two conditions for V and W above. Hint: to make this easy,
find a Cartesian equation for V and show that W is not on V.

d. Find the decomposition of u  3,8, 5 with respect to the subspaces V and W in (c).
e. Make a sketch of the plane V, the line W and the three vectors in your decomposition. Do

they form a right triangle?

19. Flashback to Section 7.1: Prove that the set of m  n matrices is an inner product space under
the bilinear form A |B   i1

m  j1
n a i,jb i,j, that is, take all the corresponding pairs of products

of the entries of the two matrices and add them together, just like the ordinary dot product.

20. Matrix Decompositions: Recall that a square matrix A is symmetric if A  A. We showed in
Exercise 16 and 17 in Section 3.4 that the set of all n  n symmetric matrices, which we shall
denote Symmn, is a subspace of Matn, n. Furthermore we found that:

dimSymmn  nn  1
2 and dimMatn, n  n2.

Similarly, a square matrix B is called skew-symmetric if B  B.

a. Warm-up: Verify that B 

0 5 3
5 0 2

3 2 0

is a skew-symmetric matrix.

b. Prove in general that the diagonal of a skew symmetric matrix must consist entirely of
zeroes, as demonstrated in (a).
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c. Prove that the subset Skewn of all n  n skew-symmetric matrices is also a subspace of
Matn, n, that is, Skewn is closed under matrix addition and scalar multiplication.

d. Prove in general that every symmetric matrix is orthogonal to every skew-symmetric
matrix, under the inner product of the previous Exercise. Hint: consider the terms which are
on the diagonal, and consider in pairs the terms which are off the diagonal.

e. Rephrase the last two parts as: Skewn, n  Symmn, n

.

Our next goal is to show that these two subspaces are actually equal.
f. Show that:

0 1 0
1 0 0

0 0 0

,
0 0 1
0 0 0
1 0 0

,
0 0 0
0 0 1
0 1 0

is a basis for Skew3, and thus this space is 3-dimensional.

g. Prove in general that dimSkewn  nn  1
2 by constructing a general basis for

Skewn using (f).

h. Use the formula dimW  dim W  dimV to show that Skewn  Symmn

.

i. Prove using a theorem that any n  n matrix C can be written as C  A  B, where A is
symmetric and B is skew-symmetric.

j. Show explicitly that any n  n matrix C can be written as C  A  B, where A is symmetric
and B is skew-symmetric. This means, find a formula for A and B, in terms of the arbitrary
matrix C. Hint: Assume that you can find A and B, as above, take the transpose of both
sides, then solve for A and B, but prove that your formula works.

k. Demonstrate your formula (that is, find A and B) on:

C 

7 5 3
3 4 9
8 1 2

.

21. Decompositions of Continuous Functions: Consider the space of continuous functions
Ca, a for some positive number a (or ). These functions are also integrable on a, a.
Recall that a function f x is even if f x  f x, and a function g x is odd if g x  g x.
a. Prove that every even function in Ca, a is orthogonal to every odd function in

Ca, a, under the inner product:  f x, g x   
a

a f x  g xdx.

Hint: what kind of function is p x  f x  g x? Prove it.

b. Prove that any continuous function h x in Ca, a can be decomposed as:

h x  f x  g x,

where f x is a continuous even function, and g x is a continuous odd function. Hint: Use
the idea of part (j) in the previous Exercise.

c. Demonstrate part (b) on the polynomial h x  8x5  7x4  2x3  5x2  6x  1.
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7.6 Orthogonal Matrices

The orthonormal sets of n (under the ordinary dot product) obtained through the Gram-Schmidt
Algorithm allow us to construct matrices that are easily inverted:

Definition: An n  n matrix Q is called orthogonal if:

QQ  QQ  In.

Equivalently, this means that Q is invertible, and:

Q1  Q.

The dot product formula for the matrix product tells us that the entry in row i, column j of QQ is the
dot product of row i of Q with column j of Q. But row i of Q is column i of Q, so by matching this
entry of QQ with the corresponding entry of In, we get:

ci  cj  0 if i  j, and
ci  ci  1 for i  1. . n,

where ci and cj are columns i and j of Q. But this is exactly the definition of an orthonormal set in n

with respect to the ordinary dot product. Since QQ  In as well, this proves that:

Theorem: The following conditions are equivalent for an n  n matrix Q:
1. Q is an orthogonal matrix.
2. The columns of Q form an orthonormal set in n with respect to the dot product.
3. The rows of Q form an orthonormal set in n with respect to the dot product.

It is an unfortunate matter of nomenclature that we call these matrices orthogonal rather than the more
appropriate “orthonormal matrices,” but this is the accepted terminology.

Example: In Section 7.3, we saw that the orthonormal sets in 2 are of the form:
S    cos, sin,  sin, cos or S    cos, sin,  sin,cos,

for some number   0, 2. Thus, by assembling the two vectors in S into the columns of Q, we get
two kinds of 2  2 orthogonal matrices:

Q 
cos  sin
sin cos

or Q 
cos sin
sin cos

.

These matrices might appear to be indistinguishable, but notice their determinants are:

cos2  sin2  1 or  cos2  sin2  1.

We say that the orthogonal matrices Q with detQ  1 are proper, and those with detQ  1 are
improper. We will see very soon that these are the only possible determinants for an orthogonal
matrix.
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For example:

3 /2 1/2

1/2 3 /2
is proper, but

3/5 4/5
4/5 3/5

is improper.

Notice also that the first kind are the matrices of the rotation operators that we saw in Section 2.2. In
fact, the first example above is the matrix of the counterclockwise rotation by /3. 

Example: It is more difficult to produce orthogonal matrices in 3, but this is where the
Gram-Schmidt Algorithm is useful. In Section 7.3, we constructed the orthonormal set:

S  1
2
1, 0, 1, 1

6
1,2, 1, 1

3
1, 1, 1 .

To form an orthogonal matrix, we assemble the three vectors in S into the columns of Q :

Q 

1/ 2 1/ 6 1/ 3

0 2/ 6 1/ 3
1/ 2 1/ 6 1/ 3

.

We can easily check, of course, that QQ  QQ  I3. More generally, starting with any basis for
3, we can construct an orthonormal basis, and thus an orthogonal matrix.

Next, let us revisit another old friend from Section 2.2:

Example: Let Q be the matrix of the reflection across the plane 3x  5y  2z  0 that we saw in
Section 2.2:

Q  refl   1
19

10 15 6
15 6 10
6 10 15

.

Observe that Q is symmetric, so:

QQ  Q2  1
192

10 15 6
15 6 10
6 10 15

2

 1
361

361 0 0
0 361 0
0 0 361

 I3.

But this should come as no surprise, because when we reflect a vector twice across the same plane, we
are back to our original vector. Thus refl 2  I3, and Q is an orthogonal matrix.

In the Exercises, you will see that this Example can be generalized to an arbitrary subspace W of n,
and not just a plane through the origin in 3.
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Further Properties of Orthogonal Matrices

We observed in the first Example that the determinants of our orthogonal matrices were either 1 or 1.
Our second Example is not as pleasant, but since it is only a 3  3 matrix, it would not take us long to
see that its determinant is in fact 1. It turns out that no other determinant is possible, and this is just
one property of several that orthogonal matrices possess:

Theorem: Let Q and P be n  n orthogonal matrices. Then:
1. detQ  1 or 1.
2. Q1 is also orthogonal.
3. PQ and QP are also orthogonal.

Notice that these are basically multiplicative and not additive properties. In particular, it is definitely
not true that orthogonal matrices form a subspace of the vector space of n  n matrices.
Proof of (1): We have:

QQ  In, thus
detQQ   detIn , or:

detQdetQ   1. But since detQ  detQ :
detQ2  1, and so:

detQ  1.

In general, we call orthogonal matrices Q with detQ  1 proper, and those with detQ  1
improper. We will leave the other two parts as Exercises. They follow easily from the formulas for
A1  and AB that we saw in Chapter 2.

In the previous Section, we saw that the linear transformation:

T : V  n, given by:
Tv   v B,

that finds the coordinates of a vector in an inner product space with respect to an orthonormal basis
B  u1, u2, . . . , un is an isometry, and thus it also preserves the length of vectors. Notice that if
V  n, then T becomes an operator of n, and we can talk about T, that is:

T   Te1  | Te2  | . . . | Ten .

But these columns are the coordinates of each ei with respect to the basis B, so we have to solve a
system of equations:

u1 u2 . . . un | e1 e2 . . . en ,

and the resulting matrix on the right hand side after we finish the Gauss-Jordan reduction will be T .
But this is exactly the same set-up to find the inverse of B. Since B is an orthonormal set, B and
B1 are both orthogonal matrices. Thus, T   B1 is an orthogonal matrix.
It should therefore come as no surprise that the properties of orthogonality, preservation of the dot
product, and preservation of length are highly interconnected:
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Theorem: Let T : n  n be a linear operator. Then, the following conditions on T are
equivalent:
1. T  is an orthogonal matrix.
2. T preserves the dot product: for all u and v  n: u  v  Tu   Tv .
3. T preserves length: for all v  n: v  Tv .

Proof: Before we begin the proof, let us establish some useful formulas. We saw that the entries of the
matrix product QQ can be interpreted as the dot product of two columns of Q. Let us use this idea to
think of the dot product as a matrix product. To avoid confusion, let us denote by v  the n  1
(column) matrix whose entries are those of v, in the natural order. Similarly, the column matrix Tv 
contains the entries of Tv . Thus, we can compute a linear transformation using a matrix product:

Tv   T   v .
Now, let us write the dot product as:

u  v  u1v1  u2v2   unvn  v1 v2  vn

u1

u2



un

 v   u   u   v ,

where the last equality is justified because we can exchange u and v. Thus:
Tu   Tv   Tv   Tu 

 T v   T u 
 v T    T u 
 v   T   T u  by the Associative Property,
 T T u   v again using w  v  v   w .

We remark that the resulting column matrix inside the parentheses in the final step should be regarded
as a vector for this dot product to make sense.
Now, let us show that 1  2. If T  is orthogonal, then T T   In, so the formula above
becomes:

Tu   Tv   Inu  v  u  v,

so T preserves the dot product.
To show that 2  3, let us assume that T preserves the dot product. Then:

Tu 2  Tu   Tu   u  u  u2,

so T also preserves lengths. Now, let us work our way backwards:
Let us show that 3  2. Suppose T preserves length. Let us show that T also preserves the dot
product. But Exercise 35 in Section 7.2 says that for all u, v in an inner product space V:

u  v2  u  v2  4u |v , so under the dot product:

u  v  1
4 u  v2  1

4 u  v2.

Thus, if a vector always has the same length as its image under T , then we have (applying the formula
above to Tu and Tv instead):
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Tu   Tv   1
4 Tu   Tv 2  1

4 Tu   Tv 2

 1
4 Tu  v 2  1

4 Tu  v 2

 1
4 u  v2  1

4 u  v2  u  v.

Thus, T preserves the dot product.
Finally, let us show that 2  1. If T preserves the dot product, then, using our results above, we
have:

u  v  Tu   Tv   T T u   v, in other words
0  T T u   v  u  v, or upon factoring
0  T T   In u   v.

However, this equation is true for all vectors u and v  n, and thus it is true in particular if we let:
v  T T   In u .

Thus we get:

T T   In u   T T   In u   0.

But by the positive property of the dot product, we must have T T   In u   0n.
This equation is true, again, for all vectors u  n, and thus T T   In must be the zero
transformation. In other words, T T   In, and thus T  is orthogonal.

We mention that it is also possible to define an orthogonal operator T on an infinite dimensional inner
product space V by requiring that T preserves norms:

Definition: An operator T : V  V on an infinite-dimensional inner product space V is
orthogonal if for all v  V: v  Tv .

Change of Basis Matrices for Orthonormal Bases

We saw in Section 6.4 that if B and B / are any two bases for a vector space V, then we can find an
invertible basis CB,B / for which:

v B /  CB,B /  v B.
for any vector v  V. But if both bases are orthonormal, CB,B / turns out to be quite special:

Theorem: Let B and B / both be orthonormal bases for an inner product space V. Then the
change of basis matrix CB,B / is an orthogonal matrix.

Proof: We saw in Section 6.4 that:
CB,B /  B / 1B,

where B is the matrix whose columns are the vectors of B, and analogously for B /. However, we
know that both of these matrices are orthogonal matrices, and since the product of two orthogonal
matrices is again orthogonal, so is CB,B / . 
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Example: Let B   4/5,3/5, 3/5, 4/5 and B /   5/13, 12/13, 12/13,5/13. Notice that
both are orthonormal sets. We assemble the orthogonal matrices:

B 
4/5 3/5
3/5 4/5

, and B /  
5/13 12/13

12/13 5/13
.

Notice also that B /  is symmetric, and so it is its own inverse. Thus:

CB,B /  B / 1B  B / B


5/13 12/13

12/13 5/13
4/5 3/5
3/5 4/5


16/65 63/65
63/65 16/65

,

and this is indeed an (improper) orthogonal matrix which also happens to be symmetric.

7.6 Key Concepts

An n  n matrix Q is called orthogonal if QQ  QQ  In.
Equivalently, this means that Q is invertible, and Q1  Q.

The following are equivalent for an n  n matrix Q:
1. Q is an orthogonal matrix.
2. The columns of Q form an orthonormal set in n with respect to the dot product.
3. The rows of Q form an orthonormal set in n with respect to the dot product.

Let Q and P be orthogonal matrices. Then:
1. detQ  1 or 1.
2. Q1 is also orthogonal.
3. PQ and QP are also orthogonal.
We call Q proper if |Q |  1 and improper if |Q |  1.

Let T : n  n be a linear operator. Then, the following are equivalent:
1. T  is an orthogonal matrix.
2. T preserves the dot product: for all u and v  n: u  v  Tu   Tv .
3. T preserves length: for all v  n: v  Tv .

Orthogonal matrices appear in many situations:
 as matrices whose rows and columns form orthonormal sets in n.

 as a rotation matrix in 2.

 as the change of basis matrix from one orthonormal basis to another.

 as the matrix of a reflection across a line through the origin in 2, a line or a plane through the
origin in 3 (and more generally, across a subspace W of n, as will be seen in the Exercises).

 as a diagonalizing matrix for a symmetric matrix (as will be seen in the next Section).
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7.6 Exercises

1. Create two 2  2 orthogonal matrices whose first columns are parallel to the vector 8, 15.
Classify them as proper or improper.

2. Create two 2  2 orthogonal matrices whose first rows are parallel to the vector 20,21.
Classify them as proper or improper.

3. Use the results of Exercise 1, Section 7.3, to create a 3  3 orthogonal matrix. Is it proper or
improper?

4. Use the results of Exercise 7, Section 7.3, to create a 4  4 orthogonal matrix. Is it proper or
improper?

5. Let B   20/29, 21/29, 21/29, 20/29 and B /   15/17, 8/17, 8/17, 15/17.

a. Verify that B and B / are orthonormal sets.
b. Form the orthogonal matrices Q and Q / whose columns are the vectors, respectively, of B

and B /.
c. Classify Q and Q / as proper or improper.
d. Compute QQ / and verify that it is also orthogonal.
e. Is QQ / proper or improper?
f. Find the change of basis matrix CB,B / .
g. Is CB,B / proper or improper?

6. Prove that if Q  c1 |c2 | . . . |cn  is an orthogonal matrix, so is   c1 |  c2 | . . . |  cn  for every
possible choice of the sign of each column. How many possible combinations are there, including
the original matrix?

7. Prove that if Q is an n  n orthogonal matrix, then the matrices obtained from Q by rearranging
its columns in any order, is again an orthogonal matrix. How many possible rearrangements are
there?

8. Let B  u, v be any orthonormal basis for 2 such that the matrix Q  u |v is a proper
orthogonal matrix. Suppose rot is the rotation in 2 by the counterclockwise angle . Show that
rot B is exactly the same matrix as rot . Hint: express u and v in terms of the same angle ,
and use the description of proper orthogonal matrices from the first Example.

9. Show that every Type II elementary matrix (i.e. obtained by exchanging two rows of In is an
orthogonal matrix. Are they proper or improper?

10. Show that every improper 2  2 orthogonal matrix Q can be factored in the form:

Q 
1 0
0 1

Q /,

where Q / is a proper 2  2 orthogonal matrix.

For Exercises 11 to 13: Use the multiplicative property of the determinant function to prove
the following statements:

11. The product of two proper n  n orthogonal matrices is again proper.
12. The product of two improper n  n orthogonal matrices is proper.
13. The product of a proper and an improper n  n orthogonal matrix is improper.
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14. Reflections as Orthogonal Matrices: We saw in Section 2.2 that we can compute the reflection
across the plane  using what we refer to now as the orthogonal decomposition of any vector
v  3: v  w 1  w 2, where w 1   and w 2 is orthogonal to . We defined:

reflv   w 1  w 2  2w 1  v  2projW v   I3v.

More generally, if W is a subspace of a finite-dimensional inner product space V, we can likewise
define the reflection operator across W via:

reflWv   2projW  IV v 
 2projW v   v,

where IV is the identity operator on V. However, for the rest of this Exercise, let us assume that
V  n under the ordinary dot product, and W  n:

a. Use this definition to show that reflW is symmetric. Hint: Use Exercise 13 in Section 7.5.
b. Prove that for any projection operator: projW  projW  projW.

Hint: where does w 1 live?
c. Use (b) to show that reflW2  In

d. Put (a) and (c) together to prove that reflW is orthogonal. This allows us to create
orthogonal matrices that do not contain radicals.

e. Construct the matrix of reflW for the subspace W of 4 in Exercise 8 Section 7.5, using your
answer for projW from that same Exercise. Check mentally that the columns are
orthonormal.

15. Right Handed vs. Left Handed Orthonormal Bases: Recall from Section 1.3 that if
u  u1, u2, u3  and v  v1, v2, v3  are vectors from 3, we defined the cross product:

u  v

 u2v3  u3v2  i u1v3  u3v1  j u1v2  u2v1 k.


i j k

u1 u2 u3

v1 v2 v3

according to the formula from Exercise 25 of Section 5.1 (we will need the other results from that
Exercise).

We will define an ordered orthonormal basis u, v, w  for 3 to be right handed if:

u  v  w.

a. Check that 3, 5,2 is orthogonal to 4,2,1, and use the cross-product to create a third
vector. Normalize the three vectors and produce a right handed orthonormal basis for 3.

b. Use the vectors from (a) to construct an orthogonal matrix.

c. Verify that i, j, k is right handed.

d. Prove that if u, v, w  is any orthonormal basis for 3, then either u  v  w or w. If the
second possibility occurs, we call the basis left handed. We see the two possibilities below:
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u
.

w
v

w

u
v

.

A Right Handed Basis versus A Left Handed Basis

e. Is k, j, i left-handed or right-handed?

f. Prove that an orthonormal basis u, v, w  is right handed if and only if the 3  3
orthogonal matrix:

Q  u v w

is proper. Notice that i and j are on the xy-plane and k is on the z-axis, which is the normal
line to the xy-plane.
The goal for the rest of this Exercise is to create a right handed orthonormal basis using two
vectors from an arbitrary plane:

 : ax  by  cz  0,
and its normal vector n  a, b, c, and we assume this to be a unit vector. Let us also first
assume, for simplicity, that none of the components of n are zero.

g. Verify that S   b, a, 0, c, 0, a  contains vectors on , and apply the
Gram-Schmidt Algorithm on this set. Check your answers at the back of the book before
proceeding to the next step.

h. Suppose that u, v are the two unit vectors that you obtained from the previous step (in the
same order). Prove that u  v  n, and thus u, v, n  is a right handed coordinate system.

 



n

v

.

u

.

A Right Handed Orthonormal Basis Associated to 

i. Apply steps (g) and (h) to the plane 3x  2y  6z  0 to obtain an orthonormal basis for 3

consisting of two vectors on this plane and a vector orthogonal to this plane.
j. Modify the construction above in steps (g) and (h) if exactly one of the components of n,

say a, is zero.
k. Modify the construction above in steps (g) and (h) if exactly two of the components of n,

say b and c, are zero.
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16. Rotations in Space: We know from Section 2.2 that the standard matrix of the linear
transformation rot given by the counterclockwise rotation in 2 by the positive angle  is:

rot  
cos  sin
sin cos

.

Notice that if a  2, we can visualize this rotation taking place from the vantage point of the
positive z-axis, by placing a spindle at the origin, pointing up (in other words, in the direction of
k), and spinning a counterclockwise by , as seen on the left below:

The Counterclockwise Rotation of w by  About k, and About an Arbitrary Vector n

Suppose w  x, y, z is now a vector in 3 in standard position. We will define the
counterclockwise rotation of w by  about k, denoted rot,k, to be:

rot,kw    rotx, y, z .

Let us explain this notation: the z-coordinate of the rotated vector is the same as that of w, and if
a  x, y is the projection of w onto the xy-plane, we rotate a by , and the resulting vector gives
the x and y coordinates of the rotated vector.

a. Warm-up: Explain why the standard matrix of rot,k is:

rot,k 

cos  sin 0
sin cos 0

0 0 1

.

The goal for the rest of this Exercise is to generalize this rotation about an arbitrary unit
vector n  a, b, c, denoted rot,n, and to find rot,n. As in the previous Exercise, we
will assume for simplicity that none of the components of n is zero. Note also that n
uniquely determines a plane  passing through the origin with unit normal n.
Our next step is to find a more convenient basis for 3:

b. Use your work from Exercise 15 (g), to show that:

B  u, v, n 

 1
a2  b2

b, a, 0 , 1
a2  b2

ac,bc, a2  b2 , a, b, c

is a right handed orthonormal basis for 3.

644 Section 7.6 Orthogonal Matrices



The natural way to geometrically describe rot,n is to imagine the unit normal n to be the
spindle instead of k, and we rotate w about n using its projection a onto , as seen in the
diagram on the right above.

c. Let B be the orthonormal basis in (b). Explain why:

rot,nB  rot,k ,

and this equation does not depend on the choice of the two orthonormal vectors u and v of
. Note: there are no computations involved. Find an explanation by staring at the diagram.
To find the standard matrix rot,n, we will need the change of basis formula from Section
6.4:

rot,n  Brot,nBB
1,

where B is our basis from part (b).

d. Explain why B is an orthogonal matrix, and thus B1  B.

e. Perform the multiplications in the formula rot,n  Brot,nBB
 and show that by

simplifying:

rot,n 

a2  cos ab  c sin ac  b sin
ab  c sin b2  cos bc  a sin
ac  b sin bc  a sin c2  cos

,

where   1  cos. Notice the perfectly balanced occurrences of a, b and c in this matrix.

f. Explain why rot,n is an orthogonal matrix.

g. The formula rot,n  Brot,nBB
1 involves a composition of three linear operators.

Write a short paragraph explaining geometrically what each of these operators does, in the
correct order of operations.

h. Find the standard matrix of the rotation in 3 about the unit normal vector n  1
7 3,2, 6

counterclockwise by the angle   sin13/5. Use your computations from Exercise 15 (i).

i. Use this matrix to compute rot,nw , where w  5, 8,9 and n  1
7 3,2, 6 is the

unit vector from the previous part.

j. Draw a diagram showing n, the plane W with normal n, the vector w from part (i), and
rot,nw . Convince yourself that you have indeed rotated w by sin13/5.

k. Modify the construction above in steps (b) through (e) if exactly one of the components of
n, say a, is zero. Show that you still get exactly the same matrix rot,n.

l. Modify the construction above in steps (b) through (e) if exactly two of the components of
n, say b and c, are zero. Show that you still get exactly the same matrix rot,n.

17. Matrices in Block Diagonal Form: Suppose that Q1, Q2, , Qk are all square matrices, not
necessarily of the same size, with k  2. Show that the direct sum:

Q  Q1  Q2   Qk,

as defined in the Exercises of Section 2.8, is an orthogonal matrix if and only if every Q i is also
an orthogonal matrix.

Section 7.6 Orthogonal Matrices 645



7.7 Orthogonal Diagonalization of Symmetric Matrices

There are two magical properties that symmetric matrices possess, and one of them is related to
orthogonal matrices. The other property, though, involves only their eigenvalues and eigenvectors, so
we begin with the following:

Theorem — Orthogonality of Distinct Eigenspaces:
Let A be a symmetric matrix. Then all of the eigenvalues of A are real numbers.
Furthermore, if 1 and 2 are two distinct eigenvalues and v1 and v2 are corresponding
eigenvectors, then:

v1  v2  0.

Proof: The proof that the eigenvalues of A are real will be shown in Chapter 8, and not-surprisingly
will involve the study of matrices with complex entries. However, we can prove the second statement
concerning eigenvectors.
Suppose 1 and 2 are two distinct eigenvalues with corresponding eigenvectors v1 and v2. Instead of
studying v1  v2 directly, let us look instead at the expression v1  Av2. We have:

v1  Av2  Av2 
  v1  (using our matrix product formula for the dot product)

 v2 
AT  v1  (using CDT  DTCTv 

 v2 
A  v1  (since A is symmetric)

 v2 
  Av1  (by the associative property of matrix multiplication)

 Av1  v2. (again by the matrix product formula for the dot product)
Thus we get:

v1  Av2  Av1  v2.

Notice that, like an escape artist, the matrix A magically moved from right to left. This was only
possible precisely because A is symmetric. Now, since v1 and v2 are eigenvectors, we can rewrite this
equation as:

v1  2v2  1v1  v2, or:
2v1  v2   1v1  v2  by homogeneity. Thus:

2  1 v1  v2   0.

But since 1 and 2 are distinct eigenvalues, 2  1  0, so we must have v1  v2  0. 

Example: Consider the symmetric matrix:

A 

0 1 1
1 0 1
1 1 0

.

The characteristic polynomial is:
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 0 0
0  0
0 0 


0 1 1
1 0 1
1 1 0



 1 1
1  1
1 1 

 3  3  2    2  12,

and thus the eigenvalues are   2 and 1, which are indeed real numbers.

Orthogonal Diagonalization

We are now ready for the second magical property. The previous Theorem says that two distinct
eigenspaces for A must be orthogonal to each other (this does not mean that they are orthogonal
complements of each other). However, if an eigenspace is more than 1-dimensional, we can use the
Gram-Schmidt Algorithm to construct an orthonormal basis for it. It is not clear, however, that we
will get n linearly independent vectors, where A is an n  n matrix. However, Chapter 8 will show us
that this will indeed be possible, and thus we will state the following, whose complete proof will be in
Chapter 8:

Theorem — The Spectral Theorem for Symmetric Matrices:
Let A be a symmetric matrix. Then we can find an orthogonal matrix Q such that Q
diagonalizes A, that is:

D  Q1AQ  QAQ,

where D  Diag1, 2,  , n  is a diagonal matrix containing the eigenvalues of A, and
these eigenvalues are all real numbers.

The term “Spectral Theorem” comes from the word spectrum, which means the set of eigenvalues of
a matrix. This Theorem says that the spectrum of a symmetric matrix A consists of real numbers, and A
can be diagonalized not just by an ordinary invertible matrix, but by an orthogonal matrix Q. To
reiterate, the columns of Q are the unit eigenvectors produced by the Gram-Schmidt Algorithm on
each eigenspace, if necessary.

Example: Let us diagonalize the symmetric matrix from our previous Example:

A 

0 1 1
1 0 1
1 1 0

.

We found the eigenvalues   2 and 1. Next, we must find the nullspaces of the matrices:

2I3  A 

2 1 1
1 2 1
1 1 2

with rref
1 0 1
0 1 1
0 0 0

, and
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 1I3  A 

1 1 1
1 1 1
1 1 1

with rref
1 1 1
0 0 0
0 0 0

.

Thus we find the eigenspaces:

EigA, 2  Span1, 1, 1, and

EigA,1  Span 1, 1, 0, 1, 0, 1.

Notice that the second eigenspace is 2-dimensional, but the two basis vectors are unfortunately not
orthogonal. Thus, we must perform the Gram Schmidt Algorithm on the indicated basis:

v1  1, 1, 0, and

v2  1, 0, 1  1, 0, 1  1, 1, 0
1, 1, 0  1, 1, 0 

1, 1, 0

 1, 0, 1  1
2 1, 1, 0   1

2 , 1
2 , 1 .

Clearing fractions, we use v2  1,1, 2. A quick check of three dot products verifies that:

S   1, 1, 0, 1,1, 2, 1, 1, 1 

is indeed an orthogonal set. Next, we normalize each vector, obtaining our orthonormal basis:

B  1
2
1, 1, 0, 1

6
1,1, 2, 1

3
1, 1, 1 ,

corresponding to   1,1, 2. As usual, we want our eigenvalues to be in increasing order. Thus,
our diagonalizing orthogonal matrix is:

Q 

1/ 2 1/ 6 1/ 3
1/ 2 1/ 6 1/ 3

0 2/ 6 1/ 3

.

We can check that:

QAQ



1/ 2 1/ 2 0
1/ 6 1/ 6 2/ 6
1/ 3 1/ 3 1/ 3

0 1 1
1 0 1
1 1 0

1/ 2 1/ 6 1/ 3
1/ 2 1/ 6 1/ 3

0 2/ 6 1/ 3



1/ 2 1/ 2 0
1/ 6 1/ 6 2/ 6
1/ 3 1/ 3 1/ 3

1/ 2 1/ 6 2/ 3
1/ 2 1/ 6 2/ 3

0 2/ 6 2/ 3



1 0 0
0 1 0
0 0 2

.

As promised, the resulting matrix is diagonal, with diagonals the increasing eigenvalues.
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7.7 Section Summary

Let A be a symmetric matrix. Then all of the eigenvalues of A are real numbers. Furthermore, if 1 and
2 are two distinct eigenvalues with corresponding eigenvectors v1 and v2, then v1 is orthogonal to v2.
The Spectral Theorem for Symmetric Matrices: Let A be a symmetric matrix. Then we can find an
orthogonal matrix Q such that Q diagonalizes A, that is:

D  QAQ,
where D  Diag1, 2,  , n  is a diagonal matrix containing the eigenvalues of A, and these
eigenvalues are all real numbers.
To find this orthogonal matrix Q, we find a basis for each eigenspace of A, apply the Gram-Schmidt
algorithm to these bases, if there is more than one vector in a basis, and assemble the resulting unit
vectors into the columns of Q.

7.7 Exercises

1. Let Q 

1/ 3 1/ 2 1/ 6
1/ 3 1/ 2 1/ 6
1/ 3 0 2/ 6

,

the diagonalizing orthogonal matrix that we found in the last Example in this Section. Determine
if Q is proper or improper.

For Exercises 2 to 22: Find an orthogonal matrix Q and a diagonal matrix D such that
D  QAQ for the following symmetric matrices A. For the sake of convention, place the
eigenvalues in increasing order in D.

2.
1 1 0
1 2 1

0 1 1

3.
0 1 1
1 2 1
1 1 0

4.
1 1 1
1 1 1
1 1 1

5.
0 0 2
0 3 0
2 0 0

6.
0 5 5
5 0 5
5 5 0

7.
2 1 0
1 2 1
0 1 2

8.
2 1 1
1 2 1
1 1 2

9.
5 1 1
1 5 1
1 1 5

10.
5 3 3
3 5 3
3 3 5

11.
5 0 1
0 5 0
1 0 5

12.
6 1 1

1 6 1
1 1 6

13.
0 0 1
0 5 0
1 0 0
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14.

4 1 1 1
1 4 1 1
1 1 4 1
1 1 1 4

15.

4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4

16.

0 1 0 1
1 2 1 2
0 1 0 1
1 2 1 2

17.

5 0 0 1
0 5 1 0
0 1 5 0
1 0 0 5

18.

5 0 0 2
0 5 2 0
0 2 5 0
2 0 0 5

19.

0 0 0 5
0 0 2 0
0 2 0 0
5 0 0 0

20.

0 0 0 0 5
0 0 0 2 0
0 0 7 0 0
0 2 0 0 0
5 0 0 0 0

21.

7 0 0 0 1
0 7 0 1 0
0 0 7 0 0
0 1 0 7 0
1 0 0 0 7

22.

7 0 0 0 1
0 7 0 1 0
0 0 1 0 0
0 1 0 7 0
1 0 0 0 7

Did you notice a difference and similarity in the answers to 21 and 22?

23. Let a, b  . Find the eigenvalues, with their multiplicities, of the matrices:

a.
a b b
b a b
b b a

b.

a b b b
b a b b
b b a b
b b b a

24. Suppose c1, c2  .

a. Find the eigenvalues, with their multiplicities, of the matrix:

0 0 0 c1

0 0 c2 0
0 c2 0 0
c1 0 0 0

.

b. Let us generalize part (a). Suppose c1, c2, , ck  . Let n  2k, and even integer. Find
the eigenvalues, with multiplicities, of the n  n matrix that is zero everywhere, except for
the entries:

a1,n  c1, a2,n1  c2,  , ak,nk1  ck, ak1,nk  ck,  , an1,2  c2, an,1  c1.

In other words, the entries in the “reverse diagonal” are:

c1, c2, , ck, ck , c2, c1.
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25. Suppose c1, c2, c3  .
a. Find the eigenvalues, with their multiplicities, of the matrix:

0 0 0 0 c1

0 0 0 c2 0
0 0 c3 0 0
0 c2 0 0 0
c1 0 0 0 0

.

b. Let us generalize part (a). Suppose c1, c2, , ck  . Let n  2k  1, an odd integer. Find
the eigenvalues, with multiplicities, of the n  n matrix that is zero everywhere, except for
the entries: a1,n  c1, a2,n1  c2,  , ak1,nk  ck1, ak,nk1  ck, ak1,nk  ck1,  ,
an1,2  c2, an,1  c1. In other words, the entries in the “reverse diagonal” are:

c1, c2, , ck1, ck, ck1,  , c2, c1.

26. Suppose a, b  .
a. Find the eigenvalues, with their multiplicities, of the matrix:

a 0 0 b
0 a b 0
0 b a 0
b 0 0 a

.

b. Let us generalize part (a). Suppose n is an even integer. Find the eigenvalues, with
multiplicities, of the n  n matrix that is zero everywhere, except each diagonal entry is a,
and each “reverse diagonal” entry is b. Note that since n is even, the diagonal and reverse
diagonal entries do not intersect (as seen above in the 4  4 case).

27. Suppose a, b  .
a. Find the eigenvalues, with their multiplicities, of the matrix:

a 0 0 0 b
0 a 0 b 0
0 0 a 0 0
0 b 0 a 0
b 0 0 0 a

.

b. Change the matrix in part (a) so that the entry in row 3, column 3 is b instead of a. Find the
eigenvalues, with their multiplicities, of the new matrix.

c. Let us generalize part (a). Suppose n  2k  1 is an odd integer. Find the eigenvalues, with
multiplicities, of the n  n matrix that is zero everywhere, except each diagonal entry is a,
and each “reverse diagonal” entry is b, except for the a in row k, column k.

d. Similarly, let us generalize part (b). Again suppose n  2k  1 is an odd number. Find the
eigenvalues, with multiplicities, of the n  n matrix that is zero everywhere, except each
diagonal entry is a, and each “reverse diagonal” entry is b, including the entry in row k,
column k.
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28. The Converse of the Spectral Theorem for Symmetric Matrices: Show that if A is an n  n matrix,
and we can find an orthogonal matrix Q and a diagonal matrix D such that D  QAQ, then A is
a symmetric matrix.

29. Suppose that A is a symmetric matrix, and A has exactly two eigenspaces, W1 and W2,
corresponding to two distinct eigenvalues, 1 and 2. Prove that W1

  W2, and vice versa.

For Exercises (30) to (44): Find an orthogonal matrix Q and a diagonal matrix D such that
D  QAQ for the following symmetric matrices A. For the sake of convention, place the
eigenvalues in increasing order in D. Use technology if permitted by your instructor. Each matrix
has at least one eigenspace which is at least 2-dimensional, so the Gram-Schmidt Algorithm will
be necessary.

30.
8 10 10

10 7 5
10 5 7

31.
1 8 8
8 11 4
8 4 11

32.
1 1 2
1 1 2
2 2 2

33.
22 3 2

3 30 6
2 6 25

34.
11 4 8
4 11 8
8 8 1

35.
45 33 22
33 43 66
22 66 12

36.
7 3 2
3 1 6
2 6 4

37.
9 3 2
3 1 6
2 6 6

38.
5 7 14
7 5 14
14 14 16

39.

36 9 27 36
9 25 44 23

27 44 1 1
36 23 1 20

40.

51 24 12 12
24 13 4 4
12 4 23 40
12 4 40 23

41.

3 6 3 3
6 19 1 1
3 1 10 10
3 1 10 10

42.

5 10 5 5
10 29 5 7
5 5 30 10
5 7 10 6

43.

14 21 14 7
21 54 6 3
14 6 59 2
7 3 2 62

44.

15 7 9 22 1
7 7 7 14 7
9 7 39 2 23
22 14 2 36 6

1 7 23 6 15

652 Section 7.7 Orthogonal Diagonalization of Symmetric Matrices



7.8 The Method of Least Squares

In this Section, we return to one of the core problems of Linear Algebra: solving a system of linear
equations. We know that any linear system is either consistent (it has at least one solution) or
inconsistent (it has no solutions). Furthermore, we learned from Chapter 1 that the linear system:

Ax  b

is consistent if and only if b is in the columnspace of A. Thus, if A is an m  n matrix, unless the n
columns of A Span all of m, then there will definitely be vectors b  m such that Ax  b is
inconsistent.

Suppose, therefore, that b is not in W  colspaceA. The system Ax  b is thus inconsistent.
However, projW b is always in W, and therefore if we replace b with projW b , this new system
will now be consistent. We give this new system a special name:

Definition/Theorem: Let A be an m  n matrix, and b an m  1 column matrix. If b is not a
member of W  colspaceA, then we call the system:

Ax  b1  projW b ,

the least squares system associated to Ax  b.
This system is always consistent, and we call any solution x1  n to this system a least
squares solution or best approximation to the original (inconsistent) system Ax  b. Any
such solution x1 has the property that if x is any other vector in n that is not a least squares
solution, then:

Ax1  b  Ax  b .

In other words, the distance from Ax1 to b is as small as possible.

Before we prove the last part of this Definition/Theorem, let us see why this consolation prize makes
sense. If b  W, then b can be orthogonally decomposed as:

b  b1  b2, where b1  projW b  W, and 0n  b2  W.

Therefore the linear system Ax  b1  W must be consistent.

Proof of Theorem: We will prove below that the solutions x1 to the least square system Ax  b1 result
in a vector Ax1 that are as close to b as possible. But this system is also the ideal one to solve, because
b1 itself is the closest vector from W to b To see this, let w be any other vector in W except b1. Then:

b  w
2
 b  b1  b1  w

2
 b  b1  b1  w

2

 b2  b1  w
2
 b2

2
 b1  w

2

 b1  w
2
,

where we were able to use the General Pythagorean Theorem, since b2  W, b2  0n, and
b1  w  W. Thus b  w  b1  w .
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This also explains the terminology: the formula for the distance between two vectors u and v is:

d u, v   u  v  u1  v1 2  u2  v2 2   un  vn 2 ,

and therefore the least squares solution is the solution for which the squares of the differences
between the coordinates of Ax1 and the coordinates of b have the least sum that is possible.
Let us now show that if x is any vector in n that is not a least squares solution, then:

Ax1  b  Ax  b .

But the idea of the proof is exactly the same idea that we saw above:

Ax  b
2
 Ax  Ax1  Ax1  b

2

 Ax  x1   Ax1  b
2

 Ax  x1 
2  Ax1  b

2

 Ax1  b
2
,

where again we were able to use the General Pythagorean Theorem because
Ax  x1   W  colspaceA, and Ax1  b  b1  b  b2  W. We were also able to use a strict
inequality because x is not a least square solution, and thus Ax  b1, so Ax  Ax1 is not the zero
vector, and thus has a positive length.

Computational Issues

Let us now focus our attention on solving the system:

Ax  b1  projW b .

First, let us recall that if x1 is any solution to this system, then any other solution is of the form:
x1  x0, where x0  nullspaceA.

Thus, to find all the solutions, we only need to find at least one, and also find a basis for the nullspace
so that we can use it to find all the other solutions.
Our first step will therefore be to find the reduced row echelon form R of the matrix A. This of course
allows us to find a basis for nullspaceA. But there is another good reason for finding R. We saw in
Chapter 1 that the columns of A corresponding to the columns of R that contain a leading one form a
basis for colspaceA.
Next, let us assemble the matrix C, whose columns consist of those columns of A that correspond to
the columns of R that contain a leading 1. Thus, colspaceC  colspaceA, and if A has k linearly
independent columns, with k  n, then C is m  k. Thus, the system:

Cx  b1.
is still consistent. It is possible, of course, that the columns of A are already linearly independent, in
which case C  A. By way of example, suppose that A has 5 columns, and columns 1, 3 and 4
correspond to the leading 1’s of R . Thus:

A   a1 | a2 | a3 | a4 | a5 , and C   a1 | a3 | a4 .
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Now, if y  y1, y2, y3  is a solution to the system:

Cx  b1,
then x1  y1, 0, y2, y3, 0  is a solution to our system:

Ax  b1.

We will call this operation padding with zeroes. Thus, the system Cx  b1 yields a solution to our
system of interest Ax  b1.

Thus, we only need to solve the (possibly smaller) system Cx  b1. All we really need is b1 and the
Gauss-Jordan Algorithm. We can of course find b1  projW b by applying the Gram-Schmidt
Algorithm on the columns of C (which form a basis for W, and using the resulting orthonormal basis
u1, u2, . . . , uk  to find:

projW b  b |u1 u1  b |u2 u2   b |uk uk.

As we saw in the previous Sections, this is a rather tedious algorithm, so let us find an alternative
process, and in so doing, we will also find another way to construct the matrix of projW. Suppose:

C x  b1. Then :

b  C x  b  b1  b2  W.

This means that if x is a solution to our new system, then b  C xmust be in the orthogonal complement
of colspaceC. But this last space is exactly the same as rowspaceC . Thus:

C b  C x  0k, or in other words,

CC x  Cb.
We call this the normal system associated to Ax  b. This system is again consistent, because we
know that C x  b1 is consistent. But the big surprise is that it is more than just consistent:

Theorem: Let C be an m  k matrix with linearly independent columns. Then: CC is an
invertible k  k matrix, and therefore the normal system:

CC x  Cb

has exactly one solution.

This solution, of course, has to be a solution to the system C x  b1.

Proof: Let C be an m  k matrix with linearly independent columns. Thus, CC must be a k  k matrix.
To show that CC is invertible, let us show that the only solution x to the homogenous system:

CCx  0k,

is the trivial solution. By the associativity of matrix multiplication, we can write this as:

CC x  0k.

This tells us that C x is a member of the nullspace of C. But recall that the nullspace of a matrix is the
orthogonal complement of its rowspace. Thus, the nullspace of C is the orthogonal complement of the
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rowspace of C. But since the rowspace of C is the same as the columnspace of C, we can finally
conclude that C x is a member of the orthogonal complement of the columnspace of C.
But by the definition of matrix multiplication, C x is also a member of the columnspace of C. Since
W W  0m , we must have C x  0m.

Finally, since the columns of C are linearly independent, we must have x  0k. Thus the system
CCx  0k only has the trivial solution, so CC is invertible.

Thus, the normal system associated to our original system has unique solution:

x  CC1  Cb.

As a well-earned bonus, we also get a new formula for projW :

Theorem: Let C be an m  k matrix with linearly independent columns, and let W be the
columnspace of C. Then: CC is an invertible k  k matrix, and:

projW  C  CC1  C.

Proof: Using the notation we have established so far, we have:

projW b  b1  C x  C  CC1  Cb,

and thus:
projW  C  CC1  C. 

One would argue that this is a major improvement, because it is usually easier to find the inverse of a
matrix rather than apply the Gram-Schmidt Algorithm.

Revisiting Projections and Reflections

Let us present a fourth method to find the matrix for the projection operator onto a plane  through the
origin in 3 using the formula above for projW. The same formula can be used in the simpler case
when W  L, a line through the origin.

Example: Suppose that  is the plane with equation: 5x  2y  6z  0.
This is the same plane that we studied in Sections 3.6 and 6.4. Recall that we chose for our basis for 
the set B   2,5, 0, 0, 3, 1 . We assemble these vectors into the columns of a matrix C :

C 

2 0
5 3
0 1

.

Thus:
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C  C 
2 5 0
0 3 1

2 0
5 3
0 1


29 15
15 10

, with inverse:

C  C1 
10
65

15
65

15
65

29
65

.

Now, we get:
proj   C  CC1  C



2 0
5 3
0 1

10
65

15
65

15
65

29
65

2 5 0
0 3 1



20
65

30
65

 5
65

12
65

15
65

29
65

2 5 0
0 3 1

 1
65

40 10 30
10 61 12
30 12 29

,

which is the same answer we obtained the last two times.

The Best Approximation Algorithm

We are now ready to summarize our discussion above in order to construct an algorithm to find the
best approximation to an inconsistent system:

Theorem — The Best Approximation Algorithm:
Let Ax  b be an inconsistent system with A an m  n coefficient matrix, whose reduced
row echelon form is R. Let C be the m  k matrix whose columns are the columns of A
corresponding to the leading 1’s of R, in the same order. Then: CC is invertible, and:

x  CC1  Cb

is a solution to:
Cx  b1  projW b .

By padding x with zeroes, we obtain a solution x1 to the least squares system Ax  b1, and
all the best approximation solutions are of the form:

x1  x0, where x0  nullspaceA.
Consequently:

projW  C  CC1  C.

We will also call b  b1  b2 the common error of all our best approximation
solutions.
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Example: Let us go back, almost full circle, to the very first system of equations that we encountered
in Section 1.4, but let us modify the entries of the right-hand side b ever so slightly:

4x1  8x2  3x3  9x4  7
3x1  6x2  4x3  13x4  15
2x1  4x2  3x3  9x4  9

Let us see if this system is now inconsistent. The augmented matrix is:

4 8 3 9 | 7
3 6 4 13 | 15
2 4 3 9 | 9

, with rref
1 2 0 3 | 0
0 0 1 1 | 0
0 0 0 0 | 1

,

and thus, our new system is indeed inconsistent. This was not a complete waste of time, though,
because we also get the rref of the coefficient matrix A on the left-hand side. Thus, we see that the four
columns of A are dependent (as they should be, since they are vectors from 3), and in fact columns 1
and 3 form a basis for colspaceA. Thus, our matrix C is:

C 

4 3
3 4
2 3

.

Applying our recipe, we first need:

CC 
4 3 2
3 4 3

4 3
3 4
2 3


29 6
6 34

, with inverse:

CC1  1
29  34  36

34 6
6 29


17

475
3

475
3

475
29

950
.

We are now ready to find our solution vector:
x  CC1  Cb


17

475
3

475
3

475
29

950

4 3 2
3 4 3

7
15
9


77

475
39

475  1
19

111
950  49

475
3

38

7
15
9


71
25
 36

25
.

Notice that we performed the matrix multiplication starting on the left, since we will need this product
later when we find projW. We pad this with zeroes in the 2nd and 4th entries, to get:

x1  71
25 , 0, 36

25 , 0 ,

which should be a best-approximation solution to the system:
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Ax  b1  projW b .

Thus:

Ax1 

4 8 3 9
3 6 4 13
2 4 3 9

71
25
0

 36
25
0



176
25

357
25
10

.

Looking at the rref R, we can easily find a basis for the nullspace of A, and see that all the best
approximation solutions have the form:

x1  x0  71
25 , 0, 36

25 , 0  r2, 1, 0, 0  s3, 0, 1, 1.

To find the common error of these solutions, we find:

b2  b  b1  7, 15,9  176
25 , 357

25 ,10   1
25 , 18

25 , 1 ,

and so the common error of our best approximations is:

b2   1
25 , 18

25 , 1   1
25

2
 18

25
2
 12  1

5 38  1. 2329,

which is really not too bad, since we changed the entries on the right side b of our original system in
Section 1.4 by 1, 2 and 3 respectively. We can also find the matrix of projW using our intermediate
computation above:

projW  C  CC1  C



4 3
3 4
2 3

17
475

3
475

3
475

29
950

4 3 2
3 4 3



4 3
3 4
2 3

77
475

39
475  1

19
111
950  49

475
3

38



949
950

9
475

1
38

9
475

313
475  9

19
1

38  9
19

13
38

.

We can find b1 using this matrix, and verify our answer above:
b1  projW b



949
950

9
475

1
38

9
475

313
475  9

19
1

38  9
19

13
38

7
15
9



176
25

357
25
10

,

which is indeed our answer.
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7.8 Section Summary

Let A be an m  n matrix, and b an m  1 column matrix. If b is not a member of W, the columnspace
of A, then we call the system Ax  b1  projW b the least squares system associated to Ax  b.

This system is always consistent, and we call any solution x1  n to this system as a least squares
solution or best approximation to the original (inconsistent) system Ax  b.
Any such solution x1 has the property that if x is any other vector in n that is not a least squares
solution, then Ax1  b  Ax  b .

In words, the distance from Ax1 to b is as small as possible.
Let C be an m  k matrix with linearly independent columns. Then CC is an invertible matrix, and
therefore the system CCx  Cb has exactly one solution.

Let Ax  b be an inconsistent system with A an m  n coefficient matrix, whose rref is R. Let C be the
m  k matrix whose columns are the columns of A corresponding to the leading 1’s of R, in the same
order. Then: CC is invertible, and:

x  CC1  Cb

is a solution to Cx  b1  projW b .

By padding xwith zeroes, we obtain a solution x1 to the least squares system Ax  b1, and all the best
approximation solutions are of the form x1  x0, where x0  nullspaceA.
Consequently, projW  C  CC1  C.

We will also call b  b1  b2 the common error of all our best approximation solutions.

7.8 Exercises

For Exercises 1 to 5: Perform the following: (a) Verify that the system Ax  b is inconsistent; (b)
Find all the best approximation solutions to this inconsistent system; (c) Find the common error of all
the best approximations solutions; (d) Find projW using our new formula, where W is the
columnspace of A :

1. A 

3 1 6
2 1 3

5 2 9

, b 
2
2

1

2. A 

1 1 1
1 2 5
2 1 4
2 1 0

, b 

2
9
5
4
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3. A 

3 15 6 2
2 10 4 4

5 25 10 1

, b 
28
26

13

4. A 

3 2 19 4
4 1 22 3
1 5 15 2

1 2 1 4

, b 

38
5

28
2

5. A 

4 3 1
2 0 5

3 1 2
1 5 6

0 3 2

, b 

11
9
5
7
4

6. Let C be an m  k matrix, and let W  colspaceC. Suppose the columns of C already form an
orthonormal set. Show that:

CC  Ik,

and consequently projW  C  C. This shows that our new formula for projW is a
generalization of our formula in Section 7.5.

7. Converse of the Second Theorem: Prove that if C is an m  k matrix, and if CC is invertible,
then the columns of C are linearly independent.

8. In Exercise 14 (d) of Section 7.6, we mentioned that projW, and thus reflW, will not contain
any radicals, though we tacitly assumed that the entries of the basis for W consist only of rational
numbers. Use our new formula for projW to show that its entries are indeed rational numbers if
the columns of A contain only rational numbers.

9. Use a simple basis for the plane  : 3x  7y  4z  0 and our new formula for projW from this
Section in order to find proj  .

10. Use the direction vector for the line L : Span 5,2, 3  and our new formula for projW
from this Section in order to find projL .

Section 7.8 The Method of Least Squares 661



7.9 The QR-Decomposition

In this Section, we present a factorization method that arises from the application of the Gram-Schmidt
Algorithm, and can be used to solve the Least-Squares Problem when the coefficient matrix A has
linearly independent columns.

Recall that we have as our input to the Gram-Schmidt Algorithm a basis B  w 1, w 2, . . . , w n for
some inner product space V. So let us suppose that B is a set of vectors from some m, and therefore
the columns of the matrix:

A  w 1 w 2 . . . w n 

are linearly independent. According to the Algorithm, we produce a sequence of orthogonal vectors:

v1  w 1,
v2  w 2  w 2  u1 u1,
v3  w 3  w 3  u1 u1  w 3  u2 u2, . . .
vn  w n  w n  u1 u1  w n  u2 u2   w n  un1 un1,

where the unit vectors ui are obtained from the vi via: ui  vi/vi. However, this also says that
vi  vi  ui. Since ui is a unit vector, though, we get:

vi  ui  vi  ui   ui  viui  ui   vi, and so:
vi  vi  ui ui.

If we solve for the original vectors w i, we obtain:

w 1  v1,
w 2  w 2  u1 u1  v2,
w 3  w 3  u1 u1  w 3  u2 u2  v3, . . .
w n  w n  u1 u1  w n  u2 u2   w n  un1 un1  vn.

Now, by the orthonormality of u1, u2,  , un , we obtain, for all i  1n :

w i  ui  w i  u1   u1  ui   w i  u2   u2  ui 

  w i  ui1   ui1  ui   vi  ui 

 vi  ui.

Since we know from above that vi  vi  ui ui, we now obtain:

vi  vi  ui ui  w i  ui ui.

We can now substitute this expression for each vi in our sums for w i above to get:

w 1  w 1  u1 u1,
w 2  w 2  u1 u1  w 2  u2 u2, 
w n  w n  u1 u1  w n  u2 u2   w n  un1 un1  w n  un un.
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These n equations can now be written more compactly as a matrix equation:

w 1 w 2 . . . w n   u1 u2 . . . un 

w 1  u1 w 2  u1   w n  u1

0 w 2  u2   w n  u2

0 0  

0 0 0  w n  un1

0 0 0 0 w n  un

.

Since u1, u2,  , un  is an orthonormal set, the matrix Q  u1 u2 . . . un  has orthonormal columns.
In particular, if m  n, Q is an orthogonal matrix. Furthermore:

w i  ui  vi  ui  vi  0,

because w i is not a member of Spanw 1, w 2, . . . w i1. Therefore, the upper triangular matrix R on
the right side above is invertible, since none of the diagonal entries are 0. Let us summarize our
discussion above in the following:

Theorem — The QR-Decomposition:
Suppose that A  w 1 w 2 . . . w n  is an m  n matrix with linearly independent columns.
Then we can factor A into:

A  QR,

where Q is an m  n matrix with orthonormal columns, and R is an n  n invertible upper
triangular matrix. In the case when A is an invertible n  n matrix, Q is an orthogonal n  n
matrix.

Example: Consider the matrix:

A 

1 0 1
2 1 0
1 1 1
0 2 1

.

We can easily verify that A has linearly independent columns. However, this will not really be
necessary because if the Gram-Schmidt Algorithm ever gives us the zero vector, we know that the
columns are dependent. Now, let us apply the Algorithm to the columns:

v1  1, 2,1, 0;

v2  0, 1, 1,2  0, 1, 1,2  1, 2,1, 0
1, 2,1, 0  1, 2,1, 0 

1, 2,1, 0

 0, 1, 1,2  1
6 1, 2,1, 0

 1
6 1, 4, 7,12, and so we will use:

v2  1, 4, 7,12. Lastly:
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v3  1, 0, 1, 1  1, 0, 1, 1  1, 2,1, 0
1, 2,1, 0  1, 2,1, 0 

1, 2,1, 0

 1, 0, 1, 1  1, 4, 7,12
1, 4, 7,12  1, 4, 7,12 

1, 4, 7,12

 1, 0, 1, 1  2
6 1, 2,1, 0  4

210 1, 4, 7,12  1
35 24, 26, 28, 27,

and so we will use v3  24, 26, 28, 27. Thus, the columns are indeed linearly independent.
Normalizing these three vectors and assembling them into Q, we get:

Q 

1
6

 1
210

 24
2765

2
6

4
210

26
2765

 1
6

7
210

28
2765

0  12
210

27
2765

.

Now, we compute the six dot products that we need for R :

w 1  u1  1, 2,1, 0  1
6
1, 2,1, 0  6 ,

w 2  u1  0, 1, 1,2  1
6
1, 2,1, 0  1

6
,

w 3  u1  1, 0, 1, 1  1
6
1, 2,1, 0  2

6
,

w 2  u2  0, 1, 1,2  1
210

1, 4, 7,12  35
210

,

w 3  u2  1, 0, 1, 1  1
210

1, 4, 7,12  4
210

, and

w 3  u3  1, 0, 1, 1  1
2765

24, 26, 28, 27  79
2765

.

Thus, we obtain the QR-decomposition:

1 0 1
2 1 0
1 1 1
0 2 1



1
6

 1
210

 24
2765

2
6

4
210

26
2765

 1
6

7
210

28
2765

0  12
210

27
2765

6 1
6

 2
6

0 35
210

 4
210

0 0 79
2765

.
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Connection with the Least Squares Problem

Suppose that A is an m  n matrix. We saw in the previous Section that if the matrix equation Ax  b is
inconsistent, we can still find an approximate solution to this system by solving the associated Least
Squares System Ax  projW b , where W  colspaceA. The key to solving this new system is to
create the (possibly smaller) m  k matrix C whose columns are original columns of A that form a basis
for W. The normal system:

CC x  Cb

is not only consistent, but has exactly one solution x. By “padding” x with zeroes, we can obtain a
solution x1 to our Least Squares System.

Now, here is where the QR-decomposition comes in: Since C has linearly independent columns, we
can find its QR-decomposition:

C  QR.

But then, the normal system becomes:

QRQRx  QRb 

RQQRx  RQb 

RRx  RQb (since QQ  Ik 

Rx  Qb (since R is invertible.

Thus, the solution to our normal system is:

x  R1Qb

Example: Let us consider once again the inconsistent system:

4x1  8x2  3x3  9x4  7
3x1  6x2  4x3  13x4  15
2x1  4x2  3x3  9x4  9

that we saw in the previous Section. We saw that the 1st and 3rd columns of the coefficient matrix A
form a basis for colspaceA, and so:

C 

4 3
3 4
2 3

.

Applying Gram-Schmidt on the columns, we get:
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v1  4, 3,2;

v2  3,4, 3  3,4, 3  4, 3,2
4, 3,2  4, 3,2 

4, 3,2

 3,4, 3  6
29 4, 3,2

 1
29 111,98, 75, so we use:

v2  111,98, 75.

Thus, our matrix Q is:

Q 

4
29

111
27550

3
29

98
27550

2
29

75
27550

.

The three entries in our upper triangular matrix are:

w 1  u1  4, 3,2  1
29

4, 3,2  29 ,

w 2  u1  3,4, 3  1
29

4, 3,2  6
29

, and

w 2  u2  3,4, 3  1
27550

111,98, 75  950
27550

.

Thus:

R 

29 6
29

0 950
27550

.

We obtain our solution to the normal equation:

x  R1Qb



29 6
29

0 950
27550

1
4
29

3
29

2
29

111
27550

98
27550

75
27550

7
15
9

 1
25

7
36

,

which is of course the same solution for x that we obtained from the previous Section. We can then
proceed to the complete solution to the Least Squares problem from this point as we did in that
problem.
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We remark that this is certainly more work than computing the solution:

x  CC1  Cb,
but if the QR-decomposition of C is handy, then our new method is certainly more convenient because
it is much easier to invert an invertible upper-triangular matrix than the matrix CC.

The QR-decomposition can also be used to simplify the computation of the Singular Value
Decomposition (which will be discussed in Chapter 8) in the case when m is much larger than n. This
improvement, though will be beyond the scope of this book. For certain kinds of matrices, this
decomposition is also helpful in finding its eigenvalues. These issues are usually found in advanced
courses in Numerical Linear Algebra.

7.9 Section Summary

If the m  n matrix A  w 1 w 2 . . . w n  has linearly independent columns, then we can find its
QR-decomposition, given by:

A  QR, or

w 1 w 2 . . . w n   u1 u2 . . . un 

w 1  u1 w 2  u1   w n  u1

0 w 2  u2   w n  u2

0 0   

0 0 0  w n  un1

0 0 0 0 w n  un

,

where the orthonormal set u1, u2,  , un is obtained from the set of columns w 1, w 2, . . . , w n via
the Gram-Schmidt Algorithm.

Suppose that Ax  b is an inconsistent system. Let C be the m  k matrix whose columns form a basis
for W  colspaceA (thus if A already has linearly independent columns, then C  A. If C  QR is
the QR-decomposition of C, then the normal system associated to A, CCx  Cb, has unique solution
given by:

x  R1Qb.
The general solutions to the Least Squares System can then be computed as in the previous Section.

7.9 Exercises

For Exercises 1 to 9: Find the QR-decomposition of the following matrices. Note that the matrix in
Exercise 5 is an extension of the matrix in Exercise 3, so you may build on your work in Exercise 3 to
solve Exercise 5. Similarly, Exercise 7 is an extension of Exercise 6, which is an extension of Exercise
4.

1.
1 3
2 5

2.
1 2
2 1

3.
1 1
0 2
1 0
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4.

1 1
0 2
1 1

3 0

5.
1 1 0
0 2 1
1 0 3

6.

1 1 0
0 2 1
1 1 1

3 0 1

7.

1 1 0 1
0 2 1 1
1 1 1 1

3 0 1 2

8.

1 1 0
0 2 1
1 1 1

1 0 1
2 1 1

9.

1 1 0 1
0 2 1 1
1 1 1 1

1 0 1 2
2 1 1 0

For Exercises 10 to 14: Solve the Least Squares System in the corresponding Exercise using the
QR-decomposition.

10. Exercise 1, Section 7.8
11. Exercise 2, Section 7.8
12. Exercise 3, Section 7.8
13. Exercise 4, Section 7.8
14. Exercise 5, Section 7.8

A Summary of Chapter 7

Let V be a vector space. An inner product on V is a bilinear form  |  on V, that is, a function that
takes two vectors u, v  V, and produces a scalar, denoted u |v , such that the following properties
are satisfied by all vectors u, v and w  V:
1. The Symmetric Property: u |v   v |u ;
2. The Homogenous Property: k  u |v   ku |v ;
3. The Additive Property: u  v |w   u |w   v |w ;

4. The Positive Property: If v  0V, then v |v   0.

For any v  V, v |0V  0V |v  0. In particular, 0V |0V  0.

Let v, u  V. Define the norm or the length of v by v  v |v  . In other words, v2  v |v .

In particular, we say that v is a unit vector if v  1.
The set of all unit vectors in V is called the unit sphere or unit circle of V.
We can also define the distance between two vectors by d u, v   u  v.

The Cauchy-Schwarz Inequality: Let V be an inner product space with respect to  | . Then, for all
vectors u, v  V: |u |v  |  u  v.

If u and v are non-zero vectors in V, we define the angle between them as the angle  such that:
cos  u |v /uv, where 0    .
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Furthermore, we will say that u is orthogonal to v if and only if u |v   0.
In particular, 0V is orthogonal to all vectors in V.

Let S  v1, v2, . . . , vk  be a set of vectors in an inner product space V.
We say that S is an orthonormal set if: vi |vj   0 if i  j, and vi |vi   1 for i  1. . k.

If we remove the condition that each member of S is a unit vector but insist that all of the vectors be
non-zero, we call S an orthogonal set.

The Gram-Schmidt Algorithm: Start with any basis B  w 1, w 2, . . . , w n  for V.
1. Let v1  w 1. If dimV  1, go to Step 3, otherwise:
2. For k  1 to n  1, let:

vk1  w k1  w k1 |v1  
v1

v1
2  w k1 |v2  

v2

v2
2   w k1 |vk  

vk

vk
2 .

3. Normalize v1, v2, . . . , vn  by dividing each vector by its length.
Let B  u1, u2, . . . , un  be an orthonormal basis for an inner product space V.
Let v, w  V. If v B  v1, v2, . . . , vn , and w B  w1, w2, . . . , wn , then:

1. v |w   v B  w B  v1w1  v2w2   vnwn.

2. v  v B  v1
2  v2

2   vn
2 .

3. d v, w   v B  w B  v1  w1 2  v2  w2 2   vn  wn 2 .

4. cos  v B  w B/v Bw B, where  is the angle between v and w (nonzero vectors).

Let W be a subspace of an inner product space V. We define the orthogonal complement of W, which
is also a subspace of V, by: W  v  V |v |w   0 for all w  W .
Consequently, W W  0V , and if V is finite dimensional: dimW  dimW   dimV, and
W   W.
Let W be a finite-dimensional subspace of an inner product space V. Then, any vector v  V can be
expressed uniquely as a sum v  w 1  w 2, where w 1  W and w 2  W . We refer to this as an
orthogonal decomposition with respect to W and W .
Moreover we can explicitly construct w 1 and w 2 as follows: If u1, u2, . . . , uk  is any orthonormal
basis for W, then: w 1  c1u1  c2u2   ckuk, and w 2  v  w 1, where c i  v |ui  for i  1n.
We call w 1 the orthogonal projection of v onto W, and w 2 the orthogonal projection of v onto W . We
write this as w 1  projW v  and w 2  projW v .

Let W be a subspace of n, under the ordinary dot product. Then the function: projW : n  n,
given by: projW v   w 1, where v  w 1  w 2 is the orthogonal decomposition of v, is a linear
operator of n, which we call the projection operator onto W.
Furthermore, if B  u1, u2, . . . , uk  is an orthonormal basis for W, and U  u1 |u2 | . . . |uk  is the
n  k matrix with the vectors of B arranged in columns, then projW  UU.
An n  n matrix Q is called orthogonal if QQ  QQ  In. Equivalently, this means that Q is
invertible, and Q1  Q. The following are equivalent for an n  n matrix Q:
1. Q is an orthogonal matrix.
2. The columns of Q form an orthonormal set in n with respect to the dot product.
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3. The rows of Q form an orthonormal set in n with respect to the dot product.
Analogously, let T : n  n be a linear operator. Then, the following are equivalent:
1. T  is an orthogonal matrix.
2. T preserves the dot product — For all u and v  n: u  v  Tu   Tv .
3. T preserves length — For all v  n: v  Tv .
Let Q and P be orthogonal matrices. Then:
1. detQ  1 or 1.
2. Q1 is also orthogonal.
3. PQ and QP are also orthogonal.
Let A be a symmetric matrix. Then all of the eigenvalues of A are real numbers. Furthermore, if 1 and
2 are two distinct eigenvalues with corresponding eigenvectors v1 and v2, then v1 is orthogonal to v2.
We can find an orthogonal matrix Q such that Q diagonalizes a symmetric matrix A, that is,
D  QAQ, where D is a diagonal matrix with real entries.

Let A be an m  n matrix, and b an m  1 column matrix. If b is not a member of W, the columnspace
of A, then we call the system Ax  b1  projW b the least squares system associated to Ax  b.

This system is always consistent, and we call any solution x1  n to this system as a least squares
solution or best approximation to the original (inconsistent) system Ax  b.
Any such solution x1 has the property that if x is any other vector in n that is not a least squares
solution, then Ax1  b  Ax  b .

Let C be the m  k matrix whose columns form a basis for colspaceA. Then CC is an invertible
matrix, and therefore the normal system associated to A, defined by CCx  Cb, has exactly one
solution, namely x  CC1  Cb.

This is a solution to Cx  b1  projW b . By padding x with zeroes, if necessary, we obtain a
solution x1 to the least squares system Ax  b1, and all the best approximation solutions are of the
form: x1  x0, where x0  nullspaceA. Consequently, projW  C  CC1  C.

The common error of all our best approximation solutions is b  b1  b2 .

If the m  n matrix A  w 1 w 2 . . . w n  has linearly independent columns, then we can find its
QR-decomposition, given by: A  QR, or

w 1 w 2 . . . w n   u1 u2 . . . un 

w 1  u1 w 2  u1   w n  u1

0 w 2  u2   w n  u2

0 0   

0 0 0  w n  un1

0 0 0 0 w n  un

,

where the orthonormal set u1, u2,  , un  is obtained from the set of columns w 1, w 2, . . . , w n  via
the Gram-Schmidt Algorithm.

Suppose that Ax  b is an inconsistent system. Let C be the m  k matrix whose columns form a basis
for W  colspaceA as above. If C  QR is the QR-decomposition of C, then the normal system
associated to A, CCx  Cb, has unique solution given by x  R1Qb.
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Chapter 8
Imagine That:

Complex Spaces and The Spectral Theorems
In this Chapter, we will generalize the concept of real numbers to an abstract mathematical structure
called a field. The most important field we will work with is the field  of complex numbers. These
numbers have the form a  bi, where i  1 is the imaginary unit, and a and b are real numbers. We
will review the arithmetic of complex numbers and their properties. Central in our analysis will be
understanding the role of the complex conjugate: a  bi  a  bi. Complex numbers can be used to
construct fascinating mathematical objects called fractals, such as the Mandelbrot set:

From Mandelbrot Set by Jan Thor. Copyright (c) 2010 by Jan Thor. Reprinted by permission.
We will generalize the concept of Euclidean spaces over the set of real numbers to vector spaces over
any field, and in particular, over the complex numbers. Thanks to the operation of complex
conjugation, we will be able to construct a complex inner product on complex Euclidean spaces that
have slightly different properties from the dot product. We will of course also generalize matrices and
linear transformations over complex Euclidean spaces.
One of our main objectives is to prove the Spectral Theorem for Symmetric Matrices from Chapter 6,
that states that all symmetric matrices have real eigenvalues, and furthermore, every symmetric matrix
can be diagonalized using an orthogonal matrix. To do so, we need to introduce matrices that
generalize the concept of symmetric, skew-symmetric and orthogonal matrices, namely, the
Hermitian, skew-Hermitian and unitary matrices. These three kinds of matrices fall into a general
category called normal matrices.
The Spectral Theorem for Normal Matrices tells us that these normal matrices are precisely the
matrices that have very special diagonalizability properties. In particular, all n  n normal matrices
possess a complete set of n linearly independent eigenvectors, and any two vectors from distinct
eigenspaces are orthogonal to each other, under the complex inner product mentioned above. The
Spectral Theorem for Symmetric Matrices is a particular consequence of this general Spectral
Theorem.
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8.1 The Field of Complex Numbers

In basic algebra, we learn that the square root of a positive number is another positive number, but the
square root of a negative number is not a real number. To get around this, we construct the imaginary
unit, namely:

i  1 .

This new object i has the magical property, therefore, that i2  1. This means that it cannot be a real
number, since the square of any real number cannot be negative. In other words, we are dealing with a
new mathematical quantity, one that is definitely not a real number. From this, we can create the square
root of any negative number, with the rule:

a  a  i, where a  0.
Thus:

9  9 1  3i.

Notice that we instinctively used some kind of a product rule for radicals, but we need to be careful:

Definition: The square root function can be extended to the negative numbers, with the
property:

a  b  a  b ,

if a and b are both non-negative, or exactly one of them is negative. In other words, the
product rule is invalid if both a and b are negative. Likewise, if a and b are both positive,
then:

a
b  a

b   a
b  a

b  i.

Let us see why this product rule makes sense: We know that 36  6. If we allow the product rule to
work when both factors are negative, we will have:

6  36  49  4 9  2i3i  6i2  61  6.

giving us the wrong sign. We also need to be extra careful with quotients, as you will see in the
Exercises. Using the set of real numbers and the imaginary unit i, we can construct the set of all
complex numbers:

Definition: The field of complex numbers is denoted by:

  a  bi |a, b   .

We call a the real part, and b the imaginary part, respectively, of a  bi.
A complex number with b  0 is called a pure real number, or simply a real number,
whereas a complex number with a  0 is called a pure imaginary number.

The real number 0 is extended to the complex zero: 0  0  0i.
We say that a  bi and c  di are equal if and only if a  c and b  d.
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Thus 7, 8/3, 2 and  are pure real numbers and 3i, 5 i and e2i are pure imaginary numbers.
Under this definition of equality, the only complex number that is both pure real and pure imaginary is
0, . because if a  0i  0  bi, then a  0  b. We also write 1  i and 1  i as i and i, in the same
way we write 1  x as x.
We can now extend the arithmetic operations to the set of complex numbers, as we see in intermediate
algebra. The underlying idea in defining these operations as we will is to preserve the familiar basic
properties of the arithmetic of real numbers, namely, the commutative, associative and distributive
properties. Complex variables are often denoted by a letter such as z or w. We also include the
complex conjugate z of z, pronounced “z bar”:

Definition: Operations on Complex Numbers:
Let z  a  bi and w  c  di be two complex numbers. We define the operations of:

1. Addition: z  w  a  bi  c  di
 a  c  b  di.

2. Negation:  w  c  di  c  di.
3. Subtraction: z  w  z  w  a  bi  c  di

 a  c  b  di.
4. Multiplication: z  w  a  bi  c  di

 ac  bci  adi  bdi2

 ac  bd  bc  adi.
5. Complex Conjugation: z  a  bi  a  bi.

6. Norm or Length: z  z  z  a  bia  bi

 a2  b2 .

7. Division: If w  0, then: z
w  z  w

w  w  z  w
w2

 ac  bd
c2  d2  bc  ad

c2  d2 i.

In particular, the property i2  1 can be used to compute higher powers of i, thus:
i3  i2  i  1  i  i,
i4  i2  i2  1  1  1, ,

and so on. Thus, the pattern repeats in groups of four.

Examples: Let us simplify the following expressions:
6  5i  2  7i  4  12i,

3  i4  5i  12  4i  15i  5i2  17  11i,
i523  i520  i3  1  i  i,

5  12i  52  122  13, and
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7  4i
2  3i  7  4i2  3i

22  32

 14  8i  21i  12i2

4  9  2
13  29

13 i. 

Unfortunately, the concept of order does not extend to naturally to the set of complex numbers.
However, it is possible to compare the norms of two complex numbers. Thus, 3  7i  2  5i.

The Field Properties

The set of complex numbers and the operations of addition and multiplication in this set possess the
same familiar properties of the arithmetic of real numbers:

Theorem — The Field Properties for the Set of Complex Numbers:
Let z, w, u  . Then the following properties are true:

1. The Closure Property of Addition z  w  .
2. The Closure Property of Multiplication z  w  .
3. The Commutative Property of Addition z  w  w  z.
4. The Commutative Property z  w  w  z.

of Multiplication
5. The Associative Property of Addition z  w  u  z  w  u.
6. The Associative Property z  w  u  z  w  u.

of Multiplication
7. The Distributive Property of z  w  u  z  w  z  u.

Addition over Multiplication:
8. The Existence of the There exists 0  0  0i  

Additive Identity: such that z  0  z.
9. The Existence of the There exists 1  1  0i  

Multiplicative Identity: such that z  1  z.
10. The Existence of There exists z  , such that

Additive Inverses: z  z  0  z  z.
11. The Existence of If z  0, then there exists

Multiplicative Inverses: z1  , such that
z  z1  1  z1  z.

The proof of the 11 properties above all directly follow from the definitions of the basic operations
made earlier. They should remind you of the 11 Field Axioms for the Real Numbers that we saw in
Chapter Zero.
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More generally, a field F,,  is any non-empty set F, together with an addition  and multiplication 
defined on pairs of members of F, that satisfy the eleven properties above. These properties are
naturally called The Field Axioms.

Recall that when we discussed abstract vector spaces, the zero vector may not look at all like the
number zero, so it is worthwhile to note that the additive and multiplicative identities mentioned above
(which we denote 0 F and 1F may not look at all like the number 0 or 1, respectively. Again, keep an
open mind!

Aside from the field of complex numbers  and the field of real numbers , you should also be familiar
with the field of rational numbers mentioned in Chapter Zero:

 a/b |a, b  , b  0 ,

all under the usual operations of addition and multiplication of fractions. This follows easily because
the sum and product of two rational numbers is again a rational number, the negative of a rational
number is also a rational number, and the reciprocal of a non-zero rational number is a rational number.

Let us next look at an example of a field that is just slightly irrational:

Example: Consider the set:

F  x   |x  p  q 2 , wherep, q   .

Some members of F are 3/4, 2 /9 and 5/4  7 2 /3. However,   F.
Notice the similarity between F and the set of complex numbers a  bi  a  b 1 , although this time
p and q are restricted to be rational numbers. We define the addition and multiplication of members of
F to be the usual ones for real numbers.
Addition is clearly closed, because:

p  q 2  r  s 2  p  r  q  s 2

by using the usual properties of arithmetic. Since p  r and q  s are again rational, addition is closed.
Multiplication is likewise closed, because:

p  q 2 r  s 2  pr  ps 2  qr 2  2qs

 pr  2qs  ps  qr 2,

again has the required form. Addition and multiplication enjoy the commutative, associative and
distributive properties, because they are inherited from these operations as they apply to all real
numbers. The identity elements are:

0 F  0  0  2 and 1F  1  0  2

which is very similar to how we defined them for . The negative of a member of F clearly has the
same form, so it remains to show that so does its reciprocal. To do so, we rationalize the denominator
as we do in algebra:
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1
p  q 2

 1
p  q 2


p  q 2
p  q 2

 p  q 2
p2  2q2

 p
p2  2q2 

q
p2  2q2 2

Since p and q are rational numbers, the two fractions above will also simplify into rational numbers,
and thus the reciprocal is again a member of F. We note that the denominator of the two fractions
above is not zero because otherwise, we would get p2  2q2, in other words:

2   p
q .

However, we showed in the Exercises of Chapter Zero that 2 is irrational. This field is known as
 2 , pronounced “ adjoined with 2 ” and it is the smallest field that contains the rational
numbers as well as 2 . We also note that you can view the members of  2 as linear
combinations of the numbers 1 and 2 with coefficients from .

Properties of the Conjugate

Notice that the complex conjugate is not mentioned at all in the 11 field axioms above. We list below
the properties of the complex conjugate separately, since the field axioms do not require the existence
of such an operation:

Theorem — Properties of the Complex Conjugate:
Let z, w, u  . Then the following properties are true:

1. The Double Conjugate Property: z  z.
2. Additivity: z  w  z  w.
3. Multiplicativity: z  w  z  w.
4. The Test for Pure z  z if and only if

Real Numbers: z is a pure real number.

5. The Test for Pure z  z if and only if
Imaginary Numbers: z is a pure imaginary number.

6. The Positivity of Multiplication z  z  0, and
by the Conjugate: z  z  0 if and only if z  0.

Again, the proofs of these properties are fairly straightforward and follow directly from the definitions
(as long as one follows the order of operations that are implied in each equation). Notice also that the
positivity property above is very similar to the positivity property of inner products that we saw in
Chapter 5.
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 as a 2-Dimensional Real Vector Space

Notice that we can write any complex number in the form a  bi, where a and b are real numbers. But
we can also think of this as a linear combination of the numbers 1 and i, with real coefficients a and
b. In other words:

  Span1, i.
Furthermore, using our definition of equality:

a  bi  0  0i if and only if a  0 and b  0.
In other words, the set 1, i is linearly independent! Thus we have proven:

Theorem: The set of complex numbers  is a 2-dimensional vector space over the set of real
numbers, with basis 1, i.

Continuing with this line of thinking, we can thus conclude that  is isomorphic to 2. Indeed, it is
easy to check that T :   2, whereTa  bi  a, b, is an isomorphism. But this is very
convenient because we can now visualize complex numbers on the Cartesian plane, as we do in the
following diagram, where we plot a complex number and its conjugate:

 
.

bi

a21

i

 3 4

.

i

i

2i

 i

3i

 i
 i

z  4  3i and its conjugate z  4  3i

Traditionally, we use the x-axis to symbolize the real part, hence it is also called the real axis, and
similarly the y-axis is also called the imaginary axis. We showed above the complex number 4  3i
and its complex conjugate 4  3i. Notice that they are reflections of each other across the real axis.
Also, note that:

4  3i  5   4, 3 ,
where the norm on the left is that of complex numbers and the norm on the right is that of 2. Clearly,
in general, the norm of a complex number corresponds to the length of the vector that represents it in
2, under the usual dot product.
With the concept of length, we can express non-zero complex numbers in polar form:

z  zcos  sin  i
where, for convention,   0, 2 is the angle made by z with respect to the positive real axis, which is
also called the argument of z, or argz.

Section 8.1 The Field of Complex Numbers 677



 
.

bi

a21

i

 3 4

.

2i

 i

3i
|| z ||

  

 z  a  bi

The Norm z and Argument   argz of a Complex Number z

Notice what happens when we square the expression in the parentheses:

cos  sin  i2  cos2  2 sincos  i  sin2  i2

 cos2  sin2  2 sincos  i
 cos2  sin2  i.

Proceeding by induction and using the familiar addition formulas from trigonometry, we can prove:

Theorem — De Moivre’s Theorem: For any real number :

cos  sin  in  cosn  sinn  i.

Consequently, we can find powers of a complex number in polar form:

zn  zncosn  sinn  i.

The polar form is also very useful to compute square-roots or general nth roots. We state the following
Theorem and leave its proof as an Exercise:

Theorem: Let z  zcos  sin  i be a complex number expressed in polar form.
Then all the solutions w of the equation:

wn  z
have the form:

w  z1/ncos  sin  i, where

    2k
n , and k  0, 1, 2, . . . , n  1.

In particular, the solutions w of w2  z are:

w   z cos/2  sin/2  i.

The solution with k  0 is also called the principal nth root of z. We will see an example of how this
Theorem can be used in the next sub-section.
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The Fundamental Theorem of Algebra

The algorithm in the previous Theorem basically tells us that the complex polynomial:

pw  wn  z

has exactly n roots. Notice that this is a polynomial in w of degree exactly n, and the formula for the
solutions indicate that these n roots are all distinct.
We can generalize this phenomenon to any polynomial of degree n with complex coefficients, provided
that we take into account the multiplicity of the roots:

Theorem — The Fundamental Theorem of Algebra:
Let c0, c1, . . . , cn be fixed complex numbers, with cn  0C. Then the polynomial:

pw  cnwn   c1w  c0

can be factored completely as:

pw  cnw  w1 n1  w  w2 n2    w  wj
nj ,

where w1, w2, . . . , wj are the distinct complex roots of pw, and n1  n2   n j  n.
We call n i the multiplicity of the root wi.

It took many attempts before a complete and correct proof of the Fundamental Theorem of Algebra
was produced. It is often attributed to Carl Friedrich Gauss, but certainly many mathematicians
worked on this Theorem. It has several known proofs, and any two of them could use completely
different strategies.
Unfortunately, the Fundamental Theorem of Algebra does not tell us how to find the roots of a
complex polynomial, only that they exist, and their multiplicities add up to the degree of the
polynomial. In fact, a field of mathematics called Galois Theory tells us that we can only find a general
formula to solve a linear, quadratic or a cubic equation. In other words, there is no general solution
to find the roots of a complex polynomial of degree 4 or higher, which uses only radicals, addition,
subtraction, multiplication and division.
However, we know how to obtain the quadratic formula by the method of completing the square.
Every step in this derivation is still valid in the field of complex numbers (but not all fields), so the
quadratic formula can still be used to solve quadratic equations with complex coefficients.

Example: Let us find the solutions of the quadratic equation:

9z2  12  30iz  21  16i  0.
The discriminant of this quadratic is:

b2  4ac  12  30i2  4921  16i
 144i
 144i

 144 cos 3
2  sin 3

2  i .

Now we find the principal square root of the discriminant (with n  2 and k  0 in our formula from
the last sub-section:
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b2  4ac  12 cos 3
4  sin 3

4  i

 12  1
2
 1

2
i

 6 2  6 2 i.
Finally, we can insert this into the quadratic formula to obtain two solutions:

z  b  b2  4ac
2a


12  30i  6 2  6 2 i

2  9

  2  2
3  5  2

3 i or 2  2
3  5  2

3 i. 

8.1 Section Summary

The set of all complex numbers:

  a  bi |a, b   

is constructed using the imaginary unit i  1 . We can add, negate, subtract, and multiply two
complex numbers, and divide a complex numbers by a non-zero complex number. We can also find
the complex conjugate and norm of a complex number. A complex number a  bi is pure real if
b  0, and pure imaginary if a  0.
The set of complex numbers is an example of a field, a non-empty set upon which we define an
addition and a multiplication, such that special properties are satisfied. A field is closed under these
two operations, and obey the commutative and associative properties for both. Addition distributes
over multiplication. A field also possesses two special elements, 0 F and 1F, which are additive and
multiplicative identities respectively. Every member of a field has a negative, and every non-zero
member has a reciprocal.
The complex conjugate also satisfies special properties. It can be used to test when a complex number
is pure real or pure imaginary.
De Moivre’s Theorem: For any real number :

cos  sin  in  cosn  sinn  i.
Consequently, we can find powers of a complex number in polar form:

zn  zncosn  sinn  i.

Let z  zcos  sin  i be a complex number expressed in polar form. Then all the solutions
of the equation wn  z have the form:

w  z1/ncos  sin  i, where

    2k
n , and k  0, 1, 2, . . . , n  1.

Every polynomial pw with degree n and complex coefficients has exactly n complex roots counting
up to multiplicities.
The quadratic formula can still be used to solve quadratic equations with complex coefficients.
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8.1 Exercises

For Exercises 1 to 5: Simplify the following expressions:
1. 5  3i2  7i
2. 4  7i

3  2i
3. 7  24i
4. i755

5. i327

For Exercises 6 to 8: Use De Moivre’s Theorem to compute the following powers, and write
the final answer in the standard form a  bi.

6. 3  i
12

7. 3  3i17

8. 3  4i8. Hint: use the formulas for cos2 and sin2 three times.
9. Prove de Moivre’s Theorem by using Mathematical Induction on n.
10. Negative Powers: Prove that:

1
cos  sin  i  cos  sin  i  cos  sin  i,

and then use induction to prove that in general:

cos  sin  in  cosn  sinn  i,
where n is a positive integer. Together with de Moivre’s Theorem, this proves that for any
non-zero complex number z and any integer m:

zm  zmcosm  sinm  i

11. Use the previous exercise to simplify 3  i
7

.
12. What is wrong with the following argument?

4
9  4

9
 2i

3 , but

4
9  4

9
 2

3i  2
3i 

i
i  2i

3   2i
3 .

Thus 2i
3   2i

3 .

For Exercises 13 to 16: Solve the following equations:
13. z2  8  8 3 i
14. z3  4 2 1  i
15. z4  81  0
16. z2  7  24i. Hint: Use the half-angle formulas from trigonometry:

cos/2  
1  cos

2 and sin/2  
1  cos

2
where the choice of sign depends on the location of /2 on the unit circle.
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For Exercises 17 to 19: Use the quadratic formula to solve the following equations.
17. 2z2  z  iz  9  19i  0
18. 6z2  z  16iz  23  14i
19. z2  7iz2  7z  11iz  10i
20. Let z  zcos  sin  i be a fixed complex number expressed in polar form. We will

assume for simplicity that   0, 2. Our goal in this Exercise is to show that all the solutions w
of the equation wn  z have the form:

w  z1/ncos  sin  i, where

    2k
n , and k  0, 1, 2, . . . , n  1.

a. Consider the polynomial pw  wn  z. Explain why wn  z if and only if pw  0.
b. What does the Fundamental Theorem of Algebra say about the number of roots of pw?
c. Explain why for every k  0, 1, 2, . . . , n  1, the angle   2k

n is also in the interval
0, 2.

d. Explain why each k yields a unique value for , and thus, there are n unique values for w in
the formula above.

e. Use De Moivre’s Theorem to show that wn  z for each of the w in the formula above.
f. Use the Fundamental Theorem of Algebra to explain why these must be the only solutions

to the equation wn  z.
21. In particular, the solutions w of w2  z are:

w   z cos/2  sin/2  i.
22. Let pw be a polynomial in a complex variable w with complex coefficients, say:

pw  cnwn   c1w  c0.

Denote by pw the polynomial: pw  cnwn   c1w  c0, that is, it is the polynomial in w
whose coefficients are the conjugates of those of p. Prove that: pw  pw.

23. Use the previous Exercise to prove that if pw is a polynomial with real coefficients, and z is a
complex root of p, i.e. pz  0, then z is also a complex root. This is the familiar Theorem from
algebra that says that the imaginary roots of a polynomial with real coefficients come in complex
conjugate pairs.

24. Use De Moivre’s Theorem to show that the complex numbers wi, as defined in the Theorem to
find the n th-roots of z, all satisfy the equation: wn  z.

25. Prove that the set of all rational functions:

F 
px
qx

| px and qx are polynomials with real coefficients, qx  0

form a field under the natural addition and multiplication:
px
qx

 rx
sx


pxsx  rxqx

qxsx
, and

px
qx

 rx
sx


pxrx
qxsx

Notice that this field is analogous to the field of rational numbers .
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26. Explain why the set of integers  is not a field. What are missing?
27. Prove that 3 is not a member of  2 . Hint: 2 is irrational.
28. The Field of Oz: Recall that in Chapter 3, we saw a very unusual vector space , the set of

positive real numbers. We defined addition there by:

x  y  x  y (ordinary multiplication of positive numbers).

We will not need scalar multiplication. However, suppose we define multiplication of two
positive numbers by:

x  y  x lny (x raised to the power of lny.
For example: 5  e2  5 ln e2

 52  25.
Prove that  under this addition and multiplication satisfy all the eleven field axioms. As part of
your proof, you need to identify the additive and multiplicative identities, the additive inverse of a
positive number, and the reciprocal of a positive number, under these two operations. As in
Chapter 3, keep an open mind!
For Exercises 29 to 35: Using only the 11 Field Axioms, prove the following properties of
any field F:

29. The Uniqueness of the Additive Identity 0 F: If z  F such that w  z  w for all w  F, then
z  0 F. Hint: simplify 0 F  z in two different ways, and explain each simplification.

30. The Uniqueness of the Multiplicative Identity 1F: If u  F such that w  u  w for all w  F,
then u  1F.

31. The Multiplicative Property of 0 F: For all u  F: 0 F  u  0 F.
Hint: first explain why 0 F  0 F  0 F.

32. The Cancellation Property for Addition: For all u, w, z  F:

If z  u  w  u, then z  w.

33. The Cancellation Property for Multiplication: For all u, w, z  F:

If z  u  w  u, then z  w, provided u  0 F.

34. The Zero-Factors Theorem: For all u, w, z  F:

w  z  0 F if and only if either w  0 F or z  0 F.

35. The Absence of Zero Divisors: If neither w nor z is 0 F, then w  z  0 F. Hint: how is this
related to the previous Exercise?

Mini-Project: Finite Fields.

All of the examples of fields that we have seen so far — the set of rational numbers , the set of real
numbers , the set of complex numbers , and so on, all have an infinite number of elements. We
introduce now a field with only five elements, and thus is an example of a finite field:
Let F  0, 1, 2, 3, 4. Define an addition and multiplication on F via:

a  b  a  b mod 5, and

a  b  a  b mod 5,

where the phrase “mod 5” means that we find the remainder of the result after it is divided by 5. For
example:
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2  4  6 mod 5  1, and 3  4  12 mod 5  2.

1. Complete an “addition table” for F. We have entered 2  4  1 below.

 0 1 2 3 4
0
1
2 1
3
4

2. Convince yourself that 0 and 1 are indeed the natural additive and multiplicative identities.
3. Give the “negative” of 0, 1, 2, 3 and 4.
4. Construct a “multiplication table” for F.
5. Guessing game: Stare at the two tables you obtained. What word would elegantly describe them?

What property accounts for this?
6. Notice that the number 1 appears on each row of your multiplication table except on the row

containing 0 (where all the entries are 0, of course). Give the “reciprocal” of 1, 2, 3 and 4.
Remarks: The fact that all 11 field axioms are indeed satisfied follow from the inherited
properties from “modular arithmetic,” as the processes above are called. The set F as defined
above is known as  mod 5, and is written as /5, or /5, or F5, although sometimes it is
written improperly as 5.
The reason for the notation /5 has to do with the idea of cosets that we saw in Chapter 4, but
we will not go into it.
In general, if p is a prime number, then the set:

/p  /p  Fp  0, 1, 2, 3, . . . , p  1

under addition and multiplication mod p, form a field consisting of exactly p elements. The only
tricky property to prove is that of the existence of reciprocals.

7. Repeat Exercises 1 to 6 above for Z/7  0, 1, 2, 3, 4, 5, 6. This time, of course, the addition
and multiplication are modulo 7, and thus, for example: 4  6  10 mod 7  3. In Exercise 6,
you should give the reciprocals of 1 through 6.

8. Show that the set Z/6  0, 1, 2, 3, 4, 5 under addition and multiplication modulo 6 does not
satisfy all the field axioms. Hint: look at the multiplication table.
As a final note, it is well known that all fields that contain only a finite number of elements must
have exactly pn elements, for some prime number p. Conversely, it is also known that there exists
a field with exactly pn elements for every prime number p and every integer power n, and any
two such fields are isomorphic to each other (in some natural sense). Thus, there is a field with
27  33 elements, but there cannot be a field with 26 or 28 elements, since these are not pure
prime powers. These finite fields are denoted Fpn .
More precisely, within each field Fpk , there is exactly one subfield isomorphic to Fpk1 , for every
k  1. Thus, there exists a unique descending chain of subfields within each Fpn :

Fpn  Fpn1    Fp2  Fp.
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8.2 Complex Vector Spaces

We can naturally generalize the definition that we saw in Chapter 3 of a vector space over  to a vector
space over an arbitrary field F.

Definition — The Axioms of a Vector Space over a Field:
Let F,,  be any field. A vector space V,, over F is a non-empty set V,
along with two operations:  (vector addition), and  (scalar multiplication),
that satisfy: for all u, v and w  V and all scalars r, s  F, we have:

1. The Closure Property of u v  V
Vector Addition:

2. The Closure Property of r  u  V
Scalar Multiplication:

3. The Commutative Property u v  v u
of Vector Addition:

4. The Associative Property u v  w  u v w
of Vector Addition:

5. The Existence of a Zero Vector: There exists 0V  V, such

that: 0V  v  v  v 0V

6. The Existence of Additive Inverses: There exists  v  V such that:

v v  0V  v  v

7. The Distributive Property of Ordinary r  s  v
Addition over Scalar Multiplication:  r  v  s  v

8. The Distributive Property of Vector r  u v
Addition over Scalar Multiplication:  r  u  r  v

9. The Associative Property of r  s  v  s  r  v
Scalar Multiplication:  rs  v

10. The Unitary Property of 1F  v  v

Scalar Multiplication:

We constructed the Euclidean n-space n by constructing n-tuples of real numbers. We can
analogously construct the Complex Euclidean n-space, denoted n, by constructing n-tuples of
complex numbers:

n    z1, z2, . . . , zn  |z i   .
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As before, we will indicate that a variable represents a vector by putting an arrow above the variable.
Thus, for example, z  5i, 2  i, 7  3. To avoid confusion, we will refer to n as Real Euclidean
n-space.

In the same way that we refer to real numbers as scalars, we will also refer to complex numbers as
complex scalars. It is easy to see that n is a vector space over the field of complex scalars under the
natural operations of:

Vector Addition:  z1, z2, . . . , zn   w1, w2, . . . , wn 

  z1  w1, z2  w2, . . . , zn  wn , and

Complex Scalar Multiplication: u   z1, z2, . . . , zn 

 u  z1, u  z2, . . . , u  zn .

Under these two operations, we can easily verify that n satisfies the Ten Axioms of a Vector Space
over the field of complex numbers. When verifying these axioms, our scalars will now be complex
scalars. Obviously, the zero vector is:

0n  0, 0, . . . , 0 .

and the negative of a vector is:

 z    z1, z2, . . . , zn   z1,z2, . . . ,zn .

Aside from the two basic operations, though, it is also useful to define the complex conjugate of a
complex vector:

z   z1, z2, . . . , zn    z1, z2, . . . , zn .

We will now proceed with the gigantic but completely natural task of generalizing and extending all of
the Examples, Definitions and Theorems that we have seen in the previous Chapters to vector spaces
over arbitrary fields, but in particular, to vector spaces over the complex field.

Examples of Complex Vector Spaces

Some of the examples that we saw in Chapter 3 can be naturally extended to create complex vector
spaces. The set of all polynomials:

pz  cnzn  cn1zn1   c1z  c0

of degree n or less in the complex variable z and with complex coefficients c i, under the natural
operations of polynomial addition and scalar multiplication by a complex number, is an example of a
complex vector space. We will denote this vector space as n, the polynomials of degree at most
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n over , to distinguish it from the polynomials with real coefficients, which we denote as n.
We can construct m  n matrices with complex entries, and the set of all such matrices is denoted
Mat, m, n, the m  n matrices over . For example:

A 
5 3  i 4i
2i 7 5

is a matrix in Mat, 2, 3. The operations of addition and scalar multiplication naturally follow from
the arithmetic of complex numbers. The zero matrix and the negative of a matrix are what we would
naturally expect. The set Mat, m, n can thus be shown to be a vector space over . The rules for
matrix addition, scalar multiplication, matrix multiplication, and the methods to find the inverse (when
possible) and determinant of a square matrix, are exactly the same, except we perform the arithmetic
on complex numbers. If we review the proofs of all the properties of the determinant, we notice that
they still hold for matrices over an arbitrary field, since they depend only on field arithmetic and the
properties of permutations.

Example: Consider the 2  2 complex matrices:

A 
2  3i 7

5i 4  i
, and B 

3  i 2i
1  i 2  3i

.

Then:

A  B 
2  3i 7

5i 4  i


3  i 2i
1  i 2  3i


2  3i  3  i 7  2i

5i  1  i 4  i  2  3i


5  2i 7  2i
1  6i 6  2i

,

3  2iA  3  2i
2  3i 7

5i 4  i


3  2i2  3i 3  2i7
3  2i5i 3  2i4  i


12  5i 21  14i

10  15i 10  11i
,

AB 
2  3i 7

5i 4  i
3  i 2i
1  i 2  3i


2  3i3  i  71  i 2  3i2i  72  3i
5i3  i  4  i1  i 5i2i  4  i2  3i


16  14i 20  17i
10  18i 21  10i

,
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detB  3  i2  3i  2i1  i  7  9i, and

B1  1
7  9i

2  3i 2i
1  i 3  i

 7  9i
72  92

2  3i 2i
1  i 3  i

 1
130

41  3i 18  14i
16  2i 12  34i

. 

We have left out some of the details in the computations above, since they all involve the basic
arithmetic of complex numbers. Notice also that we found B1 using the formula for the inverse of a
2  2 matrix and division of complex numbers.

Linear Combinations, Spans and Independence

The definitions in Chapter 3 for real vector spaces can easily be extended to analogous definitions for a
vector space V,, over an arbitrary field F,, .

Suppose v1, v2, . . . , vn  V, and r1, r2, . . . , rn  F. Then, a linear combination of the vectors v1,
v2, . . . , vn with coefficients r1, r2, . . . , rn has the form:

r1  v1   r2  v2    rn  vn .

The Span of the set of vectors S  v1, v2, . . . , vn  is the set of all possible linear combinations of
these vectors:

SpanS  Spanv1, v2, . . . , vn 

  r1  v1   r2  v2    rn  vn  |r1, r2, . . . , rn  F .

We will generalize this concept to infinite sets of vectors which are indexed by a subset of . As
before, we write: S  vi | i  I   V,,, where I   is some non-empty indexing set. We will
define the Span of S as the set of all possible linear combinations of every finite subset of S. In other
words, we form a finite subset vi1 , vi2,. . . , vin  of S, form all the possible linear combinations of this
subset, and repeat this process for all the finite subsets of S.

Let S be a (possibly infinite) subset of a vector space V,,. We say that S is linearly independent
if any linear combination of vectors from S results in the zero vector if and only if all the coefficients of
these vectors are 0. In other words, the only solution to the dependence test equation:

c1  vi1   c2  vi2    cn  vin   0V.

is the trivial solution c1  0, c2  0, . . . , cn  0, for every finite list of vectors vi1 , vi2 , , vin  V.
If we have a non-trivial solution, we say that S is linearly dependent, and an equation above with at
least one non-zero coefficient is called a dependence equation for S.
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The Gauss-Jordan Algorithm can again be used to solve a system of linear equations with
coefficients from the field F. Our goal will be the same: to find the rref of an augmented matrix with
entries from F. In general, we replace “0” and “1” with 0F and 1F in the definition of the rref. This
time, we will normalize the pivot row by dividing it by the pivot entry. As before, we will be able to
decide if a set of vectors S is linearly dependent or independent by finding the rref of the matrix whose
columns are the coordinates of the vectors in S.

Example: Consider the set of three vectors:

S    i, 1  i, 2, 5i,8  4i,5  5i, 1, 2i, 1  i  ,

a subset of 3. Let us decide if S is dependent or independent. As in Chapter 1, we write the vectors in
S as the columns of a matrix, and in this case we obtain the 3  3 complex matrix:

i 5i 1
1  i 8  4i 2i

2 5  5i 1  i
.

We will need to apply the Gauss-Jordan Algorithm to this matrix, which thanks to the nature of
complex arithmetic, would be a very messy process. To obtain a leading 1 in the first column, we can
either exploit the 2 in the third row or the i in the first row. In this case, dividing the first row by i will
not introduce fractions, unlike dividing the third row by 2, so we get:

1 5 i
1  i 8  4i 2i

2 5  5i 1  i
.

Now we multiply the first row by 1  i and subtract this from row 2, and similarly multiply the first
row by 2 and subtract this from row 3, obtaining:

1 5 i
0 3  i 1  i
0 5  5i 1  3i

.

To get a leading 1 in row 2, let us just divide row 2 by 3  i:

1 5 i
0 1  1

5 
2
5 i

0 5  5i 1  3i

.

We multiply the 2nd row by 5  5i and subtract this from row 3:

1 5 i
0 1  1

5 
2
5 i

0 0 0

,

and since we get a row of zeroes, we can now conclude that the set is dependent, and the third column
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(i.e., the third vector) is a linear combination of the first and second. To find a dependence equation,
though, we complete the process of finding the rref, which in this case is just one step away, by adding
5 times row 2 to row 1:

1 0 1  i
0 1  1

5 
2
5 i

0 0 0

.

The third column gives us the coefficients for a dependence equation involving our original columns:

1  ii, 1  i, 2   1
5 

2
5 i 5i,8  4i,5  5i  1, 2i, 1  i. 

If we are given a “standard” basis for an abstract complex vector space, we can test for the
independence of a set of vectors by encoding the coordinates of these vectors with respect to this
standard basis, and applying the Gauss-Jordan Algorithm to the matrix obtained by assembling these
coordinates into columns, as we did in Chapter 3. We will see this in the Exercises.

Subspaces and Basis

A non-empty subset W of a vector space V,, over a field F,,  is called a subspace of V if
W,, is also a vector space over F, that is, under the same vector addition and scalar
multiplication as V. We will write W,,  V,, or just W  V. This is equivalent to saying that
W is a non-empty subset of V, and W is closed under vector addition and scalar multiplication. The
basic example of a subspace of a vector space V,, is:

W  SpanS,

where S is a (possibly infinite) subset of V.
A set of vectors B from a vector space V,, is a basis for V if it is linearly independent and
Spans V. Equivalently, a set S (which is possibly infinite) is a basis for V,, if and only if every
vector v  V can be represented uniquely as a linear combination of a finite set of members w i1 , w i2 ,
. . . , w ik from S :

v  c1w i1  c2w i2   ckw ik .

Every vector space V,, has a (possibly infinite) basis B. Thus, every subspace W of V is in fact
the Span of a set of vectors B. A vector space V,, is called finite dimensional if we can find a
finite basis B for V, otherwise we say that V is infinite dimensional. (Again, to prove the existence of
a basis completely in the infinite dimensional case, we need The Axiom of Choice or Zorn’s Lemma.)

The theorems needed to construct a basis, namely the Extension Theorem, the Elimination Theorem,
and the Dependent vs. Spanning Sets Theorem are all still true, and can easily be proven using
complex scalars.

Consequently, any two bases for a finite-dimensional vector space V,, have exactly the same
number of elements, and we call this common number the dimension of V or dimV. For any
subspace W of V, dimW  dimV. In the finite dimensional case, dimW  dimV if and only if
W  V.
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Example: The standard basis S  e1, e2, . . . , en , where ei has zeroes in all components except for
1  1  0  i in the i th component, is a basis for n as a vector space over . Thus n is
n dimensional over , in the same way that n is n dimensional over . 

Example: Every polynomial pz of degree n with complex coefficients can be written as:

pz  c0  c1z  c2z2   cnzn.
Thus the set S  1, z, z2, . . . , zn Spans n. However, the Fundamental Theorem of Algebra
again tells us that S is linearly independent, since a non-constant polynomial of degree n with
coefficients from  can have at most n complex roots. Thus n is an n  1-dimensional vector
space over , in the same way that n has dimension n  1 over . 

Example: We saw in the previous subsection that:

S    i, 1  i, 2, 5i,8  4i,5  5i, 1, 2i, 1  i  
is a dependent subset of 3, with all three vectors appearing in a dependence equation. However, no
two of these vectors are parallel to each other. Thus W  SpanS is 2-dimensional, and we can
choose any two of the vectors in S to serve as a basis. One choice would be:

B    i, 1  i, 2, 1, 2i, 1  i  . 

8.2 Section Summary

Most of the definitions, Theorems, and constructions that we saw in the first Chapters 1 to 6 extend
naturally to vector spaces over the field of complex numbers, and even more generally, to vector spaces
over an arbitrary field F,, .
Complex Euclidean n-space, denoted n, is the set of all n-tuples of complex numbers:

n    z1, z2, . . . , zn  |z i   .

The set of polynomials of degree at most n with complex coefficients is denoted n, and is an
n  1-dimensional vector space over .
We can construct m  n matrices with complex entries, and the set of all such matrices is denoted
Mat, m, n. This is an m  n-dimensional vector space over .
The following terms, concepts and constructions are defined for complex vector spaces as they are to
real vector spaces, with the notable exception that scalars appearing in definitions are now complex
numbers:
 the linear combinations of a set of vectors;
 the Span of a set of vectors;
 linear dependence or independence of a set of vectors;
 a basis for a vector space;
 the dimension of a vector space;
 a subspace of a vector space;
 complex matrices and their arithmetic: addition, subtraction, multiplication, finding

determinants and inverses of square matrices, when they exist.
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8.2 Exercises

For Exercises 1 to 5: Determine whether or not the indicated vector b is a member of SpanS, and
if so, express b as a linear combination of the vectors of S.

1. b  i, 1, i; S   1  i, 2i, 3, 2  2i,4, 6i, i, 3i, 2 .
2. b  6  4i,3  10i, 8  7i; S   1  i, 2i, 3, 2  2i,4, 6i, i, 3i, 2 .
3. b  9  9i,12  8i, 13  27i, 10  i; S   1  i, i, 3,2i, 2i,1, i, 3i, 2, 3i, 6  i,i .
4. b  2  4i  10  7iz  5  9iz2;

S  1  i  2iz  3z2, 2i  3z  i  1z2,  1  i  5iz  4  iz2 .
5. b  11  5i  28  13iz  12  29iz2;

S  1  i  2iz  3z2, 2i  3z  i  1z2,  1  i  5iz  4  iz2 .

For Exercises 6 to 9: Determine whether or not the indicated subset of the respective vector
space is linearly dependent or independent. If it is dependent, give an example of a dependence
relation among the vectors. If we let W  SpanS, find dimW.

6. S   1  i, 2i, 3, 2  2i,4, 6i, i, 3i, 2   3.
7. S   1  i, i, 3,2i, 2i,1, i, 3i, 2, 3i, 6  i,i   4.

8. S 
i 2
1 1  i

,
3 2i
i 1  i

,
1  i 2  2i
1  i 2

,
1  3i 2  2i

1  i 2i

 Mat2, 2,.
9. S  1  i  2iz  3z2, 2i  3z  i  1z2,  1  i  5iz  4  iz2   2.

For Exercises 10 to 15: Determine whether or not the indicated subset of the respective
vector space is a subspace of that space. If so, then find a basis for the subspace, and find its
dimension.

10. W  pz  2 |p2i  0 and p1  i  0
11. W  pz  2 |p2i  0 and p1  i  2  i
12. W  pz  3 |p1  2i  0 and p1  i  p1  i
13. W  pz  3 |pi  0 and p /2  i  0

Note: Although the concept of a “limit” is different for the field of complex numbers, we can
formally differentiate a polynomial with complex coefficients using the same formula as in
ordinary Calculus:

If pz  cnzn  cn1zn1   c1z  c0, then:
d
dz pz  p /z  ncn zn  n  1cn1 zn1   2c2 z  c1.

14. W  pz  3 |p /1  2i  0 and p //1  i  0
15. W  A  Matn, n, | trA  0 ,

where trA  a1,1  a2,2   an,n is the trace function.

For Exercises 16 to 20: For each of the following matrices A, find: (a) A2; (b) detA; c)
A1, if it exists.
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16.
1  i 2i
1  i i

17.
i 2  i

1  3i i

18.
i 2  i

1  i 3  i

19.
i 1  i i

1  i i 1  i
0 2 i

20.
i 1  i 1  i

2i i 1  i
1  i 3i 2i

21. In the same way we defined n and n, define by Fn the set of all n tuples of F:
Fn    f1, f2, . . . , fn  | f i  F 

and define the natural vector addition via addition of pairs of components and similarly for scalar
multiplication.
a. Prove that Fn is a vector space over F.
b. Show that the standard basis S  e1, e2, . . . , en  where ei has 0F in all components

except for 1F in the i th component, is a basis for Fn as a vector space over F.

22. Define Matm, n, F to be the set of all m  n matrices with entries from F, under the natural
addition operation for matrices and the multiplication of such a matrix by a scalar from F.
a. Prove that Matm, n, F is a vector space over F.
b. Generalize the construction in Chapter 3 to create a basis for Matm, n, F over F.
c. Find the dimension of Matm, n, F over F.

23. Define nF to be the set of all polynomials:
pz  cnzn  cn1zn1   c1z  c0

of degree n or less in the variable z and with coefficients c i from F, under the natural operations
of polynomial addition and scalar multiplication by F. Prove that nF is a vector space over F.
(Note: it is not true in general that nF has dimension n  1 over F).

24. Show that n is a vector space over  with dimension 2n. As part of your proof, find a basis for
n over .

25. Show that F   2 , from the previous Section, is a 2-dimensional vector space over .
What is a basis for F over ?

26. Use the definition of the determinant function and the properties of the conjugate to prove that for
any n  n matrix A : detA  det A .
In this formula, A is the n  n matrix whose entries are the complex conjugates of the
corresponding entries of A, and detA denotes the complex conjugate of detA.
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8.3 Complex Inner Products

We shall now generalize the concept of an inner product to complex Euclidean spaces and the
associated concept of orthogonality.

The Complex Euclidean Inner Product

We defined the dot product on Real Euclidean n-space by taking the sum of the matching pairs of
products of the components. Although there is nothing stopping us, computationally, from doing the
same thing to two complex vectors, we need to modify this definition so that the inner product of a
complex vector with itself still satisfies the positivity property. It turns out that we only need to make a
small adjustment:

Definition: Let z   z1, z2, . . . , zn , and w  w1, w2, . . . , wn  be vectors from n. We
define their Complex Euclidean inner product, or simply their inner product, by:

 z|w   z  w  z1w1  z2w2   znwn.

Example: Let z  1  i, 2  3i, 4 and w  2i, 3  i, 1  2i  3. Then:
 z|w   z  w

 1  i, 2  3i, 4  2i, 3  i, 1  2i
 1  i2i  2  3i3  i  41  2i
 5  i. 

There is a very good reason why we require the conjugate of w in this definition. We mentioned in the
Exercises of Section 6.1 that if V is any n-dimensional vector space over , then any isomorphism (in
fact, just a one-to-one linear transformation) T : V  n will induce an inner product:

u |v V  Tu  Tv.

Consider now V  . We saw that the function:

T :   2, where
Ta  bi  a, b

is an isomorphism of vector spaces. Thus we can induce an inner product on  via:

a  bi |c  di   a, b  c, d  ac  bd,
and in particular:

a  bi |a  bi   a, b  a, b  a2  b2.
But recall that

a  bia  bi  a  bia  bi  a2  b2.
Thus, it is natural to define in general:

 z |w   a  bi |c  di   a  bic  di  z  w
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This definition has the added advantage that if z and w were actually real vectors, then the new
definition coincides with the old one. We can now verify the positivity property:

Theorem — The Positivity of the Complex Inner Product:
Under the inner product above:

0n |z  0,

for any complex vector z, and thus in particular 0n |0n  0.
Furthermore, if z  n, and z  0n , then  z|z   0. Thus:

 z|z   0 if and only if z  0n , and 0n |0n  0.

Consequently, we can define the length of a vector z via:

z   z|z  ,

and the distance between two vectors z, w  n via:
d  z, w   z  w.

Proof: It is obvious from the definition that 0n |z  0 for any complex vector z. Now, if z  n is
not the zero vector, we have:

 z|z   z1z1  z2z2   znzn

 z12  z22   zn2  0,
since at least one of the components z i is nonzero.

Example: Let z  2i, 3  i, 1  2i  3 from the previous Example. Then:
z|z  2i, 3  i, 1  2i  2i, 3  i, 1  2i

 2i2i  3  i3  i  1  2i1  2i
 4  9  1  1  4  19.

As expected, this is a positive real number, and thus z  19 . 

Unfortunately, nothing comes for free. Our new definition has the consequence that our inner product
is no longer symmetric, that is, in general:  z|w   w |z .

Example: Let z  3  2i, 1  5i and w  2  i, 4  3i. Then:
 z|w   3  2i2  i  1  5i4  3i  7  16i, but
w |z   2  i3  2i  4  3i1  5i  7  16i. 

Notice, however, that the two complex numbers we obtained above are complex conjugates of each
other. This is obviously not a coincidence:

Theorem: Let z, w  n. Under the inner product defined above:
 z|w   w |z .

Section 8.3 Complex Inner Products 695



Proof: We have:

 z|w   z  w  z1w1  z2w2   znwn, but

w |z   w1z1  w2z2   wnzn

 w1z1  w2z2   wnzn by the additivity of the conjugate,
 w1z1  w2z2   wnzn by the multiplicativity of the conjugate,
 w1z1  w2z2   wnzn by the double conjugate property,
 z1w1  z2w2   znwn by the commutative property of multiplication,

and hence the two sides are the same.

This new property is called Hermitian-symmetry, named after French mathematician Charles
Hermite (1822-1901). He is known for being the first to prove that Euler’s number e (which is
approximately 2. 7182818. . . ) is a transcendental number, that is, there is no polynomial px with
integer coefficients such that pe  0. Another well-known transcendental number is . We will
encounter the adjective Hermitian again in future Sections.

The Axioms of a Complex Inner Product Space

Recall that the ordinary dot product of real Euclidean n spaces has special properties that we later
used as the axioms for an inner product space. In the same way, let us summarize the properties that
we saw above for our new complex inner product:

Theorem — Axioms of a Complex Inner Product Space:
Let z, w, and u  n, and k  . Under the complex inner product, the following properties
are true:

1. The Hermitian-Symmetry Property:  z|w   w |z .

2. The Left Homogeneity Property: k  z|w   k   z|w .

3. The Left Additivity Property: u  z|w   u |w    z|w .

4. The Positivity Property: If z  0n , then  z|z   0.

Proof: We already proved the first and fourth properties. The second and third properties follow
directly from the definition and the properties of the addition and multiplication of complex numbers.
We remark, though, that the Hermitian-Symmetry Property also implies, using z  w, that
 z|z    z|z . Thus  z|z  must be a pure real number. The Positivity Property says that not only is
this a pure real number, it must be positive if z is not the zero vector.

More generally, if V,, is a complex vector space on which we can define a bilinear form  | 
that satisfies the four properties above, we call V a complex inner product space under the bilinear
form  | . We naturally refer to these four properties as the Axioms of a Complex Inner Product
Space. We also get the following bonus properties:
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Theorem: Let V,, be a complex inner product space. Let z, w, u  V, and k  .
Then, the following properties also hold:

1. The Right Additivity Property:  z|w  u    z|w    z|u .

2. The Right Conjugate-  z|k  w   k   z|w .
Homogeneity Property:

3. The Inner Product with z|0V  0  0V |z , and

the Zero Vector Property: in particular: 0V |0V  0.

The proofs of these properties are left as Exercises. Again, we are only allowed to use the four axioms
for a complex inner product space, as well as the axioms (and consequent properties) of a complex
vector space in order to prove these properties, but their proofs are very similar to the analogous
properties that we saw in Chapter 7.

Orthogonality and Orthogonal Complements

The complex inner product allows us to recast definitions and Theorems from real inner product spaces
in Chapter 7 in the setting of complex vector spaces. Their proofs will be left as Exercises:

Definitions/Theorems: We say that two vectors v and w in a complex inner product space
are orthogonal if and only if v |w   0. In particular, 0V is orthogonal to all v  V.
A set of vectors S which does not contain the zero vector is orthogonal if any two distinct
vectors in S are orthogonal to each other, and S is orthonormal if it is an orthogonal set
consisting of unit vectors. Orthogonal sets are automatically linearly independent.
If W is a subspace of a (possibly infinite dimensional) complex inner product space V, the
orthogonal complement W of W is:

W  v  V |v |w   0 for all w  W .

W is again a subspace of V. If B is a basis for W, then:

W  v  V |v |w   0 for all w  B ,

that is, it is necessary and sufficient that we check if v is orthogonal to every member of a
basis for W.

The Gram-Schmidt Algorithm extends naturally to complex inner product spaces, and we can again
use it to construct an orthonormal basis for a subspace W as well as its orthogonal complement W.
Needless to say, the computations are messier when dealing with complex vectors.
If V is a finite dimensional complex inner product space, and W is any subspace of V, then by the
Gram-Schmidt Algorithm, dimW  dimW   dimV, and W   W, as before.

Example: Let B   1  i, i, 1, i, 2, 1  i, 1, 2  i, i   3. Let us apply the Gram-Schmidt
Algorithm to B, in the given order:
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v1  z1  1  i, i, 1.

v2  z2 
 z2 |v1 
v1 |v1 

v1

 i, 2, 1  i   i, 2, 1  i  1  i,i, 1 
1  i, i, 1  1  i,i, 1  

1  i, i, 1

 i, 2, 1  i   i1  i  2i  1  i
1  i1  i  i2  1

1  i, i, 1

 i, 2, 1  i   2  2i
4 1  i, i, 1  i, 2, 1  i   1  i

2 1  i, i, 1

 1
2 2i, 4, 2  2i  2i,1  i,1  i  1

2 0, 3  i, 1  3i,

so we will use instead v2  0, 3  i, 1  3i. We easily check that:

v1 |v2   1  i, i, 1  0, 3  i, 1  3i
 0  i3  i  1  3i  3i  i2  1  3i  0,

so v2 is indeed orthogonal to v1. Lastly, we get:

v3  z3 
 z3 |v1 
v1 |v1 

v1 
 z3 |v2 
v2 |v2 

v2

 1, 2  i, i  1, 2  i, i  1  i,i, 1
1  i, i, 1  1  i,i, 1 

1  i, i, 1

 1, 2  i, i  0, 3  i, 1  3i 
0, 3  i, 1  3i  0, 3  i, 1  3i  

0, 3  i, 1  3i

 1, 2  i, i  1  i  i2  i  i
4 1  i, i, 1

 2  i3  i  i1  3i
3  i3  i  1  3i1  3i 

0, 3  i, 1  3i

 1, 2  i, i  1  i  2i  i2  i
4 1  i, i, 1

 6  5i  i2  i  3i2

9  i2  1  9i2 0, 3  i, 1  3i

 1, 2  i, i  2i
4 1  i, i, 1  8  6i

20 0, 3  i, 1  3i

 1, 2  i, i  i
2 1  i, i, 1  4  3i

10 0, 3  i, 1  3i

 1
10 10, 20  10i, 10i  5  5i,5, 5i  0, 15  5i,5  15i

 1
10 5  5i, 5i, 5  1

2 1  i, i, 1,

so we will use v3  1  i, i, 1 instead. Let us verify that v3 is orthogonal to both v1 and v2:

v1 |v3   1  i, i, 1  1  i,i, 1
 1  i1  i  ii  1
 1  i  i  i2  i2  1  0, and
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v2 |v3   0, 3  i, 1  3i  1  i,i, 1
 3  ii  1  3i
 3i  i2  1  3i  0,

so indeed we get an orthogonal set. We already know from above that v1 |v1   4 and v2 |v2   20,
so all we need is:

v3 |v3   1  i, i, 1  1  i,i, 1  1  1  1  1  4.

Finally, we normalize the three vectors and get the orthonormal basis for 3:

1
2 1  i, i, 1, 1

2 5
0, 3  i, 1  3i, 1

2 1  i, i, 1 . 

8.3 Section Summary

Let z   z1, z2, . . . , zn , and w  w1, w2, . . . , wn  be vectors from n. We define their Complex
Euclidean inner product, or simply their inner product, by:

 z|w   z  w  z1w1  z2w2   znwn.

Let z, w, and u  n, and k  . Under the complex inner product, the following properties are true:

1. The Hermitian-Symmetry Property:  z|w   w |z .

2. The Left Homogeneity Property: k  z|w   k   z|w .

3. The Left Additivity Property: u  z|w   u |w    z|w .

4. The Positivity Property: If z  0n , then  z|z   0.

A complex vector space V is a complex inner product space under a bilinear form  |  if the above
four axioms are satisfied by  | . The following properties also hold in such a space:

1. The Right Additivity Property:  z|w  u    z|w    z|u .

2. The Right Conjugate-  z|k  w   k   z|w .
Homogeneity Property:

3. The Inner Product with z|0V  0  0V |z , and

the Zero Vector Property: in particular: 0V |0V  0.

We can define the following concepts and constructions in V:
 the length of a vector: z   z|z  .
 the distance between two vectors: d  z, w   z  w.
 orthogonality: z is orthogonal to w if and only if  z|w   0.
 orthogonal and orthonormal sets of vectors.
 the applicability of the Gram-Schmidt Algorithm.
 the orthogonal complement W of a subspace W of V.
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8.3 Exercises

1. Let A be an invertible n  n complex matrix.
a. Prove that the bilinear form on n induced by A, denoted  | A, and given by:

 z|w A  A z  |Aw  ,

is also an inner product on n, where the inner product on the right is the ordinary complex
inner product on n.

b. Compute   i, 2  i |4, 1  2i A, where:

A 
1  i 3  i
2  i 5  3i

.

c. Find the length of 4, 1  2i under the inner product induced by A from (b).

2. Let z1, z2, . . . , zn be n fixed (distinct) complex numbers. Let us define the bilinear form
pz |qz  on n via:

pz |qz   pz1 qz1   pz2 qz2    pzn qzn .

a. Prove that this bilinear form is an inner product on n.
b. Compute 3z2  2iz  1  5i |1  iz2  3z  2i , where:

pz |qz   p2iq2i  p1  iq1  i  p3q3.

is an inner product on 2.
c. Find 3z2  2iz  1  5i under the inner product above. Note that you may use some of

your computations from (b).

For Exercises (3) to (5): Apply the Gram-Schmidt algorithm on the following sets of vectors from
the corresponding n, under the ordinary complex inner product on n:

3.   i, 2  i, 1  i, 3i
4.  1  i, 2, 3  i, 1  i, 3  i, 2  i,  i, 5  2i,i
5.   i, 2  i,i, 1  i, 3, 2  i,  i, 2i, 1  i
6. Apply the Gram-Schmidt algorithm on the set:

  i, 2  i, 1  i, 3i

under the inner product of Exercise 1. Do you get the same answer as Exercise 3?

7. Apply the Gram-Schmidt algorithm on the set:
1, z, z2

under the inner product of Exercise 2.

For Exercises (8) to (12): Use your answers to Exercises (3) to (7) in order to find the an
orthonormal basis for the orthogonal complement of the following subspaces W of the
corresponding vector space. There should be no further computations necessary.

8. W  Span  i, 2  i   2, under the ordinary inner product.

700 Section 8.3 Complex Inner Products



9. W  Span 1  i, 2, 3  i, 1  i, 3  i, 2  i   3, under the ordinary inner product.

10. W  Span  i, 2  i,i   3, under the ordinary inner product.

11. W  Span  i, 2  i  2 under the inner product of Exercise 1.

12. W  Span1, z  2 under the inner product of Exercise 2.

For Exercises 13) to 17): Let V,, be a complex inner product space. Let z, w, u  V, and
k  . Using only the Axioms of a Complex Inner Product Space, prove that the following
properties also hold:

13. The Right Additivity Property:

 z|w  u    z|w    z|u .

14. The Double-Conjugate Property:

z |w   z|w .

15. The Inner Product with the Zero Vector Property:

z|0V  0  0V |z ,

and in particular:
0V |0V  0.

16. The Right Conjugate-Homogeneity Property:

 z|k  w   k   z|w .

17. The Left Conjugate-Homogeneity Property:

k  z|w   z|k  w .

For Exercises (18) to (23): The following statements have analogous counterparts in Chapter 7.
Prove them by mimicking the proofs of the counterparts in Chapter 7.

18. Let S be an orthogonal set of vectors from some complex inner product space V. Prove that S is
linearly independent.

19. Let W be a subspace of a (possibly infinite dimensional) complex inner product space V, and let
W be its orthogonal complement. Prove that W is again a subspace of V.

20. Let V be a finite dimensional complex inner product space, and let W be a subspace of V. If B is a
basis for W, prove that:

W  v  V |v |w   0 for allw  B ,

that is, it is necessary and sufficient that we check if v is orthogonal to every member of a basis
for W.

21. Prove that the Gram-Schmidt Algorithm is still valid on a complex inner product space V.
22. Prove the Dimension Theorem for Orthogonal Complements: If V is a finite-dimensional

complex inner product space, and W is a subspace of V, then: dimW  dimW   dimV.
23. Let V be a finite dimensional complex inner product space, and let W be any subspace of V.

Prove that:
W   W.
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8.4 Complex Linear Transformations and The Adjoint

We shall continue with the task of generalizing the concepts of linear transformations, eigentheory and
diagonalizability of vector spaces over arbitrary fields, and over the complex field in particular, when it
is appropriate to do so.

Complex Linear Transformations

The concept of a linear transformation is easily extendible to vector spaces over an arbitrary field:

Definition: Suppose V,V ,V  and W,W ,W  are both vector spaces over the same
field F,, . A linear transformation:

T : V  W,
is a function that assigns a unique vector w  W to every vector v  V, such that for all u
and v  V and all scalars c  F, the function T satisfies:

TuV v   Tu  W Tv , and
Tc V u   c W Tu .

As before, we call V the domain of T and W the codomain of T. If T : V  V, we call T a
linear operator. The two properties above are again known as additivity and homogeneity.
When the operations are clear, we will simply write these properties as:

Tu  v   Tu   Tv , and Tc  u   c  Tu .

In the case of complex linear transformations, the ones that are easiest to understand are those with
domain n and codomain m, for some positive integers n and m. In this case, the additivity and
homogeneity properties again allow us to construct the standard matrix for T, namely the m  n
complex matrix T, with columns:

T  Te1  | Te2  | | Ten  .

The action of T on a vector v  n is given by matrix multiplication:

Tv   T  v   m,

where v  is the n  1 coordinate matrix of v with respect to the standard basis of n, and similarly,
Tv  is the m  1 coordinate matrix of Tv  with respect to the standard basis of m.
Once again, linear transformations preserve subspaces of the domain and the codomain: if T : V  W,
U  V, and Z  W, then:

TU  W and T1Z  V.

In particular, we can define the kernel of T and the range of T as the subspaces:

kerT  T1 0W  V and rangeT  TV  W.

We define:
nullityT  dimkerT and rankT  dimrangeT.
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A linear transformation T : V  W is one-to-one if and only if kerT  0V , and T is onto if
and only if rangeT  W.
The Dimension Theorem will again tell us that for T : V  W:

rankT  nullityT  dimV.

Thus if dimV  dimW, then T cannot be onto, and if dimV  dimW, then T cannot be
one-to-one.
An isomorphism T : V  W of vector spaces is a linear transformation that is both one-to-one and
onto. Every complex space of dimension n is isomorphic to n, and two finite-dimensional vector
spaces V and W are isomorphic to each other if and only if dimV  dimW. More explicitly, if
dimV  n and B  v1, v2, . . . , vn is a basis for V, then the assignment:

Tvi   ei,
for i  1. . n, extends by linearity to an isomorphism T : V  n.

Example: Suppose we have a linear transformation T : 4  3. Then T is automatically not
one-to-one. Suppose T is given by:

T 
i 2 3  i 9  5i

1  2i 4  2i 3i 10  8i
3  i 2  6i 1  2i 17  13i

, with rref:
1 2i 0 3  5i
0 0 1 1  i
0 0 0 0

Indeed, we find two free variables, and thus the kernel of T is:

kerT  Span 2i, 1, 0, 0, 3  5i, 0,1  i, 1  .

and nullityT  2. The leading 1’s are in columns 1 and 3, so the range of T is:

rangeT  Span i, 1  2i, 3  i, 3  i,3i, 1  2i  .

Thus rankT  2  3, so T is not onto, either. We verify that:

rankT  nullityT  2  2  4,

as it should be, according to the Dimension Theorem.

Eigentheory of Complex Linear Transformations

We can define the characteristic polynomial p of an n  n complex matrix A, as before, as:

p  detIn  A

We obtain a polynomial of degree n with complex coefficients, and thanks to the Fundamental
Theorem of Algebra, we can now say with confidence that p has exactly n complex roots, counting
multiplicities. These roots are again called the eigenvalues of A, and a non-zero vector v  n is called
an eigenvector for A with respect to , if:

Av  v.
If T : n  n is a linear operator, then T is an n  n matrix so we can find its eigenvalues and
eigenvectors. More generally, if V is a (possibly infinite dimensional) complex vector space and
T : V  V is a linear transformation, we say that  is an eigenvalue for T with associated (non-zero)
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eigenvector v if:

Tv  v.

The set of all eigenvectors associated to an eigenvalue , together with the zero vector, form a
subspace of V called the eigenspace EigA, or EigT,. Thus:

EigT,  v  V |Tv   v.

Example: Let A 
3  8i 4  6i
6  4i 7i

. Then:

p 
  3  8i 4  6i
6  4i   7i

   3  8i  7i  4  6i6  4i
 2  3  i  8  i.

We can find the roots of this quadratic polynomial using our method in Section 8.1. The discriminant
is:

b2  4ac  3  i2  48  i  24  10i.
The length of this complex number is:

b2  4ac  242  102  576  100  26

and thus:

b2  4ac  26  12
13  5

13 i ,

which is now in polar form, with cos   12
13 and sin  5

13 , i.e. /2    , and thus
/4  /2  /2. In other words, /2 is in the first quadrant. Thus, using the Half-Angle Formulas,
we get:

cos/2 
1   12

13
2  1

26
, and

sin/2 
1   12

13
2  5

26
.

Thus, we get the principal square root:

b2  4ac  26 1
26

 5
26

i  1  5i,

and finally, our eigenvalues are:

  b  b2  4ac
2a 

3  i  1  5i
2  1  2i or 2  3i.

To find the eigenvectors for each eigenvalue, we need to find the kernel of the matrix I2  A (or
A  I2) for the two values of .
For   1  2i, we get:
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1  2iI2  A 
2  10i 4  6i
6  4i 1  5i

, with rref:
1  1

2 
1
2 i

0 0
,

so EigA, 1  2i is 1-dimensional, with basis, say 1  i, 2.
For   2  3i, we get:

2  3iI2  A 
1  5i 4  6i
6  4i 2  10i

, with rref:
1 1  i
0 0

,

so EigA, 2  3i is 1-dimensional again, with basis, say 1  i, 1. 

The Spectrum of an Operator

The highlight of this Chapter is Section 8.6, where we present the Spectral Theorems. Their collective
name comes from the following:

Definition: Let T : V  V be a linear operator on a (possibly infinite-dimensional) complex
vector space V. The spectrum of T, denoted SpecT is the set of all eigenvalues of T, thus:

SpecT     | Tv  v for some non-zero vector v  V .
If V  n, and A  T, then we write:

SpecT  SpecA  1, 2, . . . , k,
namely, the set of distinct eigenvalues of T, where 1  k  n.

Example: Let A 
3  8i 4  6i
6  4i 7i

, from our previous Example. For this matrix:

SpecA  1  2i, 2  3i. 

The Adjoint of a Matrix

We now introduce an important operation on complex matrices and linear transformations: we will
perform an extra “twist” on the transpose:

Definition: Let A be an n  n complex matrix. We define the adjoint of A, written as A, as:
A  A.

that is, we take the complex conjugate of each entry of A. Similarly, if T : n  n is a
linear operator with standard matrix T, we denote by T, the adjoint of T, as the linear
operator on n such that T   T.

This is also called the Hermitian adjoint or the Hermitian transpose of A. Notice that if A is a pure
real matrix, then A is again A. The adjoint is the matrix analog of complex conjugation. In the area
of Quantum Mechanics, the adjoint is sometimes written as A or AH, although it is usually in the
context of operators on an infinite-dimensional complex vector space.
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Example: Let A 
7  4i 2  i

5 3i
. Then:

A 
7  4i 5
2  i 3i


7  4i 5
2  i 3i

. 

Due to its connection with the transpose operation as well as the complex conjugation, the adjoint also
shares properties that are possessed by these two operations:

Theorem — Properties of the Adjoint:
Let A and B be n  n complex matrices and c  . Then the following properties hold:

1. The Double Adjoint Property: A   A.

2. The Additivity Property: A  B  A  B.

3. The Conjugate-Homogeneity Property: c  A  c  A.

4. The Anti-Commutativity Property: A  B  B  A.

The proofs of these properties are left as Exercises. The adjoint of A also has an interesting and useful
property in connection with the complex inner product:

Theorem: Let T : n  n be any linear operator. Then, for all v, w  n:
Tv  |w   v |Tw  .

Proof: Recall that in Section 7.6, the dot product can be viewed as a matrix product:

v  w  w   v ,

where v  and w  are column matrices corresponding to the real vectors v and w. In the complex
case:

v |w   v  w  w   v   w   v .
Thus:

Tv  |w   w   Tv 
 w   T  v , and

v|Tw   Tw   v 
 T   w   v 
 T  w   v 
 w   T   v 
 w   T  v .

Hence, the two sides are equal.
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Informally, we say that if we slide an operator from the left side to the right side of the inner product, it
becomes its adjoint:

Tv  |w   v |Tw  ,

that is, T on the left becomes T on the right.

Similarly, in terms of matrices, we have:

A  v  | w   v  | A  w  .

Diagonalization

Since we are now allowed to have imaginary eigenvalues and complex eigenvectors from n, we can
expand the definition of diagonalizability and allow more matrices with real entries to be diagonalized.
Let A be an n  n complex matrix. We say that A is diagonalizable over  if we can find an invertible
complex matrix C such that:

C1AC  D,
where D  Diag 1, 2, . . . , n is a diagonal matrix, or equivalently:

AC  CD or A  CDC1.

We also say that C diagonalizes A over .
Let A be an n  n matrix. Then, A is diagonalizable if and only if we can find a set of n linearly
independent eigenvectors for A, say v1, v2, . . . , vn. If this is the case, then the diagonalizing matrix
C is again the matrix whose columns are v1, v2, . . . , vn, and the diagonal matrix D contains the
corresponding eigenvalues along the main diagonal. This tells us that if all the eigenvalues of A were
real numbers, and if A cannot be diagonalized over the field of real numbers, then A cannot be
diagonalized either over the field of complex numbers. However, if a real matrix had imaginary
eigenvalues, we can now attempt to find a complete set of linearly independent complex eigenvectors.
Let S  v1, v2, . . . , vk be an ordered set of eigenvectors for an n  n matrix A, and suppose that the
corresponding eigenvalues 1, 2, . . . , k for these eigenvectors are all distinct. Then, S is again
linearly independent. Thus, if A has a total of m distinct eigenvalues, we can find at least m linearly
independent eigenvectors for A.
Furthermore, suppose the characteristic polynomial p of A factors as:

p    1 n1    2 n2      k nk ,

where 1, 2, . . . , k are distinct and n1  n2   nk  n. As before, we call the exponent n i the
algebraic multiplicity of  i, and we call:

dimEigA, i 

(the dimension of the eigenspace over ) the geometric multiplicity of  i.
For any eigenvalue  i of an n  n matrix A, the geometric multiplicity of  i is at most equal to the
algebraic multiplicity of  i. Thus A is diagonalizable if and only if for every eigenvalue  i of A, the
geometric multiplicity of  i is exactly equal to its algebraic multiplicity. Thus, if A has n distinct
eigenvalues, then A is certainly diagonalizable.
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Example: Let A 
3  8i 4  6i
6  4i 7i

.

We saw above that the two eigenvalues of A are distinct, and thus A is diagonalizable. In particular, we
found that:

EigA, 1  2i  Span1  i, 2 , and

EigA, 2  3i  Span1  i, 1 .

Thus, we have:

D 
1  2i 0

0 2  3i
, and

C 
1  i 1  i

2 1
, with C1 

 1
2  1

2 i 1

1  i 1

Indeed, we can check that:

CDC1 
1  i 1  i

2 1
1  2i 0

0 2  3i
 1

2  1
2 i 1

1  i 1


3  i 1  5i

2  4i 2  3i
 1

2  1
2 i 1

1  i 1


3  8i 4  6i
6  4i 7i

 A. 

8.4 Section Summary

We can generalize the concepts of:
 a linear transformation from one complex vector space to another;
 the matrix of a linear transformation from n to m;
 the kernel, range, nullity and rank of a complex linear transformation;
 one-to-one linear transformations, onto linear transformations, and isomorphisms;
 the characteristic polynomial and equation of an n  n complex matrix;
 the eigenvalues and associated eigenvectors of an n  n complex matrix;
 the diagonalizability of an n  n complex matrix.

Let T : V  V be a linear operator on a (possibly infinite-dimensional) complex vector space V. The
spectrum of T, denoted SpecT is the set of all eigenvalues of T, thus:

SpecT     | Tv   v for some non-zero vector v  V .

If V  n, and A  T, then we write: SpecT  SpecA  1, 2, . . . , k, namely, the set of
distinct eigenvalues of T, where 1  k  n.
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Let A be an n  n complex matrix. We define the adjoint of A, written as A, as: A  A. That is, we
take the complex conjugate of each entry of A. Similarly, if T : n  n is a linear operator with
standard matrix T, we denote by T the linear operator on n such that T   T. The adjoint
operation enjoys similar properties as the transpose, with the notable exception that w  A  w  A.

8.4 Exercises

For Exercises 1 to 9: Find a basis for the (a) kernel, and (b) range of the linear transformation T
using its rref; decide if T is (c) one-to-one and/or (d) onto, and (e) if T is an isomorphism, find its
inverse:

1. T : 2  2; T 
3  i 3  11i

5  2i 16  11i
, with rref

1 2  3i
0 0

2. T : 2  2; T 
2  i 3

2i 4  i
, with rref

1 0
0 1

3. T : 2  3; T 
2i 2  6i

2  i 5i
1  3i 9

, with rref
1 0
0 1
0 0

4. T : 3  2; T 
3  i 3  11i 2i

4  3i 17  6i 3
, with rref

1 2  3i 0
0 0 1

5. T : 2  3; T 
2  i 2  4i

3 6i
3  5i 10  6i

, with rref
1 2i
0 0
0 0

6. T : 3  2; T 
2 i 3i
3i 2 2

, with rref
1 0 4i
0 1 5

7. T : 3  3; T 
3  2i 13 5
2  i 4  7i 3i

3i 6  9i 2

, with rref
1 3  2i 0
0 0 1
0 0 0

8. T : 3  3; T 
1  i 2i 4  8i
3  i 2  i 3  i

3i 5 9  5i
, with rref

1 0 2i
0 1 3  i
0 0 0
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9. T : 3  3; T 
1  i i i

2i 2  i i
3 1 1  i

, with rref
1 0 0
0 1 0
0 0 1

For Exercises 10 and 11: For the given matrices A, find the (a) Hermitian adjoint, (b)
characteristic polynomial, (c) spectrum, and (d) a basis for each eigenspace of the matrix; (e)
decide if A is diagonalizable, and if so, find a diagonal matrix D and an invertible matrix C such
that CDC1  A.

10. A 
43  30i 4  97i
30  12i 51  31i

11. A 
3  7i 9  9i
1  7i 3  11i

12. We saw in Chapter 6 that the rotation matrices:

rot  
cos  sin
sin cos

do not have any real eigenvalues unless   n for some integer n.

a. Find the (imaginary) eigenvalues of this matrix when   n.

b. Find a basis for the eigenspace of each eigenvalue.

c. Show that these matrices are diagonalizable over .

13. Consider  as a 2-dimensional vector space over . Define the functions:

Re :    and Im :    via:
Rex  iy  x and Imx  iy  y

Show that Re and Im are linear transformations of real vector spaces. These symbols stand for the
Real part of x  iy and the Imaginary part of x  iy, respectively.

14. Suppose that T : V  W is a one-to-one linear transformation of complex vector spaces, and
suppose also that W is an inner product space under  | W. Prove that we can induce an inner
product on V, denoted  | V, via:

 z|w V  T z |Tw  W.

For Exercises 15 to 18: Let A and B be n  n complex matrices and w  . Show that the
following properties hold:

15. The Double Adjoint Property: A   A.

16. The Additivity Property: A  B  A  B

17. The Conjugate-Homogeneity Property: w  A  w  A
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18. The Anti-Commutativity Property: A  B  B  A

19. Prove that if T : n  n is any linear operator, then for all v, w  n :

Tv  | w  v |Tw  .

20. Let V be the complex vector space of all polynomials pz in the complex variable z, with
complex coefficients. Show that:

T : V  V, given by
Tpz  z  pz,

is a linear transformation, but T does not have any eigenvalues or eigenvectors, whether real or
complex. In other words, SpecT  .

21. Generalize the previous Exercise: Suppose that qz is a fixed non-constant polynomial, and V is
the space of all polynomials in z, as before. Show that:

T : V  V, given by
Tpz  qz  pz,

is a linear transformation, but T does not have any eigenvalues or eigenvectors, whether real or
complex.

22. Let S be the complex vector space of all sequences of complex numbers:

 z1, z2, z3, . . . 

under addition of sequences and the natural scalar multiplication:

w  z1, z2, z3, . . .   w  z1, w  z2, w  z3, . . . .
Let T be the deleting linear operator, given by:

T : S  S, where:
T z1, z2, z3, . . .    z2, z3, z4, . . . .

This means we remove the first term in the sequence.

Prove that T is indeed a linear transformation, and that furthermore:

SpecT  .

This means that for any complex number , there exists a non-zero sequence  z1, z2, z3, . . . 
such that:

T z1, z2, z3, . . .      z1, z2, z3, . . . , that is:
 z2, z3, z4, . . .      z1, z2, z3, . . . .

Hint: think of a common type of sequence that you see in Precalculus, but generalize it to
complex numbers. Note that we are not requiring these sequences to “converge” in any way; they
are simply infinite ordered lists of complex numbers.
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8.5 Normal Matrices

We will now look at a special set of matrices that are diagonalizable in a certain way, as we shall see in
the next Section, where we see the Spectral Theorems. They are collectively called normal matrices,
but within this group, there are more specific subcategories, such as Hermitian, Skew-Hermitian and
unitary matrices. Let us start with the first two kinds of these special matrices:

Hermitian and Skew-Hermitian Matrices

We will now extend the definition of symmetric and skew-symmetric matrices to complex matrices:

Definition: We say that an n  n complex matrix A is Hermitian if:
A  A,

and similarly, A is Skew-Hermitian if:
A  A.

For linear operators T : n  n, these conditions translate to T  T and T  T,
respectively.

It is easy to see that if A is a pure real matrix, then A is Hermitian precisely when it is symmetric, and A
is Skew-Hermitian precisely when it is skew-symmetric. In the same way that we can visually check if
a matrix is symmetric or skew-symmetric, we have the following Theorem, whose proof is left as an
Exercise:

Theorem: Let A be an n  n complex matrix. Let us refer to the entries a j,k and ak,j, where
j  k, as off-diagonal pairs, and the entries a i,i as the diagonal entries, as before. Then:
1. A is Hermitian if and only if the diagonal entries of A are all pure real,

and the off-diagonal pairs are complex-conjugate pairs.
2. A is Skew-Hermitian if and only if the diagonal entries of A are all pure imaginary,

and the off-diagonal pairs are negative complex-conjugate pairs.

Example: The matrix B is Hermitian, and C is Skew-Hermitian:

B 

3 5  2i 7  3i
5  2i 6 i/2
7  3i i/2 4

; C 

7i 7  2i 6
7  2i i/3 3  4i

6 3  4i 5i
. 

Notice that in the Skew-Hermitian matrix C, the off-diagonal pairs have the same imaginary part but
the real parts are opposite in sign. These are also called real-conjugate pairs.

Recall that real symmetric and skew-symmetric matrices in fact form subspaces of the space of all
n  n real matrices. Unfortunately, their complex analogs do not form a subspace of Mat, n, n over
 : Hermitian and Skew-Hermitian n  n matrices are closed under addition, but not under scalar
multiplication by a complex number. However, we can say the following:
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Theorem: The set of all n  n Hermitian matrices, denoted Hermn, is a real vector space.
This means that if A and B are n  n Hermitian matrices and r is a pure real number, then
A  B and r  A are again Hermitian.
Furthermore, Hermn is closed under the transpose and adjoint operations: A and A are
again Hermitian.
Similarly, the set of all n  n Skew-Hermitian matrices, denoted SkewHermn, is also a
real vector space. This means that if C and D are n  n Skew-Hermitian matrices and r is a
pure real number, then C  D and r  C are again Skew-Hermitian.
Furthermore, SkewHermn is closed under the transpose and adjoint operations: C and C
are again Skew-Hermitian.

The proofs are left as Exercises. Notice that a  biA is not necessarily Hermitian if b  0.
Let us pause for a minute and compare some properties we have seen so far: A complex number z is
pure real if and only if z  z, and z is pure imaginary if and only if z  z. Similarly, A is Hermitian if
and only if A  A, and A is Skew-Hermitian if and only if A  A. Thus, we can say,
philosophically, that:

Hermitian matrices are analogous to pure real numbers.
Skew-Hermitian matrices are analogous to pure imaginary numbers.

Because of the connection between the adjoint and the inner product, we can describe these special
linear transformations as follows:

Theorem: Let T : n  n be a linear transformation. Then:
1. T is Hermitian if and only if for all v, w  n :

Tv  |w   v |Tw  .

2. T is Skew-Hermitian if and only if for all v, w  n :

Tv |w    v |Tw .

Proof: For any linear operator T, we have:

Tv |w   w   Tv 
 w   T  v .

On the other hand:

v |Tw    Tw   v 
 T  w   v 
 w   T  v .

Let us prove Part 1. If T is Hermitian, then T  T, or T  T, so the two indicated inner products
are indeed equal by our computations above. For the converse, suppose the two indicated inner
products are equal for all v, w  n. Subtracting, we get:

0  w   T  T   v  T  T v |w 
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for all v, w  n. In particular, it is true if w  T  T v. But this says that the length of
T  T v is zero for all v  n. In other words, T  T v  0 for all v  n. But this is
possible if and only if T  T is the zero linear transformation, i.e. T  T. The proof for Part
2 only requires a slight modification of this proof due to the  sign.

Note that the real analog of this Theorem says that the standard matrix T of a linear transformation
T : n  n is symmetric if and only if:

Tv   w  v  Tw 

for all v, w  n. We informally say that T slides back and forth the dot product.
The Theorem can also be used to define Hermitian and Skew-Hermitian operators on infinite
dimensional complex inner product spaces V. We say that T : V  V is Hermitian if and only if for
all v, w  V :

Tv  |w   v |Tw  ,

and similarly, T is Skew-Hermitian if and only if:

Tv  |w    v |Tw  .

The determinant and eigenvalues of Hermitian and Skew-Hermitian matrices have special properties:

Theorem: Let A be an n  n Hermitian matrix. Then: the determinant and eigenvalues of A
are all pure real numbers.
Let B be an n  n Skew-Hermitian matrix. Then: the determinant of B is a pure real
number if n is even, and a pure imaginary number if n is odd. However, the eigenvalues
of B are pure imaginary numbers, regardless of whether n is odd or even.

Proof: Recall that for any square matrix A (whether real or complex):
detA  detA .

Similarly, from the general definition of the determinant and the additivity and multiplicativity of the
conjugate operation, we can see that:

det A  detA.

Now, if A is Hermitian, then A  A  A. Thus:
detA  det A  detA   detA.

Thus, detA is a pure real number by the Test for Pure Real Numbers.
Now, let  be an eigenvalue of A, and T the linear operator with matrix A. By the previous Theorem:

Tv  |w   v |Tw  

for all vectors v, w  n. But now, let v be an eigenvector associated to , and let w  v. We get:

Tv  |v   v |Tv , and thus:
v |v   v |v , or
v |v   v |v .

Note that we used the left-homogeneity and right-conjugate-homogeneity properties of the inner
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product. But since an eigenvector v is a non-zero vector, v, v  0, and thus we can divide it out of
both sides of the equation to get   . Thus  is pure real. The proofs for the statements regarding
Skew-Hermitian matrices are similar and left as Exercises.

We remark that this Theorem directly proves that the eigenvalues of a real symmetric matrix are pure
real numbers, as we stated in Chapter 7, since they are also Hermitian matrices.

Example: Consider:

A 
1 2  3i

2  3i 5
.

By our criteria above, A is Hermitian. Its characteristic polynomial is:

p 
  1 2  3i
2  3i   5

   1  5  2  3i2  3i

 2  6  5  4  9

 2  6  8.
Using the (ordinary) quadratic formula, we get as our eigenvalues   3  17 , which are, as
expected, pure real.

Unitary Matrices

Recall that in Chapter 6, we called a square matrix A orthogonal if A  A  In  A  A. The
following matrix type is the complex analogue:

Definition: We say that an n  n complex matrix A is unitary if:

A  A  In  A  A,
that is, A is invertible, and its adjoint is also its inverse. Equivalently, a linear operator T is
unitary if T  T  In  T  T.

In the same way that the rows and columns of an orthogonal matrix form orthonormal sets, the rows
and columns of unitary matrices form orthonormal sets, but under our new complex Euclidean inner
product. We leave the proof of this generalization as an Exercise:

Theorem: The following conditions are equivalent regarding an n  n complex matrix A:
1. A is unitary.
2. The rows of A form an orthonormal set of vectors from n

under the complex Euclidean inner product.
3. The columns of A form an orthonormal set of vectors from n

under the complex Euclidean inner product.
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Example: Consider the matrix:

A 
1
3 

2
3 i 2

3 i

2
3 i 1

3  2
3 i

.

If we form the matrix product A  A, we get:
A  A


1
3 

2
3 i 2

3 i

2
3 i 1

3  2
3 i

1
3  2

3 i  2
3 i

 2
3 i 1

3 
2
3 i


1
3 

2
3 i 1

3  2
3 i  2

3 i  2
3 i 1

3 
2
3 i  2

3 i  2
3 i 1

3 
2
3 i

2
3 i 1

3  2
3 i  1

3  2
3 i  2

3 i 2
3 i  2

3 i  1
3  2

3 i 1
3 

2
3 i


1
9  4

9  4
9 0

0 4
9  1

9  4
9

 I2.
Thus, A is unitary.

Just like Hermitian and Skew-Hermitian matrices, we can characterize unitary matrices using the inner
product:

Theorem: Let T : n  n be a linear transformation. Then T is unitary if and only if
for all v, w  n :

v |w   Tv  |Tw  .

The proof is very similar to the analogous Theorem on Hermitian matrices, and is left as an Exercise.
Similarly, the determinant and eigenvalues of unitary matrices have special properties:

Theorem: Let A be an n  n unitary matrix. Then: the complex norm of detA is 1, and all
the eigenvalues  i of A also have complex norm 1, that is:

detA  1, and  i  1 for all i  1n.

This Theorem justifies the root word unit in unitary.

Because of the multiplicative way by which we defined unitary matrices, i.e. A  A  In  A  A,
we should not expect these matrices to form a subspace of Mat, n, n. In particular, the sum of two
unitary matrices is not necessarily unitary. However, they do enjoy some multiplicative properties
instead:
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Theorem: Let A and B be unitary n  n matrices. Then:
1. A  B is also unitary.
2. A is invertible and A1  A is also unitary.
3. If   cos  sini is a unit complex scalar for some real number ,

then   A is also unitary.

Again, the proofs are left as Exercises. All the properties above lead us to say, philosophically, that:

Unitary matrices are analogous to complex numbers of unit length.

Example: The unitary matrix:

A 
1
3 

2
3 i 2

3 i

2
3 i 1

3  2
3 i

from our previous Example, has determinant:
1
3 

2
3 i 1

3  2
3 i  2

3 i 2
3 i  1.

Its characteristic polynomial is:

p    1
3  2

3 i   1
3 

2
3 i  2

3 i 2
3 i  2  2

3   1.

Using the (ordinary) quadratic formula, its eigenvalues are:

  1
3  2

3 i,

and both eigenvalues indeed have length:

  1
9  8

9  1. 

Normal Matrices

We are now ready to assemble our special matrices above under the umbrella of a general category:

Definition: We say that an n  n complex matrix A is normal if:

A  A  A  A,
that is, A commutes with its adjoint A. Similarly, a linear operator T on n is normal if
T  T  T  T

The three special matrix types that we saw above are all normal, because:
If A is Hermitian, then A  A, hence A  A  A2  A  A.
If A is Skew-Hermitian, then A  A, hence A  A  A2  A  A.
If A is unitary, then A  A  In  A  A.
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In particular, among the real n  n matrices, symmetric, skew-symmetric and orthogonal matrices are
also normal, since these are the real analogs of the complex matrix types above.
However, we must caution that there are normal matrices that are not one of these special types!

Example: The matrix:

A 

1 1 0
0 1 1
1 0 1

is pure real, and we can visually check that it is not symmetric, skew-symmetric, or orthogonal.
However, multiplying A by A  A, we get:

A  A 

1 1 0
0 1 1
1 0 1

1 0 1
1 1 0
0 1 1



2 1 1
1 2 1
1 1 2



1 0 1
1 1 0
0 1 1

1 1 0
0 1 1
1 0 1

.

Thus A  A  A  A and A is normal.

As with the other special transformations, we can use the inner product to characterize normal
operators:

Theorem: Let T : n  n be a linear transformation. Then T is normal if and only if for
all v, w  n :

Tv  |Tw    Tv  |Tw  .

The proof is left as an Exercise.

Although Hermitian, Skew-Hermitian and unitary matrices are important, there are matrix types that do
not fall into any of these categories, but are easily seen to be normal. For instance, take the simplest
kind of square matrix:

Theorem: An n  n complex diagonal matrix D is normal.

Proof: If D  Diagd1, d2,  , dn  where the diagonal entries are complex numbers, then:

D  Diag d1, d2,  , dn .
Thus:

D  D  Diag d1d1, d2d2,  , dndn

 Diag d12, d22,  , dn2

 Diag d1d1, d2d2,  , dndn

 D  D. 
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Notice that a diagonal matrix with at least one non-real entry is not Hermitian nor Skew-Hermitian.
However, a real diagonal matrix is symmetric, hence obviously normal.
The next simplest kind of matrices after diagonal matrices are the triangular matrices. Ironically, it
turns out that normal upper-triangular matrices do not give us anything new:

Theorem: If the n  n complex matrix A is upper (or lower) triangular and normal, then A
is actually diagonal.

Proof: We will prove this Theorem in the case when A is upper triangular using Induction on n, and
leave the lower triangular case as an Exercise.
Obviously a 1  1 matrix is already diagonal, so there is nothing to prove. For the Induction
Hypothesis, assume that if an k  1  k  1 matrix B is both upper triangular and normal, then B is
actually diagonal. Now for the Inductive Step: let A be an k  k upper triangular complex matrix which
is also normal. We must show that A is diagonal. Let us explicitly write the entries of A and A :

A 

a1,1 a1,2  a1,k

0 a2,2  a2,k

   

0 0  ak,k

, and A 

a1,1 0  0
a1,2 a2,2  0
   

a1,k a2,k  ak,k

.

We can easily see that the upper-left entry of A  A is:

a1,1  a1,1  a1,2  a1,2   a1,k  a1,k  a1,12  a1,22   a1,k2.
On the other hand if we look at A  A, we get:

A  A 

a1,1 0  0
a1,2 a2,2  0
   

a1,k a2,k  ak,k

a1,1 a1,2  a1,k

0 a2,2  a2,k

   

0 0  ak,k

and the upper-left entry of A  A is just a1,1  a1,1  a1,12. But if A  A  A  A, then we must
have:

a1,12  a1,22   a1,k2  a1,12.
In other words:

a1,22   a1,k2  0.
Since every term in this sum is a non-negative real number, this is possible only if:

a1,2  a1,3    a1,k  0.
Thus, their conjugates are likewise 0, so in block form:

A 
a1,1 01k1

0k11 B

where the k  1  k  1 sub-matrix B is both upper triangular and normal. By the Induction
Hypothesis, B is diagonal, and thus A is also diagonal.
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8.5 Key Concepts

We summarize below the special matrix types and analogous operators that generalize from real
matrices to complex matrices.

Real Matrices A and
Linear Transformations

T : n  n

(below, v, w  n, and T  A)

Complex Matrices A and
Linear Transformations

T : n  n

(below, v, w  n, and T  A)

Transpose: A Adjoint: A  A

Action: Tv   Tv 

Symmetric: A  A

Tv   w  v  Tw 
Hermitian: A  A

Tv  |w   v |Tw  

Skew-Symmetric: A  A

Tv  w  v  Tw
Skew-Hermitian: A  A

Tv  |w    v |Tw  

Orthogonal: A  A  In

v  w  Tv   Tw 
Unitary: A  A  In

v |w   Tv  |Tw  

An n  n complex matrix A is normal if A  A  A  A.

All matrix types shown above are examples of normal matrices. In addition, diagonal complex matrices
are also normal. However, not all normal matrices fall into one of these special categories.

Hermitian and Skew-Hermitian matrices are closed under addition, multiplication by a pure real
number, the transpose operation and the adjoint operation.

In contrast, unitary matrices have multiplicative properties.

Eigenvalues of special normal matrices: If  is an eigenvalue of a normal matrix A, then:

1.  is a pure real number if A is Hermitian.

2.  is a pure imaginary number if A is Skew-Hermitian.

3.   1 if A is unitary.
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8.5 Exercises

For Exercises (1) to (15): For each matrix A: (a) Determine all the adjectives which apply to A, among
the choices: i Hermitian ii Skew-Hermitian iii unitary iv normal v none of these. Next, if A is
normal: (b) find detA and verify that it possesses the property that is specific to that type of matrix if
A belongs to a special type (i.e. detA is pure real if A is Hermitian, etc.), (c) find charpolyA, and
(d) SpecA and verify that SpecA possesses the property that is specific to that type of matrix, again
if A belongs to a special type.

1. A 
5 2i
2i 2

2. A 
5i 2
2 2i

3. A 
7 2
2 4

4. A 
7 2
2 4

5. A 
3 6i
6i 2

6. A  1
3

2  i 2i
2i 2  i

7. A 
3 2
2 3

8. A 
15i 30
30 10i

9. A  1
2

i i
1 1

10. A 

1 i 0
i 1 1  i
0 1  i 1
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11. A 

i 1  i 1
1  i i 1

1 1 i

12. A 

1 i 1  i
i 1 i

1  i i 1

13. A 

1
2

1
2

0

i
2

i
2

0

0 0 i

14. A 

5 2 1
2 5 2
1 2 5

15. A 

1 3 2
3 1 6
2 6 1

16. Let T : n  n be a linear transformation. Prove that T is normal if and only if for all v,
w  n : Tv  |Tw    Tv  |Tw  .

17. Prove that the following conditions are equivalent regarding an n  n complex matrix A:

a. A is unitary.

b. The rows of A form an orthonormal set of vectors from n under the complex Euclidean
inner product.

c. The columns of A form an orthonormal set of vectors from n under the complex
Euclidean inner product.

Hint: Mimic the proof of the analogous Theorem for orthogonal matrices in Chapter 7.

18. Let T : n  n be a linear transformation. Prove that T is unitary if and only if for all v,
w  n : v |w   Tv  |Tw  .

19. Let A be a unitary matrix. Prove that:

a. the complex norm of detA is 1, that is, detA  1.

b. all the eigenvalues  of A also have complex norm 1, that is, for every eigenvalue  for A,
  1.
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20. Let A and B be unitary n  n matrices. Prove that:

a. A  B is also unitary.

b. A is invertible and A1  A is also unitary.

c. If   cos  sini is a unit complex scalar for some real number , then   A is also
unitary.

21. Prove that T is a unitary operator on n if and only if for every orthonormal basis
B  u1, u2, . . . , un  for n, the set B /  Tu1 , Tu2 , . . . , Tun   is also an orthonormal
basis.

22. Prove that T is a unitary operator on n if and only if v  Tv for all v  n. Again, this
is similar to a Theorem from Chapter 7.

23. Let A be an n  n complex matrix. Prove that:

a. A is Hermitian if and only if the diagonal entries of A are all pure real, and the
off-diagonal pairs are complex-conjugate pairs.

b. A is Skew-Hermitian if and only if the diagonal entries of A are all pure imaginary, and
the off-diagonal pairs are real-conjugate pairs.

24. Let A and B be n  n Hermitian matrices, and r  . Prove that:

a. A  B is again Hermitian.

b. r  A is again Hermitian.

c. A and A are again Hermitian.

25. Let A and B be n  n Skew-Hermitian matrices, and r  . Prove that:

a. A  B is again Skew-Hermitian.

b. r  A is again Skew-Hermitian.

c. A and A are again Skew-Hermitian.

26. Let B be an n  n Skew-Hermitian matrix. Prove that:

a. the determinant of B is a pure real number if n is even, and a pure imaginary number if
n is odd.

b. the eigenvalues of B are always pure imaginary numbers.

27. Let T : n  n be a linear transformation. Prove that T is Skew-Hermitian if and only if for
all v, w  n : Tv |w    v |Tw  .

28. Prove that if A is any n  n complex matrix, then A  A is always Hermitian.

29. Prove that if A is any n  n complex matrix, then i  A  A is always Skew-Hermitian.

30. Prove that if A Hermitian, then i  A is Skew-Hermitian.

31. Prove that if A is Skew-Hermitian, then i  A is Hermitian.

32. If A is Hermitian, is its conjugate A also necessarily Hermitian?

33. If A is Skew-Hermitian, is its conjugate A also necessarily Skew-Hermitian?

Section 8.5 Normal Matrices 723



34. Prove that if A and B are both n  n Hermitian matrices and AB  BA, then AB is also
Hermitian. In other words, the product of two commuting Hermitian matrices is again
Hermitian.

35. Prove that the only n  n matrix that are both Hermitian and Skew-Hermitian is 0nn.

36. Prove that if A is any square matrix, then A  A is always Hermitian, and A  A is always
Skew-Hermitian.

37. Prove that every square complex matrix A can be expressed uniquely as A  B  C, where B is a
Hermitian matrix and C is a Skew-Hermitian matrix. Hint: Use the two previous Exercises for
the uniqueness and existence properties, respectively.

38. In Chapter 7, we saw the following Theorem relating the sets of symmetric and skew-symmetric
matrices: Consider the two subspaces of Matn, n:

V  Symn  A  Matn, n |A  A , and
W  SkewSymn  B  Matn, n |B  B ,

namely, the subspaces of symmetric and skew-symmetric matrices, respectively. Then: V  W.
The complex analog of this Theorem is as follows: Consider Mat, n, n as a real vector space,
that is, matrices with complex entries are added in the usual way, but we allow only scalar
multiplication by a real number. Denote by:

V  Hermn  A  Mat, n, n |A  A , and
W  SkewHermn  B  Mat, n, n |B  B ,

namely, the real vector subspace of all complex Hermitian n  n matrices, and the real vector
subspace of all Skew-Hermitian n  n matrices. Our goal is to prove that V  W with respect to
a natural inner product A | B on Mat, n, n.
a. Define a bilinear form on Mat, n, n by:

A | B  
all subscripts j,k

Rea j,k   Reb j,k   Ima j,k   Imb j,k ,

where Re and Im are the functions: Rex  iy  x and Imx  iy  y, where x, y  .
Prove that this bilinear form is a (real) inner product on Mat, n, n.

b. Find an orthonormal basis for Hermn under the inner product in (a). What is the
dimension of Hermn?

c. Find an orthonormal basis for SkewHermn under the inner product in (a). What is the
dimension of SkewHermn?

d. Show that dimMat, n, n  dimHermn  dimSkewHermn.
Reminder: these are all regarded as real vector spaces.

e. Prove that every member of Hermn is orthogonal to every member of SkewHermn
under the inner product of (a). Hint/Reminder: you only have to do it for every pair of basis
vectors.

f. Prove that Hermn and SkewHermn are orthogonal complements of each other under
the inner product of (a).

39. Mimic the proof in the final Theorem to prove that if the n  n complex matrix A is lower
triangular and normal, then A is actually diagonal.

724 Section 8.5 Normal Matrices



8.6 The Spectral Theorems

Recall from Section 6.3 that an n  n complex matrix A is diagonalizable if and only if the algebraic
multiplicity of each eigenvalue of A is equal to its geometric multiplicity. Consequently, there is a
complete set of linearly independent eigenvectors for A from n that acts as a basis for n. The
Spectral Theorems tell us precisely not just when, but also how a certain type of matrix is
diagonalizable, as well as the nature of its eigenvalues or spectrum.

Also recall that we say A is similar to B if there exists an invertible matrix C such that:

B  C 1AC,

where all three are n  n matrices (but this time, they can have complex entries). Thus we can say that
A is diagonalizable if and only if A is similar to a diagonal matrix D, and we say that C
diagonalizes A. The Spectral Theorems require a special kind of a diagonalizing matrix, namely, one
that is unitary, so let us first make the following:

Definitions: We say that two n  n complex matrices A and B are unitarily equivalent if
there exists an n  n unitary matrix U such that:

B  U 1AU  UAU.
We say that A is unitarily diagonalizable if there exists an n  n unitary matrix U and a
diagonal matrix D (possibly with complex entries) such that:

D  U 1AU  UAU.
In other words, A is unitarily equivalent to a diagonal matrix D.

In Chapter 6, we stated without proof that a (real) symmetric matrix A is diagonalizable using an
orthogonal matrix C. But since an orthogonal matrix is the real analog of a unitary matrix, this
Theorem says that a symmetric matrix is unitarily diagonalizable. This is in fact one of the Spectral
Theorems, and we will be seeing it later.

The following Theorem is analogous to the first Theorem in Section 6.3:

Theorem: Let A be an n  n complex matrices. Then: A is unitarily diagonalizable if and
only if there is an orthonormal basis for n consisting of eigenvectors of A.

Proof:  Suppose A is unitarily diagonalizable. Let U be a diagonalizing unitary matrix, and D a
diagonal matrix, such that:

D  UAU, or in other words:
UD  AU.

If U  u1 |u2 | . . . |un  and D  Diagd1, d2, . . . , dn , then this last equation tells us that:

d1u1 |d2u2 | . . . |dnun   Au1 |Au2 | . . . |Aun .

But this says that each ui is an eigenvector of A with associated eigenvalue d i. Since the n columns of
U form an orthonormal set, we have found an orthonormal basis B  u1, u2, . . . , un  for n.
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 For the converse, we essentially reverse the construction above. Suppose B  u1, u2, . . . , un 
is an orthonormal basis for n consisting of eigenvectors of A. Assemble these vectors into the
columns of a matrix U  u1 |u2 | . . . |un , and the corresponding eigenvalues into
Diag1, 2, . . . , n . By construction, U is unitary, and UD  AU as above. Thus D  UAU, and
A is unitarily diagonalizable.

As the name implies, the property of being unitarily equivalent is an equivalence relation:

Theorem: Let A, B and C be n  n complex matrices. Define the relation A  B if and only
if A is unitarily equivalent to B. Then the following properties hold:

1. Symmetry: A  A.
2. Reflexivity: If A  B then B  A.

3. Transitivity: If A  B and B  C then A  C.

Thus, unitary equivalence is an equivalence relation.

Proof: These properties follow easily because In is unitary, the inverse of a unitary matrix is also
unitary, and the product of two unitary matrices is unitary.

The property of being normal is also preserved by unitary equivalence:

Theorem: If an n  n complex matrix A is normal, then UAU is also normal for all unitary
matrices U.

Proof: Suppose A is normal and U is unitary, and both are n  n matrices. Let B  UAU. Then
B  UAU   UAU. Since U is unitary, we have U  U  In  U  U. Using the
Associative Property, we get:

B  B  UAU  UAU
 UAInAU
 UAAU, and

B  B  UAU  UAU
 UAInAU
 UAAU.

Since A  A  A  A, we get B  B  B  B. 

The Main Spectral Theorem

We are now ready to state the main Spectral Theorem, from which the others follow:

Theorem — The Spectral Theorem for Normal Matrices:
Let A be an n  n complex matrix. Then: A is unitarily diagonalizable if and only if A is
normal, that is, A  A  A  A.
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This Theorem is extremely powerful because all we need to determine if A is unitarily diagonalizable is
to perform two matrix products and see if they are equal! Once the matrix passes this test, we can go
through the arduous task of finding D and U. We certainly do not want to go through all this effort if it
were impossible to unitarily diagonalize A. We also know that the following special matrices are all
normal: (real) symmetric, Hermitian, skew-symmetric, skew-Hermitian and unitary matrices.

To prove this Theorem, we need the following Lemma by Issai Schur (1875-1941). A Lemma is a
Theorem that is used to prove an even more important Theorem. Schur was born in Mogilyov, Belarus,
but lived most of his life in Germany. Being Jewish, he was forced to resign from his professorial post
in the Prussian Academy in 1938 during the Holocaust. He died in poverty in Tel Aviv, but he is
remembered for the following:

Theorem — Schur’s Lemma:
Let A be an n  n complex matrix. Then there exists a unitary matrix U and an upper
triangular complex matrix B so that:

A  UBU, or equivalently, B  UAU.

We call the factorization A  UBU the Schur Decomposition of A.

Proof: The idea is to use Induction on the dimension n of A. If n  1, then A is already upper
triangular, so there is nothing to prove.

For the Induction Hypothesis, let us assume that if C is a k  1  k  1 complex matrix, then there
exists a k  1  k  1 unitary matrix X such that X1CX  XCX is an upper triangular complex
matrix.

Now, let A be an k  k complex matrix. We must find a k  k unitary matrix, say Z, such that
Z1AZ  ZAZ is upper triangular.

Let  be any eigenvalue of A, and let u1 be a unit eigenvector of A associated to . We can extend
u1 to a basis B  u1, u2, . . . , uk  for all of k. By applying the Gram-Schmidt algorithm, we may
as well assume that B is an orthonormal basis.

If we assemble these vectors into the columns of a matrix U:

U   u1  |u2  | |uk  ,

then U is unitary. Its adjoint U has as its rows:

U 

u1 


u2 




uk 


.

But now:
UAU  UA u1  |u2  | |uk  

 UAu1 |UAu2 | |UAuk 

 Uu1 |UAu2 | |UAuk .
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Let us focus on the first column only of this matrix. We get:

Uu1 

u1 


u2 




uk 


u1 

u1 
  u1 

u2 
  u1 



uk 
  u1 



  1
  0


  0





0


0

,

by the orthonormality property of B. Thus, UAU has the form:

UAU 
 R 1k1

0k11 C
,

where R 1k1 consists of the rest of the k  1 entries on the first row (which are irrelevant). But C is
now a k  1  k  1 complex matrix, so by the Induction Hypothesis, there exists a
k  1  k  1 unitary matrix X such that X1CX  XCX is an upper triangular complex matrix.
Let us “enlarge” X to the k  k matrix:

Y 
1 01k1

0k11 X
.

Since X is unitary, we get:

YY 
1 01k1

0k11 X

1 01k1

0k11 X


1 01k1

0k11 XX


1 01k1

0k11 Ik1

 Ik,

so Y is also unitary. Since the product of two unitary matrices is also unitary, Z  UY is unitary. But
now:

Z  A  Z  UY  A  UY
 Y  U  A  U  Y.

By substituting Y, UAU and Y above, we get:

Z  A  Z 
1 01k1

0k11 X
 R 1k1

0k11 C

1 01k1

0k11 X


 R 1k1

0k11 XC

1 01k1

0k11 X


 R 1k1

/

0k11 XCX
.
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Since XCX is an upper triangular complex matrix and the rest of column 1 below  consists of zeroes,
our final matrix is also upper triangular (note that the rest of the entries in row 1, denoted R 1k1

/ , are
irrelevant as before). This completes the proof of Schur’s Lemma.

Proof of the Main Spectral Theorem:
We will now show that: for every n  n complex matrix A:

A is unitarily diagonalizable if and only if A is normal.

 Suppose A is unitarily diagonalizable. We must show that A is normal. Let U be a diagonalizing
unitary matrix, and D a diagonal matrix, such that:

D  UAU.
But this equation says that A is unitarily equivalent to a diagonal matrix. Since diagonal matrices are
normal, and normality is preserved by unitary equivalence, A must also be normal.
 For the converse, suppose now that A is normal. We must show that A is unitarily
diagonalizable. By Schur’s Lemma, we can find an upper triangular matrix B and a unitary matrix U
such that:

B  UAU.
Again, this says that A is unitarily equivalent to B, but since A is normal so is B. However, the only
upper triangular matrices that are also normal are the diagonal matrices. Thus B is actually diagonal,
and so A is unitarily diagonalizable.

Notice that the proof above is quite short, thanks to Schur’s Lemma. This echoes a recurring theme in
mathematics:

To prove a Theorem about something special (in this case, the Spectral Theorem is only
about normal matrices) you might try to prove a Theorem which is more general (in this
case, Schur’s Lemma is about all n  n complex matrices) that can be used to easily prove
the special case.

Orthogonality of Distinct Eigenspaces

In Chapter 7, we were able to prove that two eigenvectors belonging to two distinct eigenspaces of a
symmetric matrix are in fact orthogonal under the ordinary dot product. It turns out that this is again a
special case of a more general phenomenon, and it is an easy consequence of the Main Spectral
Theorem:

Theorem: If v and w are vectors from two distinct eigenspaces of a normal n  n matrix A,
then v |w   0.

Proof: If A is normal, then A is unitarily diagonalizable by the Main Spectral Theorem. From our first
Theorem, we saw that we can find an orthonormal basis u1, u2, . . . , un  for n consisting of
eigenvectors of A.
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Thus, if we have two distinct eigenvalues 1 and 2, then, without loss of generality, we can write:

EigA,1   Spanuj1 , . . . , uj2 , and

EigA,2   Spanuj3 , . . . , uj4 ,

where j2  j3. Since the members of these two indicated sets of vectors are pairwise orthogonal, so
are any two vectors in their Spans. Thus two vectors from distinct eigenspaces are orthogonal.

The Spectral Theorems for Special Families

We can now state the Spectral Theorems for the special types of normal matrices. Let us begin with
our main goal, which is to tie up the loose end from Chapter 7:

Theorem — The Spectral Theorem for Real Symmetric Matrices:
An n  n real symmetric matrix A is orthogonally diagonalizable, and all of the
eigenvalues in the diagonal matrix D are pure real.

Proof: We already know that a real symmetric matrix is Hermitian, and from the previous section, all
of the eigenvalues of a Hermitian matrix are pure real. Now, the main Spectral Theorem only says
that A is diagonalizable by a unitary matrix U, that is, U could have imaginary entries.
But since all the entries of A are real, and the eigenvalues  are also real, then every In  A is also
real. Thus, the rref of In  A is also real, so we can find a basis for each eigenspace that consists of
vectors in n and not just n. By the (real) Gram-Schmidt Algorithm, we can again construct an
orthonormal basis for n consisting of eigenvectors of A. Thus, U can be constructed not just to be
unitary, but orthogonal.

Other Spectral Theorems follow directly from the main one, and our knowledge of the eigenvalues of
each matrix type that we saw in the previous Section:

Theorem — The Spectral Theorem for Hermitian Matrices:
An n  n Hermitian matrix A is unitarily diagonalizable, and all of the eigenvalues in the
diagonal matrix D are pure real.

Theorem — The Spectral Theorem for Skew-Hermitian Matrices:
An n  n Skew-Hermitian matrix A is unitarily diagonalizable, and all of the eigenvalues in
the diagonal matrix D are pure imaginary.

Theorem — The Spectral Theorem for Unitary Matrices:
An n  n unitary matrix A is unitarily diagonalizable, and all of the eigenvalues in the
diagonal matrix D are complex numbers of unit length.
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The Unitary Diagonalization Algorithm

Let us describe the steps to unitarily diagonalize an n  n normal matrix A:

1. Make sure that A is normal, that is, A  A  A  A.
2. Find the characteristic polynomial p  detIn  A.
3. Find the distinct eigenvalues of A from the characteristic polynomial, that is:

SpecA  1, 2, . . . , k 

4. For each eigenspace EigA, j, find a basis for this eigenspace by finding the nullspace of
 jIn  A using the Gauss-Jordan Algorithm with complex numbers.

5. For each eigenspace EigA, j, convert the basis from the previous step into an orthonormal
basis using the Gram-Schmidt Algorithm.

6. Assemble all the unit eigenvectors that you obtained for all the k eigenspaces into the columns of
the n  n unitary matrix:

U  u1 |u2 | |un ,

and assemble the n  n diagonal matrix:

D  Diag1, . . . , k ,

repeating the eigenvalue  i by its algebraic multiplicity. In other words, a double root should
appear twice, and so on.

7. We obtain the Schur decomposition: A  UDU  UDU1.

Example: Let us apply the algorithm above to:

A 

1 1 0
0 1 1
1 0 1

,

that we already know is normal from the previous Section. We get:

p 
  1 1 0

0   1 1
1 0   1

   13  1  3  32  3  2    22    1

We note that in this case, we were lucky that p had an integer root. In general, this will not be the
case for a 3  3 normal matrix. Using the quadratic formula, we get:

SpecA  2, 1
2  3

2 i, 1
2 

3
2 i .

Notice that we get 3 distinct eigenvalues, so each eigenspace is only 1-dimensional. Still, there is much
work to do. We find the matrices  jI3  A for each eigenvalue above, to get the three matrices:
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1 1 0
0 1 1
1 0 1

, with rref
1 0 1
0 1 1
0 0 0

;

 1
2  3

2 i 1 0

0  1
2  3

2 i 1

1 0  1
2  3

2 i

, with rref

1 0 1
2 

3
2 i

0 1 1
2  3

2 i

0 0 0

; and

 1
2 

3
2 i 1 0

0  1
2 

3
2 i 1

1 0  1
2 

3
2 i

, with rref

1 0 1
2  3

2 i

0 1 1
2 

3
2 i

0 0 0

.

We thus get a basis for each 1-dimensional eigenspace:

v1  1, 1, 1,

v2  1
2 1  3 i,1  3 i, 2 , and

v3  1
2 1  3 i,1  3 i, 2 .

One can quickly verify that:

v1 |v2   v1 |v3   v2 |v3   0,

hence we have an orthogonal set. Each of these vectors, by coincidence, has length 3 , so we just
divide each vector by 3 before we assemble them into the columns of our unitary matrix U. We
obtain:

U 

1
3
 1

2 3
 1

2 i  1
2 3

 1
2 i

1
3
 1

2 3
 1

2 i  1
2 3

 1
2 i

1
3

1
3

1
3

, and D 

2 0 0

0 1
2  3

2 i 0

0 0 1
2 

3
2 i

,

where A  UDU. 
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8.6 Section Summary

We say that two n  n complex matrices A and B are unitarily equivalent if there exists an n  n
unitary matrix U such that: B  U 1AU  UAU.

A is unitarily diagonalizable if A is unitarily equivalent to a diagonal matrix D.

Let A be an n  n complex matrices. Then: A is unitarily diagonalizable if and only if there is an
orthonormal basis for n consisting of eigenvectors of A.

Unitary equivalence is an equivalence relation: it is reflexive, symmetric, and transitive.

If an n  n complex matrix A is normal, then UAU is also normal for all unitary matrices U. In other
words, the property of being normal is preserved under unitary equivalence.

If v and w are from distinct eigenspaces of a normal n  n matrix A, then v |w   0. Thus, distinct
eigenspaces are orthogonal to each other.

The Spectral Theorem for Normal Matrices:
Let A be an n  n complex matrix. Then: A is unitarily diagonalizable if and only if A is
normal, that is, A  A  A  A.

The Spectral Theorem for Real Symmetric Matrices:
An n  n real symmetric matrix A is orthogonally diagonalizable, and the eigenvalues in
the diagonal matrix D are pure real.

The Spectral Theorem for Hermitian Matrices:
An n  n Hermitian matrix A is unitarily diagonalizable, and the eigenvalues in the
diagonal matrix D are pure real.

The Spectral Theorem for Skew-Hermitian Matrices:
An n  n Skew-Hermitian matrix A is unitarily diagonalizable, and all of the eigenvalues in
the diagonal matrix D are pure imaginary.

The Spectral Theorem for Unitary Matrices:
An n  n unitary matrix A is unitarily diagonalizable, and all of the eigenvalues in the
diagonal matrix D are complex numbers of unit length.

Schur’s Lemma: Let A be an n  n complex matrix. Then there exists a unitary matrix U and an
upper triangular complex matrix B so that A  UBU, or equivalently, B  UAU. We call the
factorization A  UBU the Schur Decomposition of A.

We unitarily diagonalize a normal matrix by finding an orthonormal basis for each eigenspace of A,
using a combination of the Gauss-Jordan Algorithm, followed by the Gram-Schmidt Algorithm if the
eigenspace is more than 1-dimensional. The unitary matrix U has for its columns the basis vectors for
the eigenspaces, and the diagonal matrix D has the corresponding eigenvalues along the diagonal.
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8.6 Exercises

For Exercises (1) to (15): Unitarily diagonalize, if possible, the matrix A in the corresponding Exercise
from Section 7.5. In other words, find a diagonal matrix D and a unitary matrix U such that
D  UAU, or explain why this is not possible.
16. The Pauli matrices: The matrices:

1  x 
0 1
1 0

, 2  y 
0 i
i 0

, and 3  z 
1 0
0 1

are known as the Pauli matrices, named after the physicist Wolfgang Pauli. They are important
in the field of Quantum Mechanics.
a. Identify the types of normal matrices that these belong to.
b. Unitarily diagonalize 1 and 2 (notice that 3 is already diagonal).
c. Show that x

2  y
2  z

2  I2.
d. Show that xy  z.
e. Show that zy  i  x.
f. Based on the previous two parts, guess and prove similar formulas for the four other

products ab where a and b are distinct members of x, y, z.

17. Prove that A 
3 7
0 2

is diagonalizable, but not unitarily diagonalizable. Hint: there are no

computations needed. Use Proof by Contradiction and a Theorem from the previous Section.

18. Give an example of a normal matrix, with at least one non-real entry, that is not diagonal,
Hermitian, skew-Hermitian or unitary.

19. Prove directly that eigenvectors from distinct eigenspaces of a Hermitian matrix are orthogonal.
Hint: mimic the proof in Chapter 7 for symmetric matrices by considering Tu |v  and
u |Tv , where u is an eigenvector for 1 and v is an eigenvector for 2, and 1  2.

20. Repeat Exercise 19 for Skew-Hermitian matrices.

21. Repeat Exercise 19 for unitary matrices. Further hint: recall that for eigenvalues of a unitary
matrix: 1  1  1  2  2.

22. Find all complex numbers a  bi such that
2 a  bi
i i

is a normal matrix.

23. Repeat the previous Exercise for
a  bi 2

1 i
.

24. Apply the Unitary Diagonalization Algorithm to the orthogonal rotation matrix:

rot 
cos  sin
sin cos

for any real number . In other words, find D and U such that rot  UDU.
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8.7 Simultaneous Diagonalization

We know that an n  n matrix A can be diagonalized if and only if there is a basis v1, v2,  , vn
for n consisting of eigenvectors for A. These vectors are assembled into the columns of an invertible
matrix, C  v1 v2 vn , and we get:

C1AC  Diag 1, 2,  , n   D,
a diagonal matrix containing the eigenvalues of A along the diagonal. In this Section, we will look at the
situation where A and B are diagonalizable n  n matrices, and we ask if we can find a single invertible
matrix C where both C1AC and C1BC are diagonal, although possibly with different eigenvalues.
This is a pretty tall order for A and B, and there is no clear condition as to when this is even possible.
We will therefore make the following:

Definition: Let A and B be n  n matrices. We say that A and B are simultaneously
diagonalizable if there exists an invertible matrix C such that:

C1AC  D1, and C1BC  D2,
where D1 and D2 are both diagonal matrices.

Now, recall that all n  n diagonal matrices commute. So, suppose that we were lucky, and A and B
are known to be simultaneously diagonalizable. In this case, with the notation above:

C1ACC1BC  D1  D2  D2  D1  C1BCC1AC
But by the Associative Property of Matrix Multiplication, we get:

C1ACC1BC  C1AC  C1 BC  C1ABC, and similarly,
C1BCC1AC  C1BC  C1 AC  C1BAC.

Thus, we can conclude that AB  BA, or in other words, A and B also commute.

The main Theorem for this Section is that the converse is also true: if AB  BA, and both A and B are
diagonalizable, then A and B are simultaneously diagonalizable. This is far from obvious. To prepare
ourselves to prove this Theorem, we need to understand the following construction involving direct
sums:

Diagonalizability of Direct Sums

Recall that in the Exercises of Sections 2.8, 2.9 and 5.3, we created the direct sum of two or more
matrices, and investigated their properties. We will now see when these matrices are diagonalizable:

Theorem: Let E1 be an n  n matrix and let E2 be an m  m matrix. Let us form the direct
sum of these two matrices, defined as the n  m  n  m matrix:

E  E1  E2 
E1 0nm

0mn E2
.

Then: E is diagonalizable if and only if both E1 and E2 are diagonalizable.
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As before, we say that E is in block diagonal form with blocks E1 and E2.

Proof: This Theorem almost sounds “obvious,” but actually it is not. The converse, though is indeed
obvious:
 Suppose E1 and E2 are both diagonalizable. Thus, there exist C1, an invertible n  n matrix, and
C2, invertible m  m matrix, such that:

C1
1E1C1  D1, and C2

1E2C2  D2,
where both D1 and D2 are diagonal matrices. Then, the matrix:

C  C1  C2 
C1 0nm

0mn C2
is invertible, with inverse: C1  C1

1  C2
1 

C1
1 0nm

0mn C2
1

.

This can be verified by checking that C  C1  Inm. But then, using the Exercises in Section 2.8:

C1EC 
C1
1 0nm

0mn C2
1

E1 0nm

0mn E2

C1 0nm

0mn C2


C1
1E1 0nm

0mn C2
1E2

C1 0nm

0mn C2


C1
1E1C1 0nm

0mn C2
1E2C2


D1 0nm

0mn D2
 D,

where D is diagonal. Thus E is diagonalizable.
 Now, suppose that E as constructed above is diagonalizable. We must show that the blocks E1
and E2 are diagonalizable. Since E is diagonalizable, there exists an n  m  n  m invertible
matrix C such that C1EC  D, where D contains 1, 2,  , nm, the eigenvalues of E, along the
diagonal.
The key idea here is that since C is invertible:

rankC  n  m.
Now, let us partition C into n  m columns but with two rows of vectors:

C  c1 c2  cnm 
v1 v2  vnm

w 1 w 2  w nm

where every vi  n and every w i  m. As usual, we can rewrite the diagonalization equation as
EC  C  Diag1, 2,  , nm , or in partitioned form:

E1 0nm

0mn E2

v1 v2  vnm

w 1 w 2  w nm


v1 v2  vnm

w 1 w 2  w nm

1 0 0 0
0 2 0 0
0 0  0
0 0 0 nm

.

Performing the block multiplications on each side, we conclude that:
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E1vi   ivi, and
E2w i   iw i, for all i  1. . n  m.

This means that every vi is an eigenvector for E1, and every w i is an eigenvector for E2.
Now, let us separate the top and bottom parts of C into two matrices:

C1  v1 v2  vnm , and

C2  w 1 w 2  w nm ,

where C1 is n  n  m and C2 is m  n  m. We mentioned that the key idea here is that
rankC  n  m. We will now exploit that fact to show that C1 and C2 contain a full set of
eigenvectors for E1 and E2, respectively, within its columns.
Since both n  n  m and m  n  m, we get:

rankC1   n and rankC2   m.
But notice that n is the number of rows of C1 and likewise m is the number of rows of C2. Thus, if
rankC1   n, then C1 will have fewer than n linearly independent rows. Similarly, if rankC2   m,
then C2 will have fewer than m linearly independent rows. Thus, if either situation occurs, than C will
have fewer than n  m linearly independent rows. But this is impossible because rankC  n  m.
Thus we can conclude that

rankC1   n and rankC2   m.
This means that C1 contains n linearly independent columns, and similarly C2 contains m linearly
independent columns. Since we have a full set of eigenvectors for both E1 and E2, they are both
diagonalizable.

By Induction, we can generalize the previous Theorem into the following:

Theorem: Let E1, E2, , Ek be square matrices, not necessarily of the same size. Then: the
matrix E formed as the direct sum of these k matrices:

E  E1  E2   Ek 

E1 0 0 0
0 E2 0 0
0 0  0
0 0 0 Ek

(where each zero matrix is of the appropriate size) is diagonalizable if and only if every
block E i is diagonalizable.

The Simultaneous Diagonalizability Theorem

Now we are ready to state the Main Theorem regarding simultaneous diagonalization:

Theorem — The Simultaneous Diagonalizability Theorem:
If A and B are both diagonalizable n  n matrices, then A and B are simultaneously
diagonalizable if and only if AB  BA.
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Proof: We already showed in the Introduction that the forward implication is true. Conversely,
suppose we are given that A and B are both diagonalizable and that AB  BA. We will show that A and
B are simultaneously diagonalizable by dividing our proof into two cases, based on the geometric
multiplicities of our matrices:
Case 1: Suppose that each eigenspace of either A or B has geometric multiplicity 1, that is, the
characteristic polynomial factors into n distinct linear factors. Since A has n distinct eigenvalues, we
know that A is diagonalizable. Suppose A has this quality,  is one of the eigenvalues of A, and v is an
associated eigenvector for A with respect to . Thus, Av  v.
Now, let us see what we can say about Bv. By the Associative Property of Matrix Multiplication:

ABv  ABv  BAv  BAv  Bv  Bv.
Notice it was crucial that AB  BA. This equation tells us:

ABv  Bv.

Thus, Bv  EigA,. It is possible, though, that Bv  0n. But in any case, since EigA, is
1-dimensional, this means that Bv is parallel to v, that is:

Bv  kv, for some k   (where k could be 0).
Since v is an eigenvector, it is a non-zero vector, so this equation says that v is likewise an eigenvector
for B, but for some (possibly different) eigenvalue k. Thus, every eigenvector for A is also an
eigenvector for B, and so any matrix C that diagonalizes A will also diagonalize B.
Case 2: Suppose that A and B both have an eigenspace with geometric multiplicity bigger then 1. We
know that A is diagonalizable, so suppose C is an invertible matrix such that

C1AC  D,
where D  Diag1, 2,  , n . By rearranging the columns of C if necessary, we may assume that
eigenvalues in D appear in monotonic increasing order:

1  2    n.
Thus, any repeated eigenvalues will all appear consecutively. Let us denote our distinct eigenvalues
as:

1
/  2

/    k
/ ,

where all we know is that 1  1
/ and n  k

/ . At this point, let us also state that
dim Eig A, i

/  n i, where n1  n2 nk  n. Now that we have our notation in order, let us
continue.
Although we know that C1AC is diagonal, we know nothing about C1BC, so let us give it a name,
say, E:

C1BC  E.
But now, solving for A and B, we get:

A  CDC1 and B  CEC1, so:
AB  CDC1 CEC1   CDEC1, and
BA  CEC1 CDC1   CEDC1.

Since AB  BA, we can therefore conclude that DE  ED.
Let us now investigate the implications of this equation. Since D is diagonal, we obtain DE by
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multiplying row i of E by  i, and we obtain ED by multiplying column j of E by  j. If we write
E  e i,j  as usual, in order to satisfy DE  ED, we must have for all i, j  1n :

DE i,j  ED i,j 

 ie i,j   je i,j 

 i   je i,j  0 

either  i   j or e i,j  0.
Since repeated eigenvalues are grouped together, this tells us that E is in block diagonal form:

E 

E1 0 0 0
0 E2 0 0
0 0  0
0 0 0 Ek

.

Each block E i corresponds to Eig A, i
/ , and has dimension n i  n i, and each 0 represents a zero

matrix of an appropriate size. Correspondingly, we can also express the diagonal matrix D also in
block diagonal form:

D 

1 0 0 0
0 2 0 0
0 0  0
0 0 0 k

where  i   i
/Ini . We note that it is appropriate that we use the symbol , which is the capital version

of .
Now, recall from the section on Similarity that diagonalizability is an invariant under similarity.
Thus, since B is diagonalizable, E is also diagonalizable. But according to our previous Theorem on
direct sums, this implies that every E i is diagonalizable. Thus for every E i, we can find an invertible
matrix G i with the same size as E i, such that G i

1E iG i  D i, a diagonal matrix. However, since
 i   i

/Ini , we get:

G i
1 iG i  G i

1 i
/Ini G i   i

/Ini   i

Thus, if we let G  G1  G2   Gk, then:

G1EG 

G1
1 0 0 0

0 G2
1 0 0

0 0  0
0 0 0 Gk

1

E1 0 0 0
0 E2 0 0
0 0  0
0 0 0 Ek

G1 0 0 0
0 G2 0 0
0 0  0
0 0 0 Gk



G1
1E1G1 0 0 0

0 G2
1E2G2 0 0

0 0  0
0 0 0 Gk

1EkGk



D1 0 0 0
0 D2 0 0
0 0  0
0 0 0 Dk

 D /, and

G1DG  D,
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with both D / and D diagonal. Thus, if we let H  CG, then:

H1AH  CG1ACG  G1C1ACG  G1DG  D, and

H1BH  CG1BCG  G1C1BCG  G1EG  D /.

A and B are therefore simultaneously diagonalizable, with diagonalizing matrix H for both.

Notice that the main idea in Case 1 was that every eigenvector of A is also an eigenvector of B, if each
eigenspace of A is one dimensional and AB  BA. Nowhere in Case 1 did we use the fact that B is also
diagonalizable. But in this case, if S  v1, v2,  , vn is a complete set of independent eigenvectors
for A, then S is also a complete set of eigenvectors for B. Thus, B is automatically diagonalizable as
well, and we can rephrase Case 1 into the following simpler version:

Theorem — The Simple Simultaneous Diagonalizability Theorem:
If A and B are both n  n matrices, A has n distinct eigenvalues and AB  BA, then A and B
are simultaneously diagonalizable, even if we do not know beforehand that B is
diagonalizable.

If we are in Case 2 of the Proof, we need two matrices, C and G, to obtain our final matrix H  CG.
Let us give these matrices special names:

Definition: In the notation of Case 2 of the Main Theorem, we call C the main factor, G the
secondary factor, and H  CG the simultaneous diagonalizing matrix for A and B.

There are many computational steps in the Proof of Main Theorem, including finding the characteristic
polynomials, finding eigenvalues (finding the roots of the characteristic polynomial, which may be
cubic or larger), finding a basis for each eigenspace of both matrices, multiplying matrices, assembling
the diagonalizing matrix C or H  CG, and finding inverses. If the student has sufficiently mastered all
these processes, it would be appropriate to use technology to perform these steps in the interest of
saving time and effort. In our examples, we will freely use technology to assist our computations. We
encourage the reader to experiment with technology and verify that our computations are correct.

Example: Consider the two matrices:

A 

22 42 9
17 33 7
30 60 13

, and B 

19 30 5
15 26 5
30 60 14

.

First, let us check that:

AB 

58 108 26
38 72 18
60 120 32

 BA.

Thus, the matrices commute. Notice that neither matrix is symmetric, so there is no guarantee that they
are both diagonalizable. Using some technology, we find that:
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pA  3  22  5  6    2  1  3, and

pB  3  72  8  16    1  42.
We see that the eigenvalues of A all have geometric multiplicity 1, and so we are in the Simple Case of
the Theorem. All we need is a basis for each eigenspace of A, which again we can find using some
technology:

Eig A,2  Span 1, 1, 2 ,
Eig A, 1  Span 2, 1, 0 , and
Eig A, 3  Span 3, 2, 3 .

Thus, we can let:

C 

1 2 3
1 1 2
2 0 3

, with C1 

3 6 1
1 3 1
2 4 1

.

We verify that:

C1AC 

3 6 1
1 3 1
2 4 1

22 42 9
17 33 7
30 60 13

1 2 3
1 1 2
2 0 3



2 0 0
0 1 0
0 0 3

, and

C1BC 

3 6 1
1 3 1
2 4 1

19 30 5
15 26 5
30 60 14

1 2 3
1 1 2
2 0 3



1 0 0
0 4 0
0 0 4

.

Thus, we have simultaneously diagonalized A and B. 

Example: Consider the two matrices:

A 

7 4 16
6 9 24
2 2 5

, and B 

19 10 10
20 11 10
10 5 6

.

Again, we first check that the two matrices commute:

AB 

53 34 14
54 39 6
28 17 10

 BA.

Their characteristics polynomials are:
pA  3  112  39  45    32  5, and

pB  3  22  7  4    12  4.
Since both matrices have a repeated eigenvalue, it is not obvious that they are diagonalizable. Again,
with the use of some technology, we get:
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Eig A, 3  Span 1, 1, 0, 4, 0, 1 ,
Eig A, 5  Span 2, 3, 1 ,

Eig B,1  Span 1, 2, 0, 1, 0, 2 , and
Eig B, 4  Span 2, 2, 1 .

Thus, both matrices are diagonalizable. This time, we are in Case 2 of the Proof because both matrices
have a 2-dimensional eigenspace. In our lists above, we deliberately arranged the eigenvalues of both
matrices in increasing order, as prescribed in the Proof. Choosing the eigenvectors of A in the order
stated, we assemble the main factor:

C 

1 4 2
1 0 3
0 1 1

, with inverse C1 

3 2 12
1 1 5
1 1 4

.

We check that:

C1AC 

3 2 12
1 1 5
1 1 4

7 4 16
6 9 24
2 2 5

1 4 2
1 0 3
0 1 1



3 0 0
0 3 0
0 0 5

, but

C1BC 

3 2 12
1 1 5
1 1 4

19 10 10
20 11 10
10 5 6

1 4 2
1 0 3
0 1 1



31 70 0
15 34 0

0 0 1

.

As predicted in the Proof, C1BC is not necessarily diagonal, but it is in block diagonal form. We
need only to diagonalize the block:

E1 
31 70
15 34

,

since the other block E2  1 is already diagonal. The characteristic polynomial of E1 is:

pE1    31  34  1570  2  3  4    1  4

Notice that the eigenvalue   1 already appears in E2. This should be the case because Eig B,1
is 2-dimensional. Continuing with the algorithm, we find the eigenvectors:

Eig E1,1  Span 7, 3 , and
Eig E1, 4  Span 2, 1 .

Thus, we get the diagonalizing matrix for E1:

G1 
7 2
3 1

, with inverse G1
1 

1 2
3 7

.

Although E2 is already diagonal, we still need G2  1 to “trivially” diagonalize E2. The next step of
the Proof says that we assemble the secondary factor as the direct sum:
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G  G1  G2 

7 2 0
3 1 0
0 0 1

, with inverse:

G1  G1
1  G2

1 

1 2 0
3 7 0
0 0 1

.

From this, we can construct the simultaneous diagonalizing matrix:

H  CG 

1 4 2
1 0 3
0 1 1

7 2 0
3 1 0
0 0 1



5 2 2
7 2 3
3 1 1

, with inverse:

H1  G1C1 

1 2 0
3 7 0
0 0 1

3 2 12
1 1 5
1 1 4



1 0 2
2 1 1
1 1 4

.

Finally, we can check that:

H1AH 

1 0 2
2 1 1
1 1 4

7 4 16
6 9 24
2 2 5

5 2 2
7 2 3
3 1 1



3 0 0
0 3 0
0 0 5

 D1, and

H1BH 

1 0 2
2 1 1
1 1 4

19 10 10
20 11 10
10 5 6

5 2 2
7 2 3
3 1 1



1 0 0
0 4 0
0 0 1

 D2.

Thus, both matrices have been diagonalized. Note, however, that the Proof only required that the
eigenvalues of A appear in increasing order in D1, but did not guarantee this ordering in D2. 

The Symmetric Case

In the special case that A and B are symmetric matrices, then we know from the Spectral Theorem that
they are automatically diagonalizable. Furthermore, for each matrix, we can choose our diagonalizing
matrix Q to be an orthogonal matrix, that is, Q1  Q. It is therefore natural to wonder if we can
simultaneously orthogonally diagonalize A and B, that is, can we find an orthogonal matrix Q such that
QAQ  D1 and QBQ  D2, where D1 and D2 are both diagonal matrices. The following should not
be a surprise:

Theorem — The Simultaneous Orthogonal Diagonalizability Theorem for
Symmetric Matrices:

If A and B are both symmetric n  n matrices, then they are simultaneously orthogonally
diagonalizable if and only if AB  BA.
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The Proof is an easy modification of that for our Main Theorem, and will be outlined in the Exercises.
The ideas behind it will be seen in the Example below.

Example: Consider the two matrices:

A 

0 2 0 2
2 1 2 1
0 2 2 2
2 1 2 1

, and B 

15 8 16 40
8 17 32 8
16 32 31 16
40 8 16 15

.

Both are obviously symmetric, hence orthogonally diagonalizable, but we still have to check that:

AB 

96 50 32 14
50 23 46 105
32 46 158 78
14 105 78 41

 BA.

Their characteristics polynomials are:
pA  4  43  122  32  64    42  22, and

pB  4  443  31462  79860  3294225    552  332.

Since we are certain that both matrices are diagonalizable, we only need to find eigenspaces for one of
them to construct the main factor C. Although they both have two 2-dimensional eigenspaces, A has
smaller eigenvalues, so we find:

Eig A,4  Span 1, 2, 2, 0, 1,1, 0, 1 , and
Eig A, 2  Span 2,2, 1, 0, 2,1, 0, 1 .

We apply the Gram-Schmidt Algorithm to our basis for each eigenspace. For EigA,4:

v1  1, 2, 2, 0, and

v2  1,1, 0, 1  1,1, 0, 1  1, 2, 2, 0
1, 2, 2, 0  1, 2, 2, 0 

1, 2, 2, 0

 1,1, 0, 1  3
9 1, 2, 2, 0  1

3 2,1, 2, 3,

so we shall use v2  2,1, 2, 3. For EigA, 2:

v3  2,2, 1, 0, and

v4  2,1, 0, 1  2,1, 0, 1  2,2, 1, 0
2,2, 1, 0  2,2, 1, 0 

2,2, 1, 0

 2,1, 0, 1  6
9 2,2, 1, 0  1

3 2, 1,2, 3,

so we shall use v4  2, 1,2, 3. A quick check shows that:

S   1, 2, 2, 0, 2,1, 2, 3, 2,2, 1, 0, 2, 1,2, 3 

is an orthogonal set. These vectors have lengths 3, 3 2 , 3, and 3 2 , respectively.
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Thus, our main factor will be:

C 

1
3

2
3 2

2
3

2
3 2

2
3

1
3 2

2
3

1
3 2

2
3

2
3 2

1
3

2
3 2

0 1
2

0 1
2

, with C1  C 

1
3

2
3

2
3 0

2
3 2

1
3 2

2
3 2

1
2

2
3

2
3

1
3 0

2
3 2

1
3 2

2
3 2

1
2

We check that:

CAC 

4 0 0 0
0 4 0 0
0 0 2 0
0 0 0 2

, but CBC 

 77
3  88 2

3 0 0

 88 2
3

11
3 0 0

0 0 35
3  80 2

3

0 0  80 2
3  101

3

.

As expected, we were not guaranteed that QBQ is diagonal, but it is symmetric because B is
symmetric. Therefore, each block in this matrix is likewise symmetric. We will orthogonally
diagonalize each 2  2 block:

E1 
 77

3  88 2
3

 88 2
3

11
3

, with eigenspaces:

Eig E1, 33  Span 2 ,2  Span 1
3

, 2
6

, and

Eig E1,55  Span 2 , 1  Span 2
6

, 1
3

;

E2 
35
3  80 2

3

 80 2
3  101

3

, with eigenspaces:

Eig E1, 33  Span 5 2 ,4  Span 5
33

, 4
66

, and

Eig E1,55  Span 2 2 , 5  Span 4
66

, 5
33

.

Notice that the eigenspaces are 1-dimensional, and we found bases containing a unit vector. Thus, the
blocks are orthogonally diagonalizable using:

G1 

1
3

2
6

2
6

1
3

, with inverse G1
1  G1

 

1
3

2
6

2
6

1
3

, and

G2 

5
33

4
66

4
66

5
33

, with inverse G2
1  G2

 

5
33

4
66

4
66

5
33

.
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We assemble our secondary matrix (which is also orthogonal), G  G1  G2, with inverse
G1  G  G1

  G2
:

G 

1
3

2
6

0 0
2

6
1
3

0 0

0 0 5
33

4
66

0 0 4
66

5
33

and G1 

1
3

2
6

0 0
2
6

1
3

0 0

0 0 5
33

4
66

0 0 4
66

5
33

.

Our simultaneous orthogonal diagonalizing matrix Q is thus:

Q  CG 

1
3

2
3 2

2
3

2
3 2

2
3

1
3 2

2
3

1
3 2

2
3

2
3 2

1
3

2
3 2

0 1
2

0 1
2

1
3

2
6

0 0
2

6
1
3

0 0

0 0 5
33

4
66

0 0 4
66

5
33



1
3

0 2
33

6
66

1
3

1
6

4
33

1
66

0 2
6

3
33

2
66

1
3

1
6

2
33

5
66

, with inverse:

Q1  Q 

1
3

1
3

0 1
3

0 1
6

2
6

1
6

2
33

4
33

3
33

2
33

6
66

1
66

2
66

5
66

Finally, we verify that:

QAQ 

4 0 0 0
0 4 0 0
0 0 2 0
0 0 0 2

, and QAQ 

33 0 0 0
0 55 0 0
0 0 33 0
0 0 0 55

.

Again, only the eigenvalues of A were guaranteed to appear in increasing order, but not the eigenvalues
of B. 
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In closing, we know that there is a one-to-one correspondence between operators T on n, and n  n
matrices A  T, where matrix multiplication corresponds to the composition of transformations. We
also know that if S  w 1, w 2,  , w n is any basis for n, then Section 6.4 tells us that:

TS  S1TS,

where S  w 1 w 2 w n , as usual. In other words, S is the change of basis matrix that
transforms T to TS.

Let us now rephrase our Theorems in the language of operators:

Theorem — The Simultaneous Diagonalizability Theorem for Operators:
Suppose that T1 and T2 are operators on n.

If one of the operators, say T1, has n distinct eigenvalues, and T1  T2  T2  T1, then the set
of eigenvectors B  w 1, w 2,  , w n for T1, made by choosing one eigenvector from each
1-dimensional eigenspace of T1, is also a set of eigenvectors for T2.

More generally, suppose there exists a basis S1  u1, u2,  , un for n consisting of
eigenvectors for T1, and another basis S2  v1, v2,  , vn for n consisting of
eigenvectors for T2, where the eigenspaces may have a dimension bigger than 1.

Then: T1  T2  T2  T1, that is, the operators commute, if and only if there exists a basis
S  w 1, w 2,  , w n for n consisting of eigenvectors for both T1 and T2. In this case,
T1w i    iw i and T2w i   iw i, for some eigenvalues 1, 2,  , n for T1, and
eigenvalues 1, 2,  , n for T2, and for all i  1n. Thus:

T1 S  Diag 1, 2,  , n , and

T2 S  Diag 1, 2,  , n .

Moreover, if S1 and S2 can both be chosen to be orthogonal bases for n, then another
orthogonal basis S  w 1, w 2,  , w n exists consisting of eigenvectors for both T1 and T2.

8.7 Section Summary

Let A and B be n  n matrices. We say that A and B are simultaneously diagonalizable if there exists
an invertible matrix C such that C1AC  D1, and C1BC  D2, where D1 and D2 are both diagonal
matrices.

Let E1, E2, , Ek be square matrices, not necessarily of the same size. Then: the matrix
E  E1  E2   Ek is diagonalizable if and only if every block E i is diagonalizable.

The Simultaneous Diagonalizability Theorem: If A and B are both diagonalizable n  n matrices,
then A and B are simultaneously diagonalizable if and only if AB  BA.

If A and B are both n  n matrices, A has n distinct eigenvalues and AB  BA, then A and B are
simultaneously diagonalizable, even if we do not know beforehand that B is diagonalizable.

If A and B are both symmetric n  n matrices, then they are simultaneously orthogonally
diagonalizable if and only if AB  BA.

These Theorems can also be stated in the language of operators, as shown above.
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8.7 Exercises

For Exercises (1) to (14): The goal is to simultaneously diagonalize A and B in each of the following
problems using the same invertible matrix C. Verify first that AB  BA. Find the characteristic
polynomial of both matrices and find all the eigenvalues. If one of the matrices has only 1-dimensional
eigenspaces, diagonalize both matrices using the eigenvectors of that matrix, as in Case 1 of the proof.
If both matrices have an eigenspace which is at least 2-dimensional, use Case 2 of the proof to find the
diagonalizing matrix H  CG (and for the sake of uniformity, use the eigenvectors of A to construct C,
and arrange them in order of increasing eigenvalues as is done in the proof. If both A and B are
symmetric, construct C to be an orthogonal matrix, as in the last Example. We strongly recommend
the use of technology to assist in the computations. We note, though, that some packages do not use
the Gauss-Jordan Algorithm to find a basis for the nullspace, and consequently eigenvectors, and so the
simultaneous diagonalizing matrix that you obtain may be different from that in the Answer Key.
However, the final diagonal matrices (i.e. containing the eigenvalues) should be the same, up to
ordering.

1. A 

21 32 16
14 20 11
4 2 3

, B 

7 12 6
9 14 6
9 12 4

2. A 

9 8 16
12 5 16
12 8 19

, B 

12 10 20
23 7 28
19 10 27

3. A 

23 20 40
10 7 20
10 10 17

, B 

4 9 9
3 8 3
3 3 8

4. A 

11 8 8
4 1 4
6 6 3

, B 

9 14 28
7 2 14
7 7 19

5. A 

2 10 20
10 13 10
20 10 2

, B 

10 4 19
4 43 4

19 4 10

6. A 

2 2 4
2 1 2
4 2 2

, B 

41 16 4
16 19 16
4 16 41
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7. A 

3 2 1
2 0 2
1 2 3

, B 

1 0 5
0 6 0
5 0 1

8. A 

16 10 13 38
20 6 15 40
44 10 35 88
29 10 23 61

, B 

7 6 5 16
12 5 9 24
28 6 24 56
16 6 13 33

9. A 

58 8 12 16
8 47 10 27
12 10 4 2
16 27 2 23

, B 

4 10 0 10
10 9 10 5

0 10 14 10
10 5 10 9

10. A 

15 10 10 4
14 12 10 2
3 0 2 6
7 5 5 1

, B 

7 0 0 8
8 1 0 8
4 4 3 0
4 0 0 5

11. A 

4 1 3 2
1 4 3 2
3 3 4 6
2 2 6 1

, B 

2 1 0 1
1 1 1 0
0 1 2 1
1 0 1 1

12. A 

9 9 12 3 15
9 29 8 23 15

12 8 56 4 0
3 23 4 41 15

15 15 0 15 45

, B 

11 9 12 3 15
9 9 8 23 15

12 8 16 16 20
3 23 16 1 5

15 15 20 5 5

13. A 

25 10 5 5 10
10 4 2 2 4
5 2 1 1 2
5 2 1 1 2

10 4 2 2 4

, B 

2 2 1 1 2
2 2 1 1 2
1 1 4 3 1
1 1 3 4 1
2 2 1 1 2
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14. A 

54 162 13 22 64 61
0 22 7 24 12 9
30 80 10 0 30 30
13 40 3 7 16 15
45 116 17 2 43 43
2 42 11 40 22 17

, B 

56 168 16 16 64 64
9 41 2 6 12 18
27 74 8 6 30 27
14 42 4 4 16 16
40 106 12 8 44 38
17 72 4 10 22 31

15. Prove the following subtle relaxation of our Theorem on symmetric matrices: Suppose that A is a
symmetric matrix, B is a diagonalizable matrix, and AB  BA. Prove that B is also symmetric.

16. In Exercise 43 of Section 3.4, we defined the centralizer of a matrix A as the set:

CentralizerA  B  Matn | AB  BA .
In other words, CentralizerA consists of all the matrices B that commute with A. In that
Exercise, we saw that CentralizerA is always a subspace of the space of all n  n matrices, and
it is an infinite set containing all multiples of In.
a. Let B1 and B2 be from CentralizerA. Prove that B1B2 and B2B1 are also in

CentralizerA.
Now, suppose that A has distinct eigenvalues.

b. Prove that B1B2  B2B1. Hint: review the proof of Case 1 of our main theorem in this
Section.

c. If B is an invertible matrix from CentralizerA, prove that B1 is also in CentralizerA.
This Exercise shows that the invertible matrices in CentralizerA form a commutative or
abelian group under matrix multiplication.

17. The goal of this Exercise is to mimic the Proof of the Simultaneous Diagonalizability Theorem to
prove the Simultaneous Orthogonal Diagonalizability Theorem for Symmetric Matrices. Assume
that both A and B are n  n symmetric matrices.
a. What does the Spectral Theorem tell us about symmetric matrices?
b. What do we know about the product of two n  n orthogonal matrices?
c. What do we know about the direct sum of two orthogonal matrices (not necessarily of the

same size)?
d. Show that if A has n distinct eigenvalues, then the matrix C in Case 1 of the Proof can be

chosen to be an orthogonal matrix Q. Explain why Q also diagonalizes B if AB  BA. This
takes care of Case 1 of the Proof.

e. Now, suppose A has eigenspaces of dimension 2 or more. Explain how to produce an
orthogonal basis for each eigenspace.

f. Explain how to produce an orthogonal matrix Q (the main factor) and a diagonal matrix D
such that QAQ  D, and the diagonal entries in D are in increasing order.

g. Explain why QBQ is again in block diagonal form and is also a symmetric matrix. What
can we also say about each block of QBQ?

h. Explain how to produce an orthogonal set of eigenvectors for each block of QBQ.
i. Explain how to obtain the secondary factor G, where G is also an orthogonal matrix.
j. Explain how to obtain the orthogonal diagonalizing matrix H, such that HAH and HBH

are both diagonal.

750 Section 8.7 Simultaneous Diagonalization



A Summary of Chapter 8

The set of all complex numbers:   a  bi |a, b  , is constructed using the imaginary unit
i  1 .  and  are examples of a field, a set upon which we define an addition and a multiplication,
such that the 11 field axioms are satisfied.
Complex Euclidean n-Space, n    z1, z2, . . . , zn  |z i   , is the basic example of a vector space
over . Other examples of vector spaces over  are n and Mat, m, n.
The following terms can be defined for vector spaces over :
the Span of a set of vectors; the linear combinations of a set of vectors; linear dependence or
independence of a set of vectors; a basis for a vector space; the dimension of a vector space; a
subspace of a vector space; matrix arithmetic: addition, subtraction, multiplication, finding
determinants and inverses of square matrices, when they exist; a linear transformation from one
complex vector space to another; the matrix of a linear transformation from n to m; the kernel,
range, nullity and rank of a complex linear transformation; one-to-one linear transformations, onto
linear transformations, and isomorphisms; the characteristic polynomial of an n  n complex matrix;
the eigenvalues and associated eigenvectors of an n  n complex matrix; the diagonalizability of an
n  n complex matrix.
Let z   z1, z2, . . . , zn , w  w1, w2, . . . , wn   n. We define their Complex Euclidean inner
product, or simply their inner product, by: z|w   z  w  z1w1  z2w2   znwn.
Let z, w, u  n, and k  . Under the complex inner product, the following properties are true:
1. The Hermitian-Symmetry Property:  z|w   w |z 
2. The Left Homogeneity Property: k  z|w   k   z|w 
3. The Left Additivity Property: u  v |w   u |w   v |w 
4. The Positivity Property: If z  0n , then  z|z   0.

A complex vector space V is a complex inner product space under a bilinear form  |  if the above
four axioms are satisfied by  | . The following properties also hold in a complex inner product space:
1. The Right Additivity Property:  z|w  u    z|w    z|u 
2. The Right Conjugate-Homogeneity Property:  z|k  w   k   z|w 
3. The Inner Product with the Zero Vector Property: z|0V  0  0V |z .

We can define the following concepts for complex inner product spaces:
 the length of a vector: z   z|z  .
 the distance between two vectors: d  z, w   z  w.
 orthogonality: z is orthogonal to w if and only if  z|w   0.
 orthogonal and orthonormal sets of vectors.
 the applicability of the Gram-Schmidt Algorithm.
 the orthogonal complement W of a subspace W of V.

Let T : V  V be a linear operator on a (possibly infinite-dimensional) complex vector space V. The
spectrum of T, denoted SpecT is the set of all eigenvalues of T.
Let A be an n  n complex matrix. We define the adjoint of A as: A  A. If T : n  n is a linear
operator with standard matrix T, then T is the linear operator on n such that T   T.
A is Hermitian if A  A, or analogously: Tv  |w   v |Tw   for all v, w  n.
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A is Skew-Hermitian if A  A, or analogously: Tv , w    v |Tw   for all v, w  n.
A is unitary if A  A  In, or analogously: v | w  Tv  | Tw  for all v, w  n.

A is normal if A  A  A  A. All matrix types shown above are normal matrices, as are diagonal
complex matrices. However, some normal matrices do not fall into any of these four categories.
Hermitian and Skew-Hermitian matrices are closed under addition, multiplication by a pure real
number, the transpose operation and the adjoint operation. However, unitary matrices have
multiplicative properties.
Eigenvalues of special normal matrices: If  is an eigenvalue of a normal matrix A, then: (1)  is a
pure real number if A is Hermitian. (2)  is a pure imaginary number if A is Skew-Hermitian. (3)
  1 if A is unitary.
We say that two n  n complex matrices A and B are unitarily equivalent if there exists an n  n
unitary matrix U such that: B  U 1AU  UAU.
A is unitarily diagonalizable if A is unitarily equivalent to a diagonal matrix D.
Let A be an n  n complex matrices. Then: A is unitarily diagonalizable if and only if there is an
orthonormal basis for n consisting of eigenvectors of A.
Unitary equivalence is an equivalence relation: it is reflexive, symmetric, and transitive.
If an n  n complex matrix A is normal, then UAU is also normal for all unitary matrices U. In other
words, the property of being normal is preserved under unitary equivalence.
If v and w are from distinct eigenspaces of a normal n  n matrix A, then v |w   0. Thus, distinct
eigenspaces are orthogonal to each other.
Schur’s Lemma: Let A be an n  n complex matrix. Then there exists a unitary matrix U and an
upper triangular complex matrix B so that A  UBU, or equivalently, B  UAU. We call the
factorization A  UBU the Schur Decomposition of A.
The Spectral Theorem for Normal Matrices: Let A be an n  n complex matrix. Then: A is unitarily
diagonalizable if and only if A is normal, that is, A  A  A  A. More specific versions can be
stated for the families of symmetric, Hermitian, Skew-Hermitian, and unitary matrices.
We unitarily diagonalize a normal matrix by finding an orthonormal basis for each eigenspace of A,
using a combination of the Gauss-Jordan Algorithm, followed by the Gram-Schmidt Algorithm if the
eigenspace is more than 1-dimensional. The unitary matrix U has for its columns the basis vectors for
the eigenspaces, and the diagonal matrix D has the corresponding eigenvalues along the diagonal.
Let A and B be n  n matrices. We say that A and B are simultaneously diagonalizable if there exists
an invertible matrix C such that C1AC  D1, and C1BC  D2, where D1 and D2 are both diagonal
matrices.
Let E1, E2, , Ek be square matrices, not necessarily of the same size. Then: the matrix
E  E1  E2   Ek is diagonalizable if and only if every block E i is diagonalizable.
The Simultaneous Diagonalizability Theorem: If A and B are both diagonalizable n  n matrices,
then A and B are simultaneously diagonalizable if and only if AB  BA.
If A and B are both n  n matrices, A has n distinct eigenvalues and AB  BA, then A and B are
simultaneously diagonalizable, even if we do not know beforehand that B is diagonalizable.
If A and B are both symmetric n  n matrices, then they are simultaneously orthogonally
diagonalizable if and only if AB  BA.
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Chapter 9
The Big Picture:

The Fundamental Theorem of
Linear Algebra and Applications

Linear Algebra is a powerful tool in science and engineering. We will see in this Chapter how systems
of linear equations naturally occur in fields such as chemistry and physics, particularly in balancing
chemical equations and studying the current flowing through resistors in simple circuits.

Eigentheory can be used to find closed formulas for the terms of a recursive sequence. Not
surprisingly, some differential equations can be solved using a similar idea.
The main goal of this Chapter is to present The Fundamental Theorem of Linear Algebra and its
fraternal twin The Singular Value Decomposition. The latter has incredible applications in modern
data processing, particularly by taming the high-volume demands of the Internet.
In order to fully appreciate these constructions, though, we need to discuss the theory of Quadratic
Forms, particularly that of Positive Definite and Semi-Definite forms and matrices. We will see that
matrices which are of the form A  A are not just symmetric, but that all of its eigenvalues are
non-negative real numbers.
As a bonus, we apply this theory to a more pedestrian application, which is to rotate a general quadratic
equation in two variables so that we can recognize its graph as one of the conic sections. We will also
see an alternative to solving the least-squares problem.
The Portrait of Linear Algebra that we have painted is by no means a complete one, nor is it the only
possible way to capture the soul of its subject. The Fundamental Theorem of Linear Algebra, however,
pulls together the major concepts that we have encountered on our journey: rowspaces, columnspaces,
nullspaces, isomorphisms, eigenspaces and orthogonality. It is a fitting climax to our story.
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9.1 Balancing Chemical Equations

A chemical reaction is a process by which substances called reactants, which are either atoms (also
known as elements) or molecules (also known as compounds), break some of their bonds and
recombine with each other in order to form new substances called products.

We show below a short list of atoms which appear in common chemical reactions. Some atoms such as
Helium (He) and Krypton (Kr) are not included on this list because they are inert, that is, they do not
naturally bind with other elements to form compounds. The periodic table of the elements, which is
easily found on the Web, shows the complete list of atoms and their chemical symbols.

Atomic
Number

Name Symbol

1 Hydrogen H
3 Lithium Li
4 Beryllium Be
5 Boron B
6 Carbon C
7 Nitrogen N
8 Oxygen O
9 Fluorine F

11 Sodium Na
12 Magnesium Mg
13 Aluminium Al
14 Silicon Si
15 Phosphorus P
16 Sulfur S

Atomic
Number

Name Symbol

17 Chlorine Cl
19 Potassium K
20 Calcium Ca
21 Scandium Sc
22 Titanium Ti
23 Vanadium V
24 Chromium Cr
25 Manganese Mn
26 Iron Fe
27 Cobalt Co
28 Nickel Ni
29 Copper Cu
30 Zinc Zn
31 Gallium Ga

Some Common Elements, Their Atomic Numbers and Symbols

Molecules are written using the chemical symbols for each element with subscripts denoting the
number of atoms of that element appearing in the molecule. Chemists have their own system of
nomenclature, that is, the naming compounds and parts of compounds. We will not get into this
nomenclature, as it is not relevant to our goal.
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A chemical equation symbolically describes the reaction, where the reactants are written on the left
side, separated by “” signs, and the products are written on the right side, again separated by “”
signs, if there are more than one of them. A right arrow “” separates the reactants from the products,
and indicates that a chemical reaction has taken place. An equation is called balanced if exactly the
same number of atoms of each element is found on each side of the equation, otherwise the equation is
called unbalanced.

The goal of this application is to show how to balance an unbalanced chemical equation by solving a
homogeneous system of linear equations.

Example: One of the simplest chemical reactions that we can easily understand is the combination of
hydrogen and oxygen gases to form water:

H2  O2  H2O.

Notice that there are two oxygen atoms in an oxygen molecule, but only one oxygen atom is in a water
molecule. This equation is therefore unbalanced. Since we need two oxygen atoms on the right, we
will put a coefficient of 2 on the left of our water molecule. Thus we get:

H2  O2  2H2O.

However, we now have the side-effect of having four hydrogen atoms on the product side. But we can
easily fix that on the reactant side:

2H2  O2  2H2O.

This equation is now balanced, since the number of atoms of each element are the same on both sides
of the equation.

Obviously, reactions can be very complicated and involve several elements and subscripts. It is also
possible that the same element appears in several reactants and/or several products. Thus we need a
systematic way by which we can find the correct coefficients of each substance involved in the
reaction. Linear Algebra can help us balance chemical reactions by solving a system of linear equations
involving the unknown coefficients of each substance involved.

Example: Let us demonstrate how to use a system of equations on our example above. We will simply
put an unknown coefficient in front of each substance:

x1  H2  x2  O2  x3  H2O.

Now, each element will give us an equation involving our coefficients. We simply have to require that
the total number of that element on each side of the equation is the same, keeping the subscripts into
account:

2x1  0x2  2x3 for Hydrogen, and
0x1  2x2  x3 for Oxygen.

Notice that we get the homogeneous, underdetermined system of linear equations:
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2x1  0x2  2x3  0, and
0x1  2x2  x3  0.

There will thus be an infinite number of solutions to this system, but we want the solution with integer
values for all the coefficients, which are as small as possible. In practice, we should find the rref of this
system, but our system is simple enough that we can see that:

x1  x3  2x2,

gives us all solutions, with one free variable x3. But to get a solution with integer values, we use
x2  1, and thus x1  x3  2, giving us exactly the balanced equation we saw above.

Let us see more complicated reactions:

Example: Let us consider the reaction where ethane and oxygen gas (what animals inhale) combine to
create carbon dioxide gas (what animals exhale) and steam (water):

C2H6  O2  CO2  H2O.

There are two substances in the reactant side and two also on the product side. There are three
elements involved: Carbon (C), Hydrogen (H) and Oxygen (O). Let us put a coefficient beside each
substance:

x1  C2H6  x2  O2  x3  CO2  x4  H2O.

Let us count the number of atoms of each element, excluding the coefficients which do not contribute
to that element:

2x1  x3 for Carbon,
6x1  2x4 for Hydrogen, and
2x2  2x3  x4 for Oxygen.

Converting this to a homogeneous system of equations, we get:

2x1  x3  0
6x1  2x4  0

2x2  2x3  x4  0

The coefficient matrix and its rref are:

2 0 1 0
6 0 0 2
0 2 2 1

with rref

1 0 0  1
3

0 1 0  7
6

0 0 1  2
3

.

We thus get one free variable, x4, and a basis for our nullspace is:

1/3, 7/6, 2/3, 1 or 2, 7, 4, 6,

by clearing denominators. Thus, we get our coefficients and our balanced equation:
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2C2H6  7O2  4CO2  6H2O,

which can be verified to be numerically correct.

Some groups of atoms within a reactant can stay together during the reaction. We show in the table
below some common examples:

Name of Group Symbol for the Group

hydroxide OH
cyanide CN
nitrate NO3

phosphate PO4

sulphate SO4

Some Common Molecular Groups

When groups appear in a reaction, we can sometimes replace these groups with a new symbol, like Y
or Z, and balance the equation using these group symbols. However, we warn that this technique
should not be used if a group is the only source of an element which appears in another product that
does not contain this group.

Example: Consider the reaction:

Ba NO3 2
 Al2 SO4 3

 BaSO4  Al NO3 3
.

We will keep barium (Ba) and aluminum (Al), but replace the nitrate and sulphate groups with Y and
Z respectively. Let us set up our coefficients and new group symbols:

x1  BaY2  x2  Al2Z3  x3  BaZ  x4  AlY3.

Our system of equations is:

x1  x3 for Barium,
2x2  x4 for Aluminum
2x1  3x4 for Nitrate (Y)
3x2  x3 for Sulphate (Z).

Thus our homogenous system is:

x1  x3  0
2x2  x4  0

2x1  3x4  0
3x2  x3  0

.
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The coefficient matrix and its rref are:

1 0 1 0
0 2 0 1
2 0 0 3
0 3 1 0

with rref

1 0 0  3
2

0 1 0  1
2

0 0 1  3
2

0 0 0 0

.

We thus get one free variable, x4, and a basis for our nullspace is:

3/2, 1/2, 3/2, 1 or 3, 1, 3, 2,

by clearing denominators. Thus, we get our coefficients and our balanced equation:

3Ba NO3 2
 Al2 SO4 3

 3BaSO4  2Al NO3 3
,

which can be verified to be correct.

Notice that in this Example, we had four linear equations in four variables, and it was not clear that we
would get a dependent system. However, since we knew for certain that this reaction does indeed
occur, then there has to be a nontrivial solution, that is, we must have a free variable, and therefore a
row of zeroes must appear in the rref.

9.1 Exercises

Balance the following chemical equations using a homogeneous system of equations:

1. Fe  O2  Fe2O3

(iron and oxygen combine to form iron oxide or rust)

2. Cl2O5  H2O  HClO3

(dichloride pentoxide and water combine to form chloric acid)

3. V2O5  H2  V2O3  H2O

(vanadium pentoxide and hydrogen gas combine to form vanadium trioxide and water)

4. NH3  O2  NOH2O

(ammonia and oxygen combine to form nitric oxide and water)

5. CaO  P4O10  Ca3 PO4 2

(calcium oxide and tetraphosphorus decoxide combine to form calcium phosphate)

6. C3H8  O2  CO2  H2O

(propane and oxygen combine to form carbon dioxide and water)

7. I2  Na2S2O3  NaI  Na2S4O6

(iodide and sodium thiosulphate combine to form sodium iodide and sodium tetrathionate)
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8. (NH4)2CO3  NH3  CO2  H2O

(ammonium carbonate decomposes into ammonia, carbon dioxide and water)

9. C4H10  O2  CO2  H2O

(butane and oxygen combine to produce carbon dioxide and water)

10. CH3OH  O2  CO2  H2O

(methanol and oxygen combine to produce carbon dioxide and water)

Some parts of the following reactions can be replaced with groups:

11. Pb  PbO2  H2SO4  PbSO4  H2O

(free lead, lead dioxide and sulfuric acid combine to form lead sulfate and water)

12. Ca OH
2
 H3PO4  Ca3 PO4 2

 H2O

(calcium hydroxide and phosphoric acid combine to form calcium phosphate and water; there is
only one group in this reaction)

13. Fe2O3  H2SO4  Fe2 SO4 3
 H2O

(iron oxide and sulfuric acid combine to form iron sulfite and water)

14. Zn OH
2
 H3PO4  Zn3 PO4 2

 H2O

(zinc hydroxide and phosphoric acid combine to form zinc phosphate and water)

There are two groups in each of the following reactions:

15. H3PO4  NaCN  HCN  Na3PO4

(phosphoric acid and sodium cyanide combine to form hydrogen cyanide and sodium phosphate)

16. Fe2(SO4)3  KSCN  K3Fe(SCN)6  K2SO4

(iron sulphate combines with potassium thiocyanate to form alum and potassium sulfate)
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9.2 Basic Circuit Analysis

In this Section, we will see how systems of linear equations naturally appear in the study of simple
electrical circuits. We will look at circuits which only involve a constant voltage source (such as a
battery), resistors, and wires of negligible resistance. We will also limit our analysis to planar circuits,
that is, circuits where wires do not have to cross each other except at a connecting node, and so the
circuit can be assembled on a plane.

The simplest kind of electric circuit involves a single battery, a single resistor, and connecting wires. A
battery is often denoted by the symbol E, which stands for electromotive force or emf. Its voltage,
which is assumed to be constant, is measured in volts, abbreviated as V. Resistors are denoted by the
symbol R, and we use the unit of ohms (with symbol ) to measure resistance. For example, we could
have:

 

E   20 V R = 2 



.




I

I

I

.

I

A Simple Electrical Circuit

The battery, wires and resistor form a single loop or mesh. When the circuit is complete, electrons
flow from the negative end of the battery to the positive end, and go around in the circuit, creating a
current, denoted by the symbol I. Due to the orientation of the battery, the current above goes
clockwise. The current goes through the resistor, which releases the energy as heat. Current is
measured in the unit of amperes, with symbol A.
The quantities E, R and I are related by Ohm’s Law:

E  IR.
Thus, in our circuit above:

I  E
R 

10 V
2 

 5 A.

The analysis of course becomes more complicated if we add more components to our circuit.
Components are joined together at nodes, often by soldering, or through the built-in connections in a
circuit board. For example, we can attach a 3  resistor to our circuit in essentially two different ways.
The first way, shown below, is called a series configuration:
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10 V R1 = 2 

I

I
I

I

R2 = 3 

.
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Two Resistors in Series

Notice that our new circuit still consists of a single loop, but the current I now goes through two
resistors R1 and R2. We should therefore expect a different value for I. In order to find it, we will need
a couple of ideas. First, Ohm’s Law can be applied to each resistor. We can think of the current as a
river which goes through two waterfalls. As we traverse the circuit in a clockwise manner, we
experience a potential drop through each resistor, which we denote by V1 and V2 respectively.
According to Ohm’s Law:

V1  IR1  2I and V2  IR2  3I.
However, as we go through the battery, we experience a potential rise, in the same way that water can
be lifted up from a well using a bucket. To tie these three potential changes together, we need the
following important law:

Kirchoff’s Voltage Law or KVL: If we go around a mesh, starting and ending at the same
node, the sum of the potential changes must be zero.

We agree that a potential rise will have a positive sign, while a potential drop will have a negative sign.
Thus, according to KVL, our new current I satisfies:

10  3I  2I  0,

so I  10/5  2 A. Notice that this new current is smaller than our previous current of 5 A.

The other way that we can attach another resistor to our first circuit is called a parallel configuration:

 

.

.

10 V

I

I R1 = 2 

..

..
I1

I 2





I I 2

R2 = 3 

.

.

Two Resistors in Parallel
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Notice that our new circuit now consists of two loops, and so we expect a different current to flow
through R1 and R2. Finding them individually is a direct consequence of Ohm’s Law. Since the top
and bottom nodes of each resistor are essentially the same node as the top and bottom of the battery
(assuming wires have negligible resistance), Ohm’s Law says that:

10  2I1, and
10  3I2.

Thus, I1  10/2  5 A, the same current in our original circuit, but I2  10/3  3 1
3 A. If we want to

know the current I flowing through the battery, though, we need the following twin to KVL:

Kirchoff’s Current Law or KCL: The sum of the currents entering any node must equal the
sum of the currents leaving that node.

Thus, I  I1  I2  5  3 1
3  8 1

3 A. Notice that this current is now greater than the old current of 5
A going through the battery.

Having two resistors and a single battery in one circuit is not a very complicated system. In fact, we
can replace the two resistors with a single equivalent resistor. Let us see how to do it for two resistors
in series:

 
.

E R1

I

I
I

I

R2.

..




E R s

I

I
I

I

. .

..




.

Two Resistors in Series and An Equivalent Resistor Rs

Applying KVL to the first circuit, we get E  IR2  IR1  0, and so:

I  E
R1  R2

.

The two circuits are equivalent if the same current flows through the battery. But from the equivalent
circuit, we have I  E/Rs. Thus:

Rs  R1  R2.

Now, for two resistors in parallel:
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Two Resistors in Parallel and An Equivalent Resistor Rp

We saw above that E  I1R1 and E  I2R2, and thus:

I  I1  I2  E
R1

 E
R2

 E 1
R1

 1
R2

As before, we have I  E/Rp, and so to get equal currents, we need:

1
Rp

 1
R1

 1
R2

.

Mesh Analysis

To find the currents going through the elements in more complicated planar circuits involving only
batteries and resistors, we can use what is called the Superposition Principle. We will assign a current
Ik to each mesh, which by convention will be clockwise. We then traverse the mesh clockwise and
apply KVL to write a linear equation for this mesh. However, if a resistor is straddling between two
meshes, we subtract the current of the neighboring mesh from Ik, because it will be going in the
opposite direction relative to Ik. Keep in mind also that when we traverse a battery, the emf is taken to
be positive if we go from  to  as we go clockwise, and negative if we go from  to . We will
usually obtain an invertible square system which we can then solve using the Gauss-Jordan Algorithm.
This makes sense because once we complete the circuit, there should be exactly one value for the
current flowing through each component. Once we have the value of each Ik, we return to the circuit
and find the current through components straddling two meshes. We illustrate with the following:

Example: Suppose we have the following circuit:

 

. .
... .

E1  26 V

.

.

R1 = 2  R3 = 3 

E2  13 V

R2 = 4 

I1 I2

.
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For the 1st mesh, the battery goes from  to  as we go clockwise, R1 only experiences I1, but R2 is
straddling the 2nd mesh. Thus, our 1st equation is:

26  2I1  4I1  I2   0.

For the 2nd mesh, the battery goes from  to  as we go clockwise, R2 is straddling the 1st mesh, and
R3 only experiences I2. Thus, our 2nd equation is:

 13  4I2  I1   3I2  0.
We obtain the system:

6I1  4I2  26, and
 4I1  7I2  13.

This is only a 2  2 system, and we easily find that I1  5 A. and I2  1 A. Since I1  I2, a current of
5  1  4 A flows downwards through R2. We show the currents through the three resistors below:

 

1 A

4 A

5 A

. .
...

E1  26 V

.

.

R1 = 2  R3 = 3 

E2  13 V

R2 = 4 .








Example: Let us analyze the following circuit, which has three meshes:

 

20 V

.

.





15 

10 V

12 

I3

10 

8 

I1

5 

.

. . . .
...

I2





The three resistors at the top of the circuit only experience their respective mesh currents, but the 10 
resistor is straddling between I1 and I2, while the 5  resistor is straddling between I2 and I3. Thus,
we get the following three equations using KVL:

20  8I1  10I1  I2   0,
 10I2  I1   12I2  5I2  I3   0, and

 10  5I3  I2   15I3  0.
Notice that the coefficient of each resistor is negative, and that the mesh current always goes first in
every resistor that is straddling two meshes. Now we convert our equations to standard form:
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18I1  10I2  20
10I1  27I2  5I3  0

5I2  20I3  10

We wrote the three equations above so that the coefficient of the respective mesh current is positive:
18I1, 27I2 and 15I3. Notice that these coefficients are precisely the sum of the resistors involved in
each mesh:

18  8  10
27  10  12  5
20  5  15

The other currents have a negative coefficient, corresponding to the resistors that straddle other
meshes. This is a good way to check that we set up our system correctly. Now, the (approximate)
solutions to our system are:

I1  0. 8874 A,
I2  0. 4026 A, and
I3  0. 3993 A.

Notice that I3 has a negative sign. This means that the assumed direction of counterclockwise is
wrong. Thus, the correct mesh currents are:

 





.

.




0.4026 A0.8874 A

.

. . . .
...

0.3993 A

From here, we find the currents through the straddling resistors, along with their correct orientations:

 

.





.

.




0.4026 A0.8874 A

.

. . . .
...

0.3993 A

0.4848 A 0.8019 A

Notice that I1 and I2 are opposite currents with respect to the 10  resistor, with I1 stronger, and so
the current through this resistor is 0. 8874  0. 4026  0. 4848 A. However, I2 and I3 are going in the
same direction through the 5  resistor, and so the current through this resistor is
0. 4026  0. 3993  0. 8019 A.
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Example: For our final example, let us analyze the circuit below:

 

.

5 V I2

12 

I3

10 

8 

.

10 V




I1

15 





12 V




.

.

..
..

.
Although this circuit also has three meshes, it is different from the previous example because each
mesh is adjacent to the other two meshes. Thus, the 8  resistor is straddling I1 and I2, the 12 
resistor is straddling I1 and I3, and the 10  resistor is straddling I2 and I3. Each of our three
equations will therefore involve all three mesh currents. We get the system:

35I1  8I2  12I3  12
8I1  18I2  10I3  5
12I1  10I2  22I3  10

Observe further that the coefficient matrix is symmetric. The diagonal entries are the sums of the
resistors in each mesh, appearing with a positive coefficient as previously mentioned, and the
off-diagonal entries are the resistors that straddle an adjacent mesh, appearing with a negative
coefficient. This makes sense because if each mesh were treated separately, ignoring the others, the
resistors are connected in series, and so the effective resistance is simply the sum. The emf’s are
positive when we go from  to  as we go clockwise, and negative otherwise. Now, solving the
system, we get:

I1  1. 1333 A, I2  1. 0995 A, and I3  1. 5725 A.
Thus, all of the mesh currents are actually going counterclockwise:

 

.

.













.

.

..
..

.  A

 A

 A

Finally, we solve for the current through each resistor by subtracting the smaller mesh current from the
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larger. The direction of the net current is the same as that of the stronger current. We observe that none
of the mesh currents reinforce each other, as opposed to the previous example, so the final currents are:

 

.

.













.

.

..
..

.
0.4392 A

1.1333 A

0.0338 A

0.473 A

9.2 Exercises

Find the current in each resistor of the following circuits:

1.

 

. .
... .

E1  50 V

.

.

R1 = 8  R3 = 4 

E2  35 V

R2 = 5 .








2.

 

.

..
E1  75 V

.

.

R1 = 12  R3 = 10 

E2  40 V

R2 = 7 .




.

. 



3.

 

25 V

.

.





8 

40 V

5 

15 

12 

10 

.

. . . .
...
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4.

 

60 V

.

.

38 

75 V

52 

35 

25 

40 

.

. . .
..





.

. 



5.

 

25 V

.

.

8 

40 V
15 

12 

10 

.

. . . .
...





5 

7 





6.

 

.

15 V

30 

20 

15 

.

10 V




12 





20 V




.

.

..
.
.

7.

 

.

5 V

12 

10 

8 

.

10 V




15 



 ..
.
.

.

..

.
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8.

 

.

.

15 V

12 

25 

35 

.

10 V




18 





30 V




..

.. .

..

9.

 

12 V
20 

.

15 V




12 





..
.
.

20 V




30 
18 

.
.

25 

.
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9.3 Recurrence Relations

When we study sequences in Precalculus or Calculus, we usually mention recursive sequences, that is,
sequences where we specify the first or first few terms of the sequence, and a formula or algorithm to
generate the next term of the sequence based on the previous term or terms. The most famous of these
recursive sequences is the Fibonacci sequence:

Definition: The Fibonacci sequence Fnn0
 is the recursive sequence given by:

F0  0,
F1  1, and

Fn1  Fn  Fn1 for all n  1.

The final equation says that in order to get the next term of the sequence which is Fn1 , we need to
add together the two previous terms Fn and Fn1 . Thus, the first few terms of the Fibonacci
sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

This sequence is so important, there is a journal dedicated to these numbers and their applications,
called The Fibonacci Quarterly.
Our goal is to find a closed formula for Fn, that is, a formula that explicitly gives Fn as a function of
n, without having to go through all the terms before Fn. In other words, we want a formula:

Fn  Fn  some algebraic function of n.

Such a formula will tell us, for example, that F20  F20  6765.
The only clue we have for such a formula is the recurrence relation:

Fn1  Fn  Fn1.
Thus:

F2  F1  F0, and

F3  F2  F1.

However, notice that the equations above simply involve linear combinations of F0, F1 and F2. Thus,
let us write our equations in matrix form as:

F1

F2


F1

F1  F0


0 1
1 1

F0

F1
.
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Notice that F1 appears both in the column matrix on the left side and the column matrix on the right
side. Similarly, we can write:

F2

F3


0 1
1 1

F1

F2
.

If we substitute the first matrix equation into the second, we get:

F2

F3


0 1
1 1

0 1
1 1

F0

F1


0 1
1 1

2


F0

F1
.

Proceeding by Induction, we can show that:

Fn

Fn1


0 1
1 1

n


F0

F1
.

But we know how to find large powers of a matrix if we can diagonalize it. Thus, let:

A 
0 1
1 1

.

We shall now diagonalize A. First, its characteristic polynomial is:

p 
 1
1   1

   1  1  2    1.

The quadratic formula yields our eigenvalues:

 
1  1  41

2  1  5
2

The number:

  1  5
2  1. 618

is a famous number, known as the Golden Ratio. We often write the other root as:

  1  5
2  0. 618.

The Golden ratio is associated to a special geometric figure: a Golden Rectangle is a rectangle whose
sides are in the proportion of 1 : . If we were to cut off a square using the shorter side of such a
rectangle, we would be left with a smaller rectangle that is also a Golden Rectangle:
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rotate








.

.

A Large Golden Rectangle, and a Smaller Golden Rectangle
Obtained by Cutting Off a Square from the Larger Rectangle

We have rotated the smaller Golden Rectangle so that we can see more convincingly that its
proportions are the same as the larger rectangle. We will prove this algebraically below.
Before we proceed further, let us look at some interesting properties of  and . Since they are both
roots of p  2    1, they each satisfy this equation, thus:

2    1, and 2    1.

Furthermore, we have:

    1  5
2 

1  5
2  1  5

4  1,

    1  5
2  1  5

2  1, and

    1  5  1  5
2  5 .

If we use the first two equations to solve for , we get:

   1
  1  

This last equation shows that the smaller rectangle obtained by cutting off a square from one side of the
larger Golden Rectangle indeed has the same proportions:

  1
1  1

 or   1 : 1  1 : .

772 Section 9.3 Recurrence Relations



We will be using the equations above to simplify our computations. Next, we find the eigenvectors: For
  , we solve the system:

 1
1   1

x
y


0
0

.

This should be a dependent system. Indeed, if we divide the first row by  and add it to the second
row, the entries will be:

 1  
  0, and   1  1

    1    1  1  0,

thus producing zeroes on the entire second row. Hence, we only need to solve:

x  y  0.

Although y should be our free variable, we will instead make x our free variable in order to get the
simpler general solution:

y  x.
Thus EigA, has basis 1,.
Similarly, to find the eigenvectors for , we must solve the system:

 1
1   1

x
y


0
0

.

We will leave the details as an easy exercise, but the outcome is that 1, is a basis for EigA,.
Thus, D  Diag,, and our diagonalizing matrix C is:

C 
1 1
 

, with inverse

C1  1
  

 1
 1

  1
5

 1
 1

 1
5

 1
 1

.

Now, we are ready to diagonalize:
A  CDC1

0 1
1 1


1 1
 


 0
0 

 1
5

 1
 1

.

From this, we get:
An  CDnC1


1 1
 


 0
0 

n

 1
5

 1
 1

 1
5

1 1
 


n 0
0 n


 1
 1
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 1
5

n n

n1 n1


 1
 1

 1
5

n  n n  n

n1  n1 n1  n1

 1
5

n1  n1 n  n

n  n n1  n1
.

In the last step, we made use of the property that     1. Now, let us use An to find our closed
formula:

Fn

Fn1


0 1
1 1

n


F0

F1

 1
5

n1  n1 n  n

n  n n1  n1


0
1

 1
5

n  n

n1  n1
.

Finally, we get the formula:

Fn  1
5
n  n .

This formula is elegant in and of itself, but remember that   0. 618, thus if n is a large number
n1  0. For instance, 20  6. 6034  105 so it is almost negligible. Thus, if n is large:

Fn 
n

5
,

and therefore Fn is practically an exponential function with base . For instance:

F20 
1. 6180320

5
 6764. 7,

which agrees with the actual value of 6765.

Linear Homogeneous Recurrence Relations

The Fibonacci sequence is a particular example of a recursive sequence ann0
 that can be defined

using a linear homogeneous recurrence relation with constant coefficients. First, we specify the
initial d terms of the sequence, namely:

a0, a1, a2,  , ad1,

which are also called the seeds of the sequence (because the sequence grows from them). We call d the
order of the recurrence relation. The next term of the sequence is computed using a linear
combination with constant coefficients of the previous d terms.
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Thus, we can write the general equation for an in the form:

an  c1an1  c2an2   cdand.

for all n  d, where c1, c2,  , cd are constant coefficients. Notice that in the equation above, we
write the terms in descending order. This equation is homogeneous because every term is a term in
the sequence, with a coefficient beside it. We will show by example how to solve such relations.

Example: Let us define a sequence recursively by:

a0  5, a1  7, and

an  2an1  3an2, for all n  1.

This is a linear homogeneous recurrence relation of order 2. The first few terms of this sequence are: 5,
7, 29, 79, 245, 727, 
We will simply mimic the method that we used to derive a closed-formula for the Fibonacci numbers
in order to find an analogous closed-formula for an. According to the relation, a2  2a1  3a0. Thus
we can write:

a1

a2


a1

2a1  3a0


0 1
3 2

a0

a1
.

By induction, as before:

an

an1


0 1
3 2

n
a0

a1
.

We must diagonalize the matrix above, whose characteristic polynomial is:

p 
 1
3   2

   2  3  2  2  3    1  3,

so our eigenvalues are fortunately integers, and more importantly, distinct. We find that:

EigA,1  Span1,1, and

EigA, 3  Span1, 3.

Thus, D  Diag1, 3, and our diagonalizing matrix is:

C 
1 1
1 3

, with inverse: C1  1
4

3 1
1 1

.

We can now compute:
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An  CDnC1


1 1
1 3

1 0
0 3

n

1
4

3 1
1 1

 1
4

1 1
1 3

1n 0
0 3n

3 1
1 1

 1
4

1n 3n

1n1 3n1

3 1
1 1

 1
4

31n  3n 1n1  3n

31n1  3n1 1n2  3n1
.

Now, for our closed formula:

an

an1


0 1
3 2

n
a0

a1

 1
4

31n  3n 1n1  3n

31n1  3n1 1n2  3n1

5
7



151n  5  3n  71n  7  3n

4
151n1  5  3n1  71n1  7  3n1

4


21n  3  3n

21n1  3  3n1
.

The first entry gives us:

an  21n  3  3n

By testing n  5, we find that:

a5  215  3  35  2  729  727,

which agrees with the value that we obtained for a5 in the list at the beginning of this example.

If we compare the results of our two examples above:

Fn  1
5
n  n , and

an  21n  3  3n,
we could make an educated guess that if the matrix A associated with the linear recurrence relation of
order 2 has distinct eigenvalues 1 and 2, then the closed-formula for an has the form:
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an  d11
n  d22

n,

for some coefficients d1 and d2. That would indeed be correct in general. Unfortunately, if the
eigenvalues are repeated, this method does not work. However, this situation has been studied in
detail, and so we leave it to a more advanced course.

9.3 Exercises

For the following recursive sequences: (a) Find the next 4 terms in the sequence; (b) Find a closed
formula an  an for the terms; (c) Check that your formula is correct using your data in (a).

1. a0  4, a1  5, and an  3an1  2an2.

2. a0  3, a1  1, and an  3an1  4an2.

3. a0  2, a1  7, and an  3an1  4an2.

4. a0  4, a1  5, and an  6an1  7an2.

5. a0  1, a1  3, and an  2an1  8an2.

6. a0  2, a1  5, and an  4an1  7an2.

7. a0  4, a1  7, and an  8an1  3an2.
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9.4 Introduction to Quadratic Forms

Quadratic forms have many applications and appear in many disguises. The Calculus student already
has seen these in the study of conic sections (ellipses, hyperbolas and parabolas) and their
3-dimensional counterparts called quadric surfaces (ellipsoids, hyperboloids, paraboloids, cones and
hyperbolic paraboloids). We also saw them in Chapter 7 when we constructed weighted dot products
for n.

Definition: A quadratic form Q in the variables x1, x2, . . . , xn is a function of the form:

Qx1, x2, . . . , xn  
i, j1
i j

n

a i,jx ix j,

for some coefficients a i,j  . We also call this a homogeneous 2nd degree polynomial.
Notice that there are no linear terms nor a constant term.
If i  j, and a i,j  0, we call the term a i,jx ix j a mixed term or cross term, because two
distinct variables appear in the same term.
A quadratic form is diagonal if it has no mixed terms, that is, a i,j  0 whenever i  j. Thus,
we can write it in the simpler form:

Qx1, x2, . . . , xn  
i1

n

a i  x i
2  a1x1

2  a2x2
2   anxn

2.

Examples: A quadratic form in one variable x has the form:

Q1x  ax2.

Thus, it can be visualized as a parabola where y  Q1x  ax2, for example:

Q1x  2x2.
A form in only one variable, of course, is not very interesting.
A quadratic form in two variables, say x and y, has the form:

Q2x, y  ax2  bxy  cy2.

It is also called a binary quadratic form. For example, we can have:

Q2x, y  11x2  24xy  4y2.

This quadratic form is not diagonal. However, we could have:

Q3x, y  4x2  7y2,

which is a diagonal quadratic form. 
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Conic Sections and Quadric Surfaces

Quadratic forms appear naturally when we study conic sections. For example, if we set the quadratic
form Q3x, y equal to 1, we will get an ellipse:

4x2  9y2  1, or equivalently:
x2

1/22  x2

1/32  1.

This is a horizontal ellipse with vertices at 1/2, 0 and covertices 0,1/3.

0.50.40.30.20.10-0.1-0.2-0.3-0.4-0.5

0.3

0.25

0.2

0.15

0.1

0.05
0

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

x

y

x

y

The Ellipse 4x2  9y2  1

The quadratic form Q2, though, is not diagonal. If we set it equal to 5, we will get:

11x2  24xy  4y2  5.

It is not obvious what its graph looks like, but we used a Computer Algebra System to draw it below:

2.51.250-1.25-2.5

2.5

1.25

0

-1.25

-2.5

x

y

x

y

The Hyperbola 11x2  24xy  4y2  5

It certainly looks like a hyperbola, but even if it were, its axes of symmetry are neither horizontal nor
vertical. We will see in a little bit how to graph it without the use of technology.
A quadratic form in three variables, say x, y and z, would naturally represent a quadric surface when
we set it equal to a constant as we saw above. For example, we show below the graph of an ellipsoid
and some of its cross-sections.
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The Ellipsoid 4x2  9y2  16z2  144

Obviously, an ellipsoid is the 3-dimensional analog of an ellipse.

The Matrix Form of a Quadratic Form

In order to prove properties of quadratic forms or perform computations on them in an efficient way, it
is often more convenient to rewrite them using square matrices.

Definition: Let x  x1, x2, . . . , xn   n. Denote by x  the column matrix with entries
from x, as usual. The quadratic form:

Qx1, x2, . . . , xn   
i, j 1
 i  j

n

a i,jx ix j,

can be written as a matrix product:
Qx1, x2, . . . , xn   x Qx ,

where the n  n matrix Q, known as the matrix of Q, is defined by:

Q i,j 

a i,i if i  j
a i,j/2 if i  j
a j,i/2 if i  j

, and thus:

Q 

a1,1 a1,2/2  a1,k/2
a1,2/2 a2,2  a2,k/2
   

a1,k/2 a2,k/2  ak,k

.

The reason for this cumbersome definition is that we only have the term a i,jx ix j where i  j. For
example, we have an x1x3 term but not an x3x1 term. The “1/2” factors disappear when we expand the
product and combine both terms. It is obvious that Q is symmetric, and Q is diagonal if and only if
Q is a diagonal matrix.
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Examples: Let us rewrite our first Examples. The definition says that a quadratic form in two variables
has the form:

Q2x, y  ax2  bxy  cy2

 x y
a b/2

b/2 c
x
y

.

If we expand this product step-by-step, we obtain:

x y
ax  by/2
bx/2  cy

 ax  by/2x  bx/2  cyy
 ax2  byx/2  bxy/2  cy2

 ax2  bxy  cy2,
as expected. For Q2x, y  11x2  24xy  4y2, we have:

Q2  
11 12
12 4

.

For our diagonal example, Q3x, y  4x2  9y2, we obtain:

Q3  
4 0
0 9

.

This is a diagonal matrix, as expected. 

Diagonalizing Quadratic Forms

It should come as no surprise that the matrix form of a quadratic form unleashes the full power of the
Spectral Theorem for Symmetric Matrices:

Theorem: Let Qx1, x2, . . . , xn  be a quadratic form. Then: there exists a change of
variables:

y   U x , or x   U y ,

where U is an orthogonal matrix, and y1, y2, . . . , yn are new variables, such that Q can be
rewritten as the equivalent quadratic form:

Qy1, y2, . . . , yn   y D y ,
and D is a diagonal matrix. In other words, it is always possible to diagonalize Q.
In some instances, we can require D to contain the eigenvalues of Q in ascending order:

D  Diag1, 2, . . . , n , where 1  2    n.

Proof: By the Spectral Theorem, we can diagonalize Q using an orthogonal matrix U :
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Q  UDU 1  UDU ,

since U 1  U  by the orthogonal property. Since we are free to arrange the eigenvalues in any order
we please, we can assume that they are in ascending order in D, if it is so desired. In any case, using
the associative property of multiplication and properties of the transpose, we have:

x Qx   x UDU  x 

 x UDU x 

 U x DU x 

 y D y ,

where y   U x . Thus, we can rewrite the quadratic form diagonally as:

Qy1, y2, . . . , yn   y D y . 

Example: Suppose we are given:

Qx, y, z  24x2  16xy  16xz  y2  34yz  z2.
Then:

Q 
24 8 8
8 1 17
8 17 1

.

Using a Computer Algebra System, we find that its eigenvalues are   18, 8 and 32, and so each
eigenspace is 1-dimensional. We further find that:

Eig Q,18  Span0, 1, 1,

Eig Q, 8  Span1, 1,1, and

Eig Q, 32  Span2,1, 1.

Converting these to unit vectors, we can form the orthogonal matrix U and the diagonal matrix D:

U 

0 1/ 3 2/ 6
1/ 2 1/ 3 1/ 6
1/ 2 1/ 3 1/ 6

, and D 

18 0 0
0 8 0
0 0 32

.

If we denote the new variables X, Y and Z, then our old variables are related to our new ones by:

x
y
z



0 1/ 3 2/ 6
1/ 2 1/ 3 1/ 6
1/ 2 1/ 3 1/ 6

X
Y
Z

.

In other words:
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x  Y/ 3  2Z/ 6

y  X/ 2  Y/ 3  Z/ 6

z  X/ 2  Y/ 3  Z/ 6

.

With respect to the new variables, the quadratic form becomes:

QX, Y, Z  18X2  8Y2  32Z2. 

The Discriminant of a Binary Quadratic Form

In the classic quadratic formula, the discriminant tells us if we have two distinct real roots, a repeated
real root, or two distinct non-real roots. In the case of a binary quadratic form, we define the
discriminant using essentially the same formula. We will use this in the next Section to help us graph
conic sections.

Definition/Theorem — The Invariance of the Discriminant:
Consider the binary quadratic form:

Qx, y  ax2  bxy  cy2,

where a, b, c  . We define the discriminant of Q to be the number:

  b2  4ac.
Then: the discriminant is an invariant of Q under an orthogonal change of variables. This
means the following: Suppose that U is any 2  2 orthogonal matrix, with associated change
of variables:

x
y

 U
X
Y

.

If we substitute x and y into our quadratic above, we obtain a new quadratic form:
Q /X, Y  a /X2  b /XY  c /Y2,

for some new coefficients a /, b / and c /. However, the new discriminant
 /  b / 2  4a / c /  of Q /X, Y is exactly the same as the discriminant of Qx, y:

b / 2  4a / c /     b2  4ac.

Proof: Recall that any 2  2 orthogonal matrix has the form:

U 
cos  sin
 sin cos

,

where the choice of sign only determines if U is proper or improper. Thus, we get the change of
variables:

x  cosX  sinY, and

y   sinX  cosY.
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Substituting into Q, we get:
ax2  bxy  cy2

 acosX  sinY2  bcosX  sinY sinX  cosY

 c sinX  cosY2

 acos2X2  2cos sinXY  sin2Y2 

 bcos sinX2  sin2XY  cos2XY  sincosY2 

 csin2X2  2sincosXY  cos2Y2 .

Distributing a, b, and c, and collecting coefficients of X2, XY and Y2, we get:
a /  a  cos2  b  cos sin  c  sin2

 a  c
2   b

2 sin2  a  c
2 cos2

b /  2a  cos sin  b  cos2  sin2  2c  sincos

 b  cos2  c  a  sin2

c /  a  sin2  b  cos sin  c  cos2

 a  c
2   b

2 sin2  a  c
2 cos2 ,

where we used the identities:

cos2 
1  cos2

2 , sin2 
1  cos2

2 , and sin2  2 sincos.

Notice that the terms in square brackets found in a / and c / are identical, and so a / and c / have the
form:

a /    , and c /    , hence
4a /c /  42  42.

Finally, we substitute these into  / to get:

 /  b / 2  4a / c / 

 b  cos2  c  a  sin22  42  42

 b2  cos22  2bc  a  cos2 sin2  c  a2 sin22

 4 a  c
2

2
 4  b

2 sin2  a  c
2 cos2

2

 b2  cos22  2bc  a  cos2 sin2  c  a2 sin22
 a  c2  b2 sin22  2ba  ccos2 sin2  a  c2 cos22

 b2  cos22  b2 sin22
 c  a2 sin22  a  c2 cos22  a  c2

 b2  a  c2  a  c2

 b2  4ac. 
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We remark that a binary quadratic form is essentially what is referred to as a homogenization of the
usual quadratic equation:

ax2  bx  c  0.
To make all three terms have total degree 2, we multiply each term by an appropriate power of a new
variable y :

ax2  bxy  cy2  0.

We obtain the original quadratic by plugging in y  1.

The Complex Case

We must be careful in defining a quadratic form with complex coefficients and in complex variables.
Suppose that z1, z2,  , zn  . Then we define a quadratic form:

Q z1, z2,  , zn  
i, j1

n

a i,jz iz j,

where we require that the coefficients a i,j satisfy:

a i,i   for all i  1. . n, and

a i,j  a j,i
 for all i, j  1. . n.

Notice that we are forcing the appearance of both z iz j and z jz i in this definition, where i  j. But
because of the restrictions on the coefficients, the matrix:

Q  a i,j 

is an Hermitian matrix, i.e. Q  Q, where Q is the adjoint of Q. This is of course the
natural extension because Q is symmetric in the real case.

By the Spectral Theorem for Hermitian Matrices, Q is once more diagonalizable, but this time, using
a unitary matrix U, that is, with UU  In  UU :

Q  UDU1  UDU,

Once again, the eigenvalues of Q, and hence the diagonal entries of D, are all real numbers. If we let
 z  represent the column matrix with entries z i, then we get:

Q z1, z2,  , zn 

  z Q z 
  z UDU  z 
  z UDU z 
 w Dw ,

where w   U z  represents a unitary change of variables.
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Example: Suppose we have:

Qz1, z2   3z1z1  2  iz1z2  2  iz2z1  z2z2

 3z12  2  iz2z2  2  iz1z2  z22.
The matrix of Q is:

Q 
3 2  i

2  i 1
,

and indeed Q is Hermitian. Its characteristic polynomial is:

p    3  1  2  i2  i
 2  2  8    4  2.

Its eigenspaces are:

EigQ,2  Spanu   Span1, 2  i, and
EigQ, 4  Spanv  Span2  i, 1.

Recall that to check if two complex vectors are orthogonal, we take the complex conjugate of one of
the vectors before we take their dot product, or equivalently:

u |v   v u   2  i1  12  i  0,

hence the eigenspaces are orthogonal, as they should be. Both of the basis vectors have length 6 , so
we obtain the unitary matrix:

U  1
6

1 2  i
2  i 1

.

Thus, under the change of variables:

z1  w1  2  iw2 / 6 , and

z1  2  iw1  w2 / 6 ,

the quadratic form can be written in diagonal form as:

Qw1, w2   2w12  4w22.

In particular, the value of the quadratic form is always real.
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9.4 Exercises

For Exercises 1 to 9: For each of the following quadratic forms in x, y (or x, y, z, find new
variables X, Y (or X, Y, Z and the corresponding change of variables, such that the quadratic form is
diagonal with respect to the new variables, and find this equivalent quadratic form.

1. Qx, y  8x2  4xy  5y2

2. Qx, y  x2  4xy  4y2

3. Qx, y  3x2  12xy  2y2

4. Qx, y  13x2  12xy  8y2

5. Qx, y, z  7x2  7y2  7z2  2xz

6. Qx, y, z  4x2  5y2  4z2  2xy  4xz  2yz

7. Qx, y, z  x2  2xy  2y2  2yz  z2

8. Qx, y, z  x2  xy  xz  yz

9. Qx, y, z  x2  y2  z2  2xy  2xz  2yz

For Exercises 10 to 13: Find the discriminant of the binary quadratic forms in Exercises 1
through 4, respectively. Check that the discriminant of the equivalent diagonal quadratic form
is the same.

For Exercises 14 to 20: For the quadratic form in the complex variables z1 and z2, find new
complex variables w1 and w2 and the corresponding change of variables, such that the quadratic
form is diagonal with respect to w1 and w2, and find this equivalent quadratic form.

14. Qz1, z2   2z1z1  1  3iz1z2  1  3iz2z1  5z2z2

15. Qz1, z2   z1z1  2  2iz1z2  2  2iz2z1  z2z2

16. Qz1, z2   7z1z1  3  4iz1z2  3  4iz2z1  7z2z2

17. Qz1, z2   6z1z1  7  24iz1z2  7  24iz2z1  6z2z2

18. Qz1, z2   2z1z1  1  3iz1z2  1  3iz2z1  5z2z2

19. Qz1, z2   2z1z1  3  iz1z2  3  iz2z1  5z2z2

20. Qz1, z2   5z1z1  4  3iz1z2  4  3iz2z1  5z2z2
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9.5 Rotations of Conics

We will now use the theory of quadratic forms in order to draw the graph of a quadratic equation that
contains a mixed term xy. Let us first recall the three basic conic sections and the standard forms of
their equations:

52.50-2.5-5

12.5

10

7.5

5

2.5

0

0.30.250.20.150.10.050-0.05-0.1-0.15-0.2-0.25-0.3

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

3.532.521.510.50-0.5-1-1.5-2-2.5-3-3.5

5

4

3

2

1

0

-1

-2

-3

-4

-5

The Parabola The Ellipse The Hyperbola

y  ax2 y2

a2  x2

b2  1 y2

a2 
x2

b2  1

Of course, it is also possible for x and y to exchange roles to change the orientation of the major axes of
these conic sections. A general quadratic equation in x and y has the form:

ax2  bxy  cy2  dx  ey  f  0.

It has as its graph a conic section or one of its degenerate forms:
 A parabola can degenerate into a line or two parallel lines.
 An ellipse can degenerate (in this case, keep shrinking) into a single point or no graph

whatsoever.
 A hyperbola can degenerate (in this case, open wider and wider) into two intersecting lines.

In order to identify the conic section that it represents and sketch its graph by hand, however, we must
bring it to an equivalent diagonal form. In the traditional method found in many Precalculus books, we
would compute an angle of rotation and a change of variables that will eliminate the mixed term.
Instead, our method below will produce a rotation matrix using eigenvectors, without trigonometry!

Theorem: Consider the general quadratic equation:

ax2  bxy  cy2  dx  ey  f  0, with b  0, and
Qx, y  ax2  bxy  cy2,

its associated quadratic form. Then, there exists a change of variables by a rotation matrix
rot :

x
y

 rot
X
Y


cos  sin
sin cos

X
Y

,
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so that the equation that we obtain by substituting in:

x  cosX  sinY, and
y  sinX  cosY,

has no mixed term b /XY. In other words, the resulting quadratic has the form:

a /X2  c /Y2  d /X  e /Y  f  0
(the constant term will not change). The rotation matrix rot can be chosen so that
  0,/2.

Proof: Let us form the matrix of Q:

Q 
a b/2

b/2 c
.

The characteristic polynomial of Q is:

p    a  c  b2/4
 2  a  c  b2  4ac/4, so

 
a  c  a  c2  b2  4ac

2

 a  c  a2  2ac  c2  b2  4ac
2


a  c  a  c2  b2

2 .

Since we assumed that b  0, the radical above is non-zero, so we get two distinct eigenvalues. Thus
we will get two orthogonal 1-dimensional eigenspaces:

 

x

y Eig ( [ Q ], 1 )
Eig ( [ Q ], 2 ) 

.

.

We have chosen 1 to be the eigenvalue whose eigenspace passes through the 1st quadrant. In this
case, the angle   0,/2 made by EigQ,1  with respect to the x-axis gives us the eigenvector
v1  cos, sin. We need not explicitly compute , because a unit vector automatically has this
form. Correspondingly, we get the eigenvector v2   sin, cos for 2, so that it is in the 2nd
quadrant. Note that v2 is 900 counterclockwise from v1.
Incidentally, it is impossible for  to be 0 or /2, otherwise the original quadratic will not contain a
mixed term. Thus, from our previous Theorem and its proof, our change of basis matrix U is:
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U  rot 
cos  sin
sin cos

,

and our change of variables is:

X
Y

 U x
y

, and thus:
x
y

 U
X
Y

.

Under this change of variables, Q can be written as:
QX, Y  1X2  2Y2,

and therefore there is no XY term. If our original quadratic contains a linear (degree 1) term, we can
now bring the quadratic equation into one of the three standard forms for conic sections so that it can
be graphed.

Example: Let us see how to apply this diagonalization to graph our suspected hyperbola:
11x2  24xy  4y2  5

that we saw in the previous Section. The matrix of the associated quadratic form is:

Q 
11 12
12 4

.

We can easily find its characteristic polynomial:

p    11  4  144
 2  15  100    20  5.

The eigenspaces for Q are:
Eig Q, 20  Span4/5, 3/5, and

Eig Q,5  Span3/5, 4/5.
These two Spans are clearly orthogonal, and we show them below:

 

x

y Eig ( [ Q ] , 20 )Eig ( [ Q ],  )


XY

.

.

These will be the new X and Y axes, respectively. With 1  20 and 2  5, we obtain:

rot 
4/5 3/5
3/5 4/5

and D 
20 0
0 5

.
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The corresponding change of variables is:

x  4
5 X  3

5 Y, and

y  3
5 X  4

5 Y.

Substituting these into our original quadratic, we get:

5  11x2  24xy  4y2

 11 4
5 X  3

5 Y
2
 24 4

5 X  3
5 Y 3

5 X  4
5 Y  4 3

5 X  4
5 Y

2

 11 16
25 X2  24

25 XY  9
25 Y2  24 12

25 X2  7
25 XY  12

25 Y2

 4 9
25 X2  24

25 XY  16
25 Y2

 176
25 X2  264

25 XY  99
25 Y2  288

25 X2  168
25 XY  288

25 Y2

 36
25 X2  96

25 XY  64
25 Y2

 20X2  5Y2.
This is correct because our eigenvalues are 20 and 5. Scaling by 5, we get the standard equation:

1  4X2  Y2  X2

1/22 
Y2

1 ,

so indeed our original equation represents a rotated hyperbola.
Let us put some finishing touches: The vertices of the hyperbola are at X, Y  1/2, 0, and the
asymptotes are Y  2X. Let us find their coordinates and equations in terms of x and y. If X  1/2
and Y  0, we get:

x   2
5 and y   3

10 .

so the vertices are at 0. 4,  0. 6. Notice that this is consistent with the slope of the major axis. Now
for the asymptotes: the equations for the inverse change of coordinates are:

X  cosx  siny  4
5 x  3

5 y, and

Y   sinX  cosY   3
5 x  4

5 y,

so if we substitute these into X  2Y, we get:

 3
5 x  4

5 y  2 4
5 x  3

5 y , and

 3
5 x  4

5 y  2 4
5 x  3

5 y .

Simplifying, we get:

y   11
2 x and y   1

2 x.

We redraw our original graph with this new information:
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2.51.250-1.25-2.5

2.5

1.25

0

-1.25

-2.5

x

y

x

y

The Hyperbola 11x2  24xy  4y2  5
with its asymptotes and axes of symmetry

If we were to graph this by hand, we would draw the new X and Y axes using the eigenvectors, mark
off units in the same scale as our original, then ignore the x and y axes. We can draw 4X2  Y2  1 on
the new X and Y axes using the standard steps from Precalculus: plot the vertices, sketch the
asymptotes, plot four more points using symmetry, then connect the dots keeping the asymptotes in
mind.

The Discriminant of a General Quadratic

Now, since the discriminant of a quadratic form is invariant, we can use the standard equations of the
three types of conic sections to develop a litmus test for any general quadratic. We will first eliminate
denominators, if need be, to simplify the discriminant:

 For a parabola y  ax2, or ax2  y  0;   02  4  a  0  0.
 For an ellipse a2x2  b2y2  a2b2  0;   02  4a2b2  0.
 For a hyperbola a2x2  b2y2  a2b2  0;   02  4a2b2  0.

Thus, we can conclude:

Theorem: If the discriminant, , of a general quadratic equation is:
a) positive, then its graph is a hyperbola or two intersecting lines.
b) zero, then its graph is a parabola, or a line, or two parallel lines.
c) negative, then its graph is an ellipse, a point, or it has no graph.

Example: Consider the quadratic:

4x2  12xy  9y2  4x  6y  35  0.
Its discriminant is:

  122  4  4  9  144  144  0,
and therefore its graph is either a parabola, a line, or two parallel lines. Instead of rotating this quadratic
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as we did in the previous example, let us point out that the left side can be factored by grouping,
obtaining:

2x  3y2  22x  3y  35  2x  3y  72x  3y  5  0.
Thus, we get two parallel lines:

2x  3y  7 and 2x  3y  5.

We show the graph below:

543210-1-2-3-4-5

5

4

3

2

1
0

-1

-2

-3

-4

-5

x

y

x

y

The Degenerate Quadratic: 4x2  12xy  9y2  4x  6y  35  0

As a final result, we saw in the proof about the invariance of the discriminant from the previous Section
that the coefficient of the new mixed term is given by:

b /  b  cos2  c  a  sin2.
If the change of variables were accomplished by a rotation matrix (i.e. a proper orthogonal matrix), we
would choose the positive sign. Thus we get a well-known result:

Theorem: To eliminate the mixed term bxy, b  0, under a change of variables via a rotation
matrix rot, the angle  must satisfy the equation:

cot2  a  c
b .

Example: Let us look again at our previous quadratic:
4x2  12xy  9y2  4x  6y  35  0.

It was certainly not obvious that the left side factors nicely, so let us go through the process of rotation
to eliminate 12xy. By our Theorem above:

cot2  a  c
b  4  9

12  5
12 .

By completing the triangle, we get cos2  5/13. Now, by the half angle formula:

cos  1  cos2
2  1  5/13

2  2
13

, and so: sin  3
13

,

so that  is in the 1st quadrant. We get the change of variables:
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x  2
13

X  3
13

Y, and

y  3
13

X  2
13

Y.

Substituting these, we get:

0  4x2  12xy  9y2  4x  6y  35

 4 2
13

X  3
13

Y
2

 12 2
13

X  3
13

Y 3
13

X  2
13

Y 

9 3
13

X  2
13

Y
2

 4 2
13

X  3
13

Y  6 3
13

X  2
13

Y  35

 16
13 X2  48

13 XY  36
13 Y2  72

13 X2  60
13 XY  72

13 Y2 

81
13 X2  108

13 XY  36
13 Y2  8

13 13 X  12
13 13 Y  18

13 13 X  12
13 13 Y  35

 13X2  2 13 X  35.

Solving this (ordinary) quadratic equation, we get:

X 
2 13  52  41335

26

 2 13  12 13
26  7

13
or 5

13
 1. 9415 and  1. 3868.

If we redraw our previous graph with the new X and Y axes, we can confirm that these X coordinates
are reasonable:

543210-1-2-3-4-5
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The Degenerate Quadratic: 4x2  12xy  9y2  4x  6y  35  0

However, we also have reverse equations:

X  2
13

x  3
13

y, and Y  3
13

x  2
13

y.

and so we get:
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X  7
13

or 5
13



2
13

x  3
13

y  7
13

or 5
13



2x  3y  7 or  5,

which are indeed the equations of the two lines that we found.

9.5 Exercises

For the following quadratic equations in x and y: find new variables X and Y and the corresponding
change of variables such that the resulting equivalent quadratic in X and Y has no XY term. Sketch the
quadratic, showing the new X and Y axes. In addition, provide the following information in the original
x, y coordinates:

 If the graph is a parabola, specify the vertex and the axis of symmetry.

 If the graph is an ellipse, specify the center, vertices (endpoints of the major or longer axis) and
covertices (endpoints of the minor or shorter axis).

 If the graph is a hyperbola, specify the center and vertices, and give the equations of the
asymptotes.

 If the graph is a line or two lines, give their equations in the form ax  by  c.

Note: It is sometimes possible to “scale down” the rotated equation (in X and Y and eliminate common
factors. Before proceeding, check the Answer Key to see if your rotated equation is correct and
simplified.

Furthermore, in Exercises 8 through 12, you will need to “complete the square” after changing
variables in order to bring the quadratic into standard form.

1. 52x2  72xy  73y2  900

2. 2x2  8xy  8y2  2 5 x  5 y  0

3. 175x2  1230xy  481y2  13600

4. 181x2  192xy  261y2  2925

5. 32x2  48xy  18y2  45x  60y  0

6. 9x2  30xy  25y2  9x  15y  10

7. 6831x2  6960xy  71y2  74529

8. 16x2  24xy  9y2  150x  50y  325

9. 85x2  96xy  45y2  124 13 x  48 13 y  559

10. 96x2  116xy  9y2  476 5 x  298 5 y  3445

11. 801x2  600xy  1396y2  8346x  13000y  34645

12. 2375x2  8880xy  6431y2  9230x  21788y  198406
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9.6 Positive Definite Quadratic Forms and Matrices

We have seen that there is a one-to-one correspondence between quadratic forms and symmetric
matrices: every quadratic form Q in n variables can be written in terms of a symmetric n  n matrix
Q  A, and conversely every symmetric n  n matrix A represents a quadratic form:

Qx1, x2, . . . , xn   Qx   x Qx   x Ax .

We also saw that due to their symmetry, every quadratic form can be diagonalized, so that after a
change of variables y   U x , where U is orthogonal, we can write:

Qy1, y2, . . . , yn   Qy  
i1

n

 iy i
2,

where we can order the real eigenvalues of Q : 1  2    n. Now, since each eigenvalue is
real, and a real number can be positive, negative, or zero, we can analogously classify each quadratic
form using the following criteria:

Definition: A quadratic form Q can be classified into exactly one of the following types:

1. Q is positive definite if all of its eigenvalues are positive.

2. Q is negative definite if all of its eigenvalues are negative.

3. Q is positive semi-definite if all of its eigenvalues are positive or zero.

4. Q is negative semi-definite if all of its eigenvalues are negative or zero.

5. Q is indefinite if it has at least one positive eigenvalue and at least one
negative eigenvalue. In other words, it is not one of the four types above.

Analogously, we say that a symmetric matrix A is positive definite if the associated
quadratic form x Ax  is positive definite, and so on. We will refer to this as the
definiteness type of a quadratic form Q or a symmetric matrix A.

Notice that under the definitions above, a positive definite matrix is also positive semi-definite. This is
consistent with the convention that a positive number is also a non-negative number:

If x  0, then x  0 as well.
Thus, we use the ordinary inequality symbols as notation for these matrix types:

Type of Symmetric Matrix Symbol

A is positive definite A  0

A is negative definite A  0

A is positive semi-definite A  0

A is negative semi-definite A  0
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Analogously, we will write Q  0, etc., for the corresponding quadratic form. It is worth noting that
the definiteness type is equivalent to the nature of the values that the quadratic form assumes, further
justifying the use of this notation:

Theorem: Let Qx1, x2, . . . , xn  be a quadratic form. Then:

1. Q  0 if and only if for all non-zero x  n: x Qx   0.

2. Q  0 if and only if for all non-zero x  n: x Qx   0.

3. Q  0 if and only if for all x  n: x Qx   0.

4. Q  0 if and only if for all x  n: x Qx   0.

Proof: Every quadratic form can be diagonalized so that under an orthogonal change of variables
y   U x , we can write:

Qy1, y2, . . . , yn  
i1

n

 iy i
2  1y1

2  2y2
2   nyn

2.

Each of the four equivalences now follow. For example, if Q  0, then all the eigenvalues are positive.
If x is not the zero-vector, then neither is U x  since U is invertible. Thus at least one of the y i is
non-zero, hence y i

2  0 and the value of Q is positive. Conversely, suppose for all non-zero x  n:
x Qx   0. We must show that all of the eigenvalues are positive. So suppose that one of the
eigenvalues were zero, say 1  0. Since U is invertible, we can find a non-zero vector x so that
U x   1, 0,  , 0  y. But then Qy  1  0, yielding a contradiction. We can use the same
idea to show that none of the eigenvalues can be negative either. Thus, all eigenvalues are positive. The
other equivalences are proven using the same format.

Closure Properties of Definite Matrices

This new symbol for symmetric matrices allows us to extend some (but not all) of the properties of
order among the real numbers:

Theorem: Let A and B be symmetric n  n matrices. If A  0 and B  0, then A  B  0.

Proof: Let x  n be any non-zero vector. Since A and B are both positive:

x Ax   0 and x Bx   0.

Thus:

x Ax   x Bx   0, or

x A  Bx   0.

Therefore, A  B is likewise positive.

Unfortunately, the process of matrix multiplication is more sensitive than addition. However, scalar
multiplication gives us an easy result:
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Theorem: Let A and B be symmetric matrices. If A  0, then for all k  :

If k  0, then kA  0, and

if k  0, then kA  0.

In particular, A  0. Analogously, if B  0, then for all k  :

If k  0, then kA  0, and

if k  0, then kA  0.

In particular, B  0. Analogous statements can be made for both semi-definite types.

Proof: Using the same idea as the proof of the previous Theorem, for all x  n :

x Ax   0 and thus if k  0, then:

x kAx   0,

and so kA  0. Similarly, if k  0, kA  0 also. A similar idea works if B  0. 

Sylvester’s Criterion

Apart from explicitly computing all the eigenvalues of a symmetric matrix in order to determine its
definiteness, the following criterion also gives us a way to determine if a symmetric matrix is positive
definite by simply computing certain determinants:

Theorem — Sylvester’s Criterion: Let A be an n  n symmetric matrix. For every k, define
the submatrix:

Ak 

a11 a12  a1k

a21 a22  a2k

   

ak1 ak2  akk

.

In other words, Ak is the k  k submatrix extracted from the upper left hand corner of A.
Then:

A is positive definite if and only if detAk   0 for all k  1n.

The proof of this Theorem is rather long and involved, so we will omit it; proofs are easily found on the
Internet. We mention this Theorem only because we use it briefly to compute the Cholesky
Decomposition later.
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Matrices of the form BB

We have seen before that if A  BB, then A  BB   A, so A is symmetric. However, the
following Theorem says that a matrix of this form can be determined with certainty to be of one of the
types above:

Theorem: Let B be an m  n matrix (not necessarily square), and let A  BB.
Then: A  0. Furthermore, if rankB  n, then A  0.
Moreover, rankA  rankB, and nullspaceA  nullspaceB.

Proof: Since B is m  n, A  BB is n  n. Thus, let x  n. Then:

x Ax   x BBx   x BBx 
 Bx Bx   Bx   Bx .

Thus, by the non-degeneracy of the dot product, Bx  Bx  0, so A  0.
Now, suppose rankB  k, with k  minm, n. By the Dimension Theorem, nullityB  n  k. So
suppose v1, v2, . . . , vnk is a basis for nullspaceB. Thus Bvi  0m for all i. But then BBvi  0n,
and so nullspaceB  nullspaceA. Thus nullityA  n  k. However, BB is n  n, and so again
by the Dimension Theorem, this means that rankBB  k.
Now, by the Minimizing Theorem of Chapter 1, we can find a subset C  ci1 , ci2 , . . . , cik  of k
original columns from B that is a basis for colspaceB. But C is also a basis for rowspaceB .
However, we showed in the Section on the Significance of the Rowspace in Chapter 4 that a linear
transformation T is one-to-one when it is restricted to the rowspace of T. Thus, the linear
transformation represented by B is one-to-one on SpanC, and so:

Bci1 , Bci2 , . . . , Bcik   colspaceBB  colspaceA

is still linearly independent. This proves that rankA  k  rankB, and so again by the Dimension
Theorem, nullityA  n  k. Thus nullspaceB  nullspaceA. Note however that unless m  n, A
and B have different number of rows, and so in general we cannot say that
colspaceB  colspaceA, even though they have the same dimension.
Now, if rankB  n, then B represents a one-to-one linear transformation TB : n  m, and thus
Bx   0m, so Bx   Bx   0, whenever x is not 0n. Thus A  0 in this case.

Example: Let B 
3 2
1 0

.

Notice that B is not symmetric, but it is invertible, so rankB  2. However:

A  BB 
3 1
2 0

3 2
1 0


10 6
6 4

is indeed symmetric. The characteristic polynomial of A is:
p    10  4  36

 2  14  76

so its eigenvalues are 7  3 5  13. 71 and 7  3 5  0. 29. Thus A is positive definite.
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The Cholesky Decomposition

There is an interesting and powerful converse to our previous Theorem:

Theorem — The Cholesky Decomposition: Let A be a symmetric, positive definite n  n
matrix. Then there exists a unique, lower triangular n  n matrix L such that the entries on
the diagonal of L are positive, and:

A  L  L  U  U,
where U  L is upper triangular.

Proof: There are at least two ways to explicitly compute the Cholesky Decomposition of a symmetric,
positive definite n  n matrix A. We will present the Cholesky-Crout Algorithm, that computes L
entry by entry, starting with L1,1 and proceeding by columns to the right.
The idea is to simply assume the decomposition exists, and then show that we can uniquely solve for
the entries. Let us illustrate with the 3  3 case. We want to satisfy the equation:

A  L  L, or:

A11 A21 A31

A21 A22 A32

A31 A32 A33



L11 0 0
L21 L22 0
L31 L32 L33

L11 L21 L31

0 L22 L32

0 0 L33



L11
2 L11L21 L11L31

L11L21 L21
2  L22

2 L21L31  L22L32

L11L31 L21L31  L22L32 L31
2  L32

2  L33
2

.

By Sylvester’s Criterion, A11  0, so by comparing entries:

L11  A11 , and we also get:

L21  A21/L11  A21/ A11 , and

L31  A31/L11  A31/ A11 .

Now, for the 2nd column, we must first solve:

A22  L21
2  L22

2

 A21
2 /A11  L22

2 , or

L22
2  A22  A21

2 /A11

 A11A22  A21
2 /A11.

But again, we notice that A11A22  A21
2 is detA2 , so it is again positive (we defined A2 in

Sylvester’s Criterion). Since A11 is also positive, we now get:

L22  detA2 /A11 .
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Now we must solve for L32 from:
A32  L21L31  L22L32, or
L32  A32  L21L31 /L22  A32  A21A31/A11 /L22.

Finally, we must solve for L33 from:
A33  L31

2  L32
2  L33

2

 A31
2 /A11  A32  A21A31/A11 2/A11A22  A21

2 /A11   L33
2

 A31
2 /A11  A11A32  A21A31 2/A11A11A22  A21

2   L33
2 , or

L33
2  A33  A31

2 /A11  A11A32  A21A31 2/A11A11A22  A21
2 


A11A33A11A22  A21

2   A31
2 A11A22  A21

2   A11A32  A21A31 2

A11A11A22  A21
2 

.

Expanding and then simplifying the numerator above yields:

A11A11A22A33  A21
2 A33  A31

2 A22  A11A32
2  2A32A21A31 

 A11detA,

and so we get:
L33

2  detA/detA2 .

In the n  n case, we have the general formulas:

L ii  A ii 
j1

i1

L i,j
2 

detAi 

detAi1 
, and

L ij  1
L jj

A ij 
k1

j1

L ikL jk ,

where A0  1, and Ai is defined in Sylvester’s Criterion.

Incidentally, a positive semi-definite matrix also has a Cholesky Decomposition, however, it is not
unique, and its construction is via a limiting process (in other words, it is not explicit as we saw above).
We can thus put together our two previous Theorems:

Theorem — Equivalence of Cholesky Decomposition:
Let A be a symmetric n  n matrix. Then:
A is positive definite if and only if there exists a unique, invertible, lower triangular n  n
matrix L such that A  L  L.
A is positive semi-definite if and only if there exists a lower triangular n  n matrix L
such that A  L  L.

Example: For the sake of brevity, let us do a 2  2 example. We saw that:

A 
10 6
6 4
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is positive definite. According to the algorithm above:

L11  A11  10 ,

L21 
A21
L11

 6
10

, and

L22 
detA

A11
 40  36

10  2
10

.

Thus:

L  1
10

10 0
6 2

, and L  1
10

10 6
0 2

.

We easily check that:

LL  1
10

10 0
6 2

10 6
0 2

 1
10

100 60
60 40


10 6
6 4

 A. 

Q Defines a Bilinear Form

We saw in Chapter 6 that an inner product u |v  on a vector space V is a bilinear form, that is, it is
symmetric, additive and homogeneous. Furthermore, we required that u |u   0 for all non-zero
vectors u. We now see that quadratic forms are related to these bilinear forms:

Definition/Theorem: A quadratic form Qx1, x2, . . . , xn  defines a bilinear form on n,
that is, a real-valued function u |v Q, given by:

u |v Q  v Qu .

This means that the function u |v Q is symmetric, additive and homogeneous.
Q is positive definite if and only if u |vQ defines an inner-product on n.

Proof: To prove symmetry, we compute:

v |u Q  u Qv 

 v Qu 

 v Qu 

 u |v Q
  u |v Q.

using the symmetry of Q and the properties of the transpose operator. Note that we regarded the
number u |v Q as a 1  1 matrix in the final step, that is, a real number. Additivity and homogeneity
will be left as straightforward Exercises. Finally, we know that Q  0 if and only if u Qu   0
for all non-zero u, and this is equivalent to u |u Q  0. 
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Example: In Chapter 7, we showed that if A is an invertible n  n matrix, then the bilinear form on n

defined by:

u |v   Au   Av 
is actually an inner-product on n. We can now prove this in a slightly different way. Using the
matrix form of the dot product, we get:

Au   Av   Av Au 
 v AAu ,

and thus if we let Q  AA, then Q is positive definite since rankA  n, and thus Q defines an
inner product on n.

The Complex Case

We defined a complex quadratic form Q such that Q is a Hermitian matrix. By the Spectral
Theorem, we can still define its definite type in exactly the same way as the real case, and equivalently
for Hermitian matrices, but substituting the adjoint for the transpose. Thus, for example, we can state:

Theorem: The following are equivalent for a Hermitian matrix Q:
1. Q is a positive definite complex quadratic form.

2. All of the eigenvalues of Q are positive.

3. For all non-zero z  n:  z Q z   0.

We can write similar equivalences for the other three definiteness types.
The closure properties and Sylvester’s Criterion are still valid. We can rephrase the Cholesky
Decomposition as:

Theorem — Cholesky Decomposition: Let A be a Hermitian, positive definite n  n
matrix. Then there exists a unique, lower triangular n  n matrix L such that the entries on
the diagonal of L are positive, and:

A  L  L  U  U,
where U  L is upper triangular.

Applications

Positive semi-definite matrices appear as covariance matrices in Statistics. A random variable X  
has a mean value or expected value, denoted by :

  EX.
If X is a discrete random variable (for example, the number of dots appearing in a throw of a die), then
 is simply the sum of the outcomes divided by the number (or count) of the outcomes (i.e. how many
outcomes are possible). For a continuous random variable, its mean is defined to be the integral of its
density function with respect to its probability measure. The variance 2 of a random variable is
defined by:
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2  varX  E X  2 .

The covariance matrix generalizes the concept of a variance when we deal with several random
variables at the same time, say X1, X2, , Xn  . We assemble them in a column matrix:

X 

X1

X2



Xn

.

We can define the expected value EX of X simply to be the column matrix whose entries are EX i .
From this, we can define the covariance matrix:

  covX  EX  EXX  EX .

Because  has the form BB, we know that it is symmetric and positive semi-definite. Conversely, it
can be shown that any positive semi-definite matrix is the covariance matrix for some column matrix X
consisting of random variables.

The entry i,j is a measure of the linear coupling between the random variables X i and X j. But because
 can be diagonalized, there is a change of variables Y  UX such that:

/  covY
is a diagonal matrix. This means that two distinct random variables Yi and Yj are uncorrelated, or
essentially independent of each other.

We are sometimes interested in computing the square root of a matrix A. There are, however, at least
two possible conventions or definitions for this. The first one is the generalization of the square root of
a number: B is a square root of A if:

A  B2.
Unfortunately, such a square root need not be unique, in the same way that there are two real numbers
x that solve the equation 4  x2. But if A happens to be positive semi-definite, then there is a unique
positive semi-definite matrix B such that A  B2. This is analogous to the unique positive square root
of a positive real number. It is easily computed using our diagonalization:

A  CDC1,
where D  Diag1, 2,  , n , and every  i  0. Thus we can define:

D  D1/2  Diag 1 , 2 ,  , n ,

and from this, we can construct:

B  A  C D C1.
We easily see that B2  A and B is positive semi-definite as well.
The second definition of a square root involves the adjoint or transpose: B is a square root of A if
A  BB. The Cholesky Decomposition A  L  L  U  U obviously yields a square root of A
under this definition.
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9.6 Exercises

For Exercises 1 to 9: Determine the definiteness type of the quadratic form Q in the corresponding
Exercise in Section 9.4.

For Exercises 10 to 16: Determine the definiteness type of the quadratic form Q in Exercises 14
through 20, respectively, in Section 9.4.

For Exercises 17 to 23: Use the Cholesky-Crout Algorithm to find the Cholesky Decomposition
A  L  L (or L  L, in the complex case) of the following positive definite matrices A:

17.
3 5
5 12

18.
3 4
4 7

19.
4 1  3i

1  3i 7

20.
5 3  2i

3  2i 4

21.
5 0 1
0 5 0
1 0 5

22.
2 1 1
1 2 1
1 1 2

23.
5 0 1
0 5 0
1 0 5

For Exercises 24 to 30: Find B  A for the following positive semi-definite matrices A,
that is, find a positive semi-definite matrix B such that A  B2.

24.
9 3
3 1

25.
4 2
2 1
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26.
10 6
6 5

27.
6 2
2 3

28.
2 1 1
1 2 1
1 1 2

29.
5 1 1
1 5 1
1 1 5

30.
5 0 1
0 5 0
1 0 5

31. Let Qx1, x2, . . . , xn  be a quadratic form in n variables. Show that the bilinear form:

u |v Q  v Qu 

is both additive and homogeneous.

32. Use induction to prove the formula for the entries L i,j of L in the Cholesky-Crout algorithm for
general n  n positive-definite matrices.

33. Prove that if A is a positive semi-definite matrix, then there exists a unique positive semi-definite
matrix B such that A  B2. Hint: use the ideas at the end of the Section.
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9.7 The Fundamental Theorem of Linear Algebra

We have arrived at the climax of our journey. The Fundamental Theorem of Linear Algebra neatly ties
together several key concepts: the rowspace, columnspace and nullspace of any matrix A, as well as its
transpose, and the concepts of eigenvectors, isomorphism, orthogonality, and definiteness.
Suppose that T : n  m is any linear transformation, with m  n standard matrix T  A. We
know that the n  m transpose matrix A represents another linear transformation, that we will call T,
the adjoint transformation of T:

T : m  n, with T   A.
It is therefore natural to ask: is there a geometric connection between T and T?

 
Rn

v T

.

.

.

T .
T  ( u ).

Rm

T ( v )
u

Rn Rm

.

T and its Adjoint T

The key is to compose the two transformations in both orders:
T  T : n  n, and
T  T : m  m,

with standard matrices AA and AA, respectively. We have seen that:

AA  AA   AA.
Thus T  T, and analogously T  T, are both symmetric. Note that both of these are operators, but
they may be operating on different Euclidean spaces, in general, if n  m. Moreover, there is
absolutely no reason for T  T or T  T to be the identity operator, and so after we complete each
round trip, in general we will end up at a different vector from where we started:

 
Rn

v
T

.

.

.

T .
T  ( u ).

Rm

T ( v ) u

Rn Rm

.. T 

.T
T   T  ( u )°

T    T ( v )°

The Compositions T  T and T  T
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But since AA and AA are positive semi-definite symmetric matrices, every eigenvalue  of either
product is either zero (corresponding to the nullspace) or positive.
Now, suppose that v  n is an eigenvector for T  T with eigenvalue   , that is:

T  Tv  v, or as a matrix product: AAv   v .
Let us next multiply both sides on the left by A and apply the associative properties of matrix and scalar
multiplication, to get:

AAAv   Av , and by regrouping:

AA Av   Av .
This equation seems to be saying that  is also an eigenvalue for AA with eigenvector Av , but it is
possible that Av   0m. If so, then v  nullspaceA. But then AAv   0n, and since v is a
non-zero vector, this means that   0.

On the other hand, suppose   0. Since v  0n, v   0n either, by the Zero-Factors Theorem.
But since AAv   v , this tells us that Av  cannot be 0m, otherwise:

AAv   A0m  0n,

and so v   0n, a contradiction. Thus, if   0, we are guaranteed that  is indeed an eigenvalue
for AA, and Av  is an eigenvector for AA corresponding to .
Similarly, if u  m is an eigenvector for T  T with eigenvalue   0, then  is also an eigenvalue
for AA, and Au   n is a eigenvector for AA corresponding to . Thus, the positive eigenvalues
of AA are exactly the same as those of AA.
Now, let us put it all together: suppose that k  rankA  rankA   rankAA, and
1  2     j are the distinct positive eigenvalues of AA and AA. By the Spectral Theorem,
there exist orthonormal bases for n and m:

B  v1, v2, . . . , vk, vk1, . . . , vn  n, and
B /  u1, u2, . . , uk, uk1, . . . , um  m,

consisting of eigenvectors for AA and AA respectively. We may assume that the eigenvectors are
ordered so that vk1, . . . , vn is a basis for nullspaceA, if k  n, and similarly uk1, . . . , um is a
basis for nullspaceA , if k  m. But recall that the orthogonal complement of the nullspace of a
matrix is its rowspace, and thus v1, v2, . . . , vk is a basis for rowspaceA, and u1, u2, . . , uk is a
basis for rowspaceA   colspaceA. Thus, all four fundamental matrix spaces of A are involved.
For this reason, our result is known as the following:

Theorem — The Fundamental Theorem of Linear Algebra:
Let T : n  m be a linear transformation, with m  n standard matrix T  A. The n  m
transpose matrix A represents the adjoint transformation T : m  n. Then: both
compositions:

T  T : n  n, and T  T : m  m,
are symmetric and positive semi-definite operators with standard matrices AA and AA,
respectively. Thus,   0 for all of their eigenvalues.
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Moreover, all the positive eigenvalues of AA and AA are exactly the same. Suppose we list
these distinct eigenvalues in decreasing order as 1  2    k, and let:

Vi  EigAA, i  and U i  EigAA, i ,

for all i  1k. Then, for all i  j, i, j  1k:

Vi  Vj  0n and U i  U j  0m.

Furthermore, for every eigenvalue  i  0:

T : Vi  U i, and T : U i  Vi

are isomorphisms of eigenspaces (although they are not necessarily inverses of each other).
If rankT  r  rankT , there exist orthogonal bases:

B  v1, v2, . . . , vr, vr1, . . . , vn, and
B /  u1, u2, . . , ur, ur1, . . . , um,

for n and m respectively, consisting of eigenvectors for AA and AA respectively. The
first r vectors in B and B / are eigenvectors corresponding to the positive eigenvalues
1, 2,  , k, in that order, counting multiplicities.
The set v1, v2, . . . , vr is a basis for rowspaceA, the set u1, u2, . . , ur is a basis for
colspaceA, and:

T : Spanv1, v2, . . . , vr  Spanu1, u2, . . , ur, and
T : Spanu1, u2, . . , ur  Spanv1, v2, . . . , vr

are isomorphisms between the rowspace and the columnspace (again, not necessarily
inverses of each other).
By the Dimension Theorem: nullityT  n  r, and nullityT   m  r.
If n  r, then vr1, . . . , vn is a basis for kerT  nullspaceA, otherwise T is
one-to-one. Similarly, if m  r, then ur1, . . . , um is a basis for kerT   nullspaceA ,
otherwise T is one-to-one.

 

.

n

Rn

m

Rm

T

T *

.

. .nullspace (A T )

V2

Vj

V1

...

rowspace (A )

Uj

U1

U2
...

columnspace (A )



.

.





nullspace (A )

The Fundamental Theorem of Linear Algebra
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We remark that in the language of Chapter 4, the Fundamental Theorem says that the rowspace and
columnspace can be expressed as direct sums:

rowspaceA  V1  V2   Vk, and
colspaceA  U1  U2   Uk.

This means that every v  rowspaceA can be expressed uniquely as a sum v  v1  v2   vk,
where every vi  Vi  EigAA, i , and analogously for the members of colspaceA.

Example: Let T : 3  2 with standard matrix:

T  A 
1 1 1
1 2 1

.

The two rows are linearly independent, so rankT  2, and thus nullityT  1. On the other hand,
nullityT   0, so T is one-to-one. Let us compute the products:

AA 
1 1 1
1 2 1

1 1
1 2
1 1


3 2
2 6

, and

AA 

1 1
1 2
1 1

1 1 1
1 2 1



2 1 0
1 5 3
0 3 2

.

Both are, as expected, symmetric matrices. Their characteristic polynomials are:

p1  2  9  14    2  7, and

p2  3  92  14    2  7.

As predicted, they have common positive eigenvalues of   2 and 7.
The eigenspaces for AA are:

EigAA, 2  Span2,1, and

EigAA, 7  Span1, 2.

The eigenspaces for AA are:
EigAA, 2  Span3, 0, 1,

EigAA, 7  Span1, 5, 3, and

EigAA, 0  Span1,2, 3.

A quick check of dot products will verify that:
B   2,1, 1, 2, and

B /   3, 0, 1, 1, 5, 3, 1,2, 3

are orthogonal bases for 2 and 3, respectively. We can check that:
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T3, 0, 1 
1 1 1
1 2 1

3
0
1

 4,2  22, 1,

T1, 5, 3 
1 1 1
1 2 1

1
5
3

 7, 14  71, 2, and

T1,2, 3 
1 1 1
1 2 1

1
2
3

 0, 0.

Similarly, we see that:

T2,1 
1 1
1 2
1 1

2
1

 3, 0, 1, and

T1, 2 
1 1
1 2
1 1

1
2

 1, 5, 3.

Geometrically, this means that the lines Span3, 0, 1 and Span2,1 are mapped into each
other, and every round-trip stretches the original vector by   2:

3, 0, 1
T
 4,2

T
 23, 0, 1

T
 24,2

T
 

 
.

y

x
21

T *






1
2



.









T

The Eigenspaces of T  T in 3 and of T  T in 2

Similarly, the lines Span1, 5, 3 and Span1, 2 are also mapped into each other, with every
round-trip stretching the original vector by   7:

1, 5, 3
T
 7, 14

T
 71, 5, 3

T
 77, 14

T
 

The nullspace Span1,2, 3 is sent by T to 02, whereas T is one-to-one. 
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The Operator Case

If T : n  n is an operator, then the eigenspaces of T  T and T  T are both in n. However,
there is no guarantee that they will be the same subspaces of n for the same . In general, they are
not.

Example: Let T : 2  2 with standard matrix:

T  A 
2 1
3 2

.

Then we have:

AA 
2 3
1 2

2 1
3 2


13 8
8 5

, and

AA 
2 1
3 2

2 3
1 2


5 8
8 13

.

They share the characteristic polynomial:

p1  2  18  1  p2.

Thus, they are both invertible, and have common positive eigenvalues of   9  4 5 .
Surprisingly, the eigenvectors of these two matrices involve the Golden Ratio
  1  5 /2  1. 618 and its conjugate   1  5 /2  0. 618. We saw these numbers
when we studied the Fibonacci Numbers and Recurrence Relations. They satisfy the equations:

    1,   1, and
2    1  0  2    1.

We can rewrite our eigenvalues as:

9  4 5  9  8 1  5
2  4  8  5  17. 94 and 8  5  0.06

Now for their eigenspaces:
EigAA, 8  5  Span, 1,

EigAA, 8  5  Span, 1,

EigAA, 8  5  Span1, , and

EigAA, 8  5  Span1,.

We remark that indeed we could have chosen 1, as a basis for the last eigenspace, but we chose
1, for reasons that will become clearer when we discuss the Singular Value Decomposition or
SVD.
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Now, we can check that:

, 1  , 1    1  1  1  0  1,   1,,

so the pairs of eigenspaces are indeed orthogonal. Now we can see where each eigenvector goes to
under the appropriate operator:

T, 1 
2 1
3 2



1


2  1
3  2

 2  11, ,

T, 1 
2 1
3 2



1


2  1
3  2

 2  11,,

T1,  
2 3
1 2

1



3  2
2  1

 2  1, 1,

T1, 
2 3
1 2

1



3  2
2  1

 2  1, 1.

Observe that:

2  12  42  4  1  4  1  4  1  8  5  1,

and similarly, 2  12  8  5  2. Furthermore, both 2  1  4. 24 and 2  1  0. 24 are
positive. This will be relevant when we discuss the SVD. Thus we get:

, 1
T
 2  11, 

T
 8  5, 1

T
 34  211, 

T
 

and similarly:

, 1
T
 2  11, 

T
 8  5, 1

T
 34  211, 

T
 

It should not be a surprise that Fibonacci Numbers are starting to appear as coefficients. Finally, we
show the two eigenspaces below:

 y

x21






1
2

.

.



y

x21






1
2

.

T  *

T




The Eigenspaces of T  T and T  T. 
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The Complex Case

Our previous Theorem generalizes naturally when T : n  m. In this case, T  A may have
imaginary entries, and so we form A  A, the Hermitian adjoint of A. As seen in Chapter 8, the
matrices AA and AA are Hermitian, and thus their eigenvalues are once again pure real numbers. By
our theory on Quadratic Forms, both matrices are again positive semi-definite, and so all eigenvalues
are positive or zero. However, we now obtain orthonormal bases for n and m under the usual
complex inner-product u |v   v  u.
Once again, AA and AA have exactly the same positive eigenvalues, and
T : EigAA,   EigAA,  and T : EigAA,   EigAA,  are isomorphisms if   0.

Example: Let T : 2  3 with standard matrix:

T  A 

1 i
0 1
i 0

.

The columns are obviously linearly independent, and so rankT  2. Thus nullityT  0, and
nullityT   1.
The adjoint operator T : 3  2 has standard matrix:

T   A 
1 0 i
i 1 0

.

(recall that we take the conjugate of the transpose). Let us form the two products:

AA 
1 0 i
i 1 0

1 i
0 1
i 0


2 i
i 2

, and

AA 
1 i
0 1
i 0

1 0 i
i 1 0



2 i i
i 1 0
i 0 1

Observe that these matrix products are not symmetric, but they are Hermitian. The characteristic
polynomials of these two matrix products are:

charpolyAA,  det
  2 i

i   2

   22  i2

 2  4  3    1  3, and
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charpolyAA,  det
  2 i i
i   1 0
i 0   1

   2  12  0  0  i2  1  0  i2  1

   2  12  2  1

   1  2  1  2

   12  3    1  3.

Thus, the eigenvalues are pure real and non-negative as expected, and both compositions share the
common eigenvalues of   1 and   3. We can find the eigenspaces for AA:

EigAA, 1  Span0,1, 1,

EigAA, 3  Span2, i, i, and

EigAA, 0  Span1, i, i.

We remark that it is only by coincidence that we are able to find an eigenvector for   1 with pure
real components. Similarly the eigenspaces for AA are:

EigAA, 1  Spani, 1, and

EigAA, 3  Span1,i.
We can easily check that:

B   0,1, 1, 2, i, i, 1, i, i, and

B /   i, 1, 1,i

form orthogonal bases, respectively, for 3 and 2 (recall that we need to apply the conjugate to the
2nd vector), so for example:

 2, i, i |1, i, i   2, i, i  1, i, i  2, i, i  1,i,i  2  i2  i2  0.

Similarly, we can verify that:

T0,1, 1 
1 0 i
i 1 0

0
1
1

 i, 1,

T2, i, i 
1 0 i
i 1 0

2
i
i

 3,3i  31,i, and

T1, i, i 
1 0 i
i 1 0

1
i
i

 0, 0.
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Thus, they are indeed sent to the corresponding eigenspaces when   0. Likewise:

Ti, 1 
1 i
0 1
i 0

i
1

 0,1, 1, and

T1,i 
1 i
0 1
i 0

1
i

 2, i, i.

We can thus see that EigAA, 1 and EigAA, 1 are mapped into each other, and similarly that
EigAA, 3 and EigAA, 3 are mapped into each other.
Unfortunately, we cannot directly visualize the action of complex transformations. 

9.7 Exercises

For the following matrices A, the standard matrix for some linear transformation T: (a) Find a basis of
each eigenspace of AA and AA (or AA and AA, in the complex case); (b) Show explicitly that the
image under T of each eigenvector that you found in (a) for AA is an eigenvector for AA, and
similarly that the image under T of each eigenvector for AA is an eigenvector for AA.

1.
3 0 1
0 4 0

2.
0 3
2 0
0 5

3.
2 0
3 2

4.
3 1
1 5

5.
0 1 2
4 2 1

6.
3 1
1 2
1 1

7.
2 5 2
2 3 2

8.
1 3 5
3 1 2

9.
3 1 2 1
5 2 3 7

10
3 2 4 2
4 2 3 1

11.
3 1 2 1
5 2 3 7
6 7 11 11

12.

1 1 2
1 1 1
1 2 1
2 1 1

13.
1 i 2i
i 1 1

14.
1 3
3 1
5i 2i

15.
1 5  i 3
3 2  i 1
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9.8 The Singular Value Decomposition

We are now ready to present a powerful tool in modern applications: the Singular Value
Decomposition or SVD. A linear transformation T : n  m can often be a complicated function.
However, we do know that the easiest ones to understand are the operators with diagonal matrices.
For example, suppose T : 2  2 is given by:

Tx, y  3x,2y, and thus:

T  
3 0
0 2

.

We can immediately draw what happens to our basic box under T:

 y

x21






1
2

.

T

y

x
21







1
2

.

The Image of the Basic Box Under T   Diag3,2

The image of the basic box is not a square. However, it is still a rectangle. This is the next best thing,
even though it was stretched and reflected across the x-axis. In this case, we can think of the x and y
axes as orthogonal frames for our transformation. Now, let’s consider the horizontal shear operator
given by:

Tx, y  x  0. 5y, y, and thus:

T 
1 0. 5
0 1

We can see its effect on the basic box below:

 

1 1

.

T

The Image of the Basic Box Under a Horizontal Shear Operator
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This time, the image is no longer a rectangle. It is still a parallelogram because shear operators are
linear and invertible. The purpose of the SVD is essentially to find new orthogonal frames, both for
the domain and the codomain, that would describe our transformation simply by using scalar
multiplication as in the diagonal case above. Intuitively, we can do this by rotating the basic box, little
by little, and finding out what its image is under the transformation. Once the image is again a
rectangle, we have geometrically found its SVD.
The angle between our image vectors is tan12  630. Let us try rotating the basic box by 300 and
see what happens to the angle between our image vectors. The new orthonormal frame has basis:

3 /2, 1/2 , 1/2, 3 /2 .

The images of these two vectors are approximately 1. 116, 0. 5 and 0. 067, 0. 866 :

 

1

.

1

.

.

T

The Image of 3 /2, 1/2 , 1/2, 3 /2 Under The Same Shear Operator

Using the Dot Product and the Law of Cosines, we find that the angle between our image vectors is
approximately 70. 30. Let us now rotate the basic box by 450 and see what happens. The new
orthogonal frame has basis:

1/ 2 , 1/ 2 , 1/ 2 , 1/ 2 .

The images of these two vectors are approximately 1. 0607, 0. 707 and 0. 354, 0. 707 :

 

1 1

.

T

The Image of 1/ 2 , 1/ 2 , 1/ 2 , 1/ 2 Under The Same Shear Operator

Similar computations will tell us that the angle between them is now approximately 82.90, so we are
probably about 70 from the correct angle of rotation. It turns out that this estimate is indeed very close
to the correct angle of rotation, which we will find more precisely using the SVD.
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The Statement of the SVD Theorem

Before we formally state the SVD Theorem, let us motivate it by reviewing some results from recent
Sections, especially those found in The Fundamental Theorem of Linear Algebra:
Let T : n  m be a linear transformation, with m  n standard matrix T   A. We can create T,
the adjoint transformation, T : m  n, where T   A, an n  m matrix. We can form both
compositions:

T  T : n  n, and T  T : m  m,

with standard matrices T  T   AA and T  T   AA, respectively. Both AA and AA are
symmetric and positive semi-definite. Furthermore, they share the same positive eigenvalues 1, 2,
, r, where r  rankAA  rankAA . If   0 is a shared eigenvalue, then the restrictions:

T : EigAA,   EigAA,  and T : EigAA,   EigAA, 

are both isomorphisms of eigenspaces, although not necessarily inverses of each other. For the SVD,
we will also need to generalize the concept of a diagonal matrix:

Definition: Let D be any m  n matrix. We say that D is diagonal if D i,j  0 if i  j. Thus,
D can be written in block form as:

D 
D /

0
if m  n, or D  D / 0 if m  n

for some (ordinary) square diagonal matrix D /, and some appropriate zero matrix 0.
This new definition coincides with the old when m  n.

We can now state the Singular Value Decomposition Theorem:

Theorem — The Singular Value Decomposition:
Any m  n matrix A with rank r can be factored in the form:

A  UV, where:

 U is an m  m orthogonal matrix whose columns are eigenvectors of AA;
  is an m  n diagonal matrix whose diagonal entries consist of the singular values of A:

 i   i , i  1 r,

where 1 through r are the positive eigenvalues of AA;
 V is an n  n orthogonal matrix whose columns are eigenvectors of AA.

Proof: Since AA is symmetric and positive semi-definite, we can order its eigenvalues in decreasing
order:

1  2    r, 0, 0, , 0,

where the number of 0’s is nullityAA, and all the  i are positive. By the Spectral Theorem, we can
construct an orthonormal basis v1, v2,  , vn for n consisting of unit eigenvectors of AA, where
vi is an eigenvector corresponding to  i (the last n  r vectors form a basis for the nullspace of AA, if
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need be). However, if i  r, every Avi  Tvi  is now a member of the  i eigenspace of AA, where
T is the linear transformation represented by A. Since  i  0, we can define:

ui  1
 i

Avi  1
 i

Avi, or Avi   iui, for i  1 r.

The restriction of T on each eigenspace is an isomorphism on the eigenspaces for 1 through r, so the
set u1, u2,  , ur of eigenvectors for AA in m is linearly independent. Furthermore, we can
prove that this is also an orthonormal set:

ui 
uj   1

 i
Avi 

 1
 j

Avj   1
 i j

vi 
AAvj 

 1
 i j

vi 
 jvj  

 j
 i j

vi 
vj ,

so if i  j, we get  i/ i
2  1, and if i  j, we get 0 since vi is orthogonal to vj.

Now, for the final ingredient, let us find an orthonormal basis ur1, ur2,  , um for the nullspace of
AA. Since eigenvectors from distinct eigenspaces are orthogonal, the combined set u1, u2,  , um
is an orthonormal set.
We are now ready to assemble our three matrices. Let us start by forming
D /  Diag1, 2,  , n , where  i   i , for i  1n. Then we form:

U  u1 u2  um ,

V  v1 v2  vn , and

D 
D /

0
if m  n or D  D / 0 if m  n.

Note that in either case, all columns of D beyond column r and all rows beyond row r consist of zeroes.
Since V is orthogonal, V  V1, so we are done if we can show that AV  U.
Both products are m  n matrices. Column i of AV is Avi. If i  r, then Avi   iui, which happens to
be column i of U. If i  r, then Avi  0m, which is likewise column i of U (since column i of 
contains 0). Thus the two products are the same.

Remarks: The SVD is in the same spirit as some familiar processes:
 We know how to construct the matrix T B,B / of a linear transformation T with respect to bases

B and B / for the domain and codomain, respectively. This matrix is used via the three steps of
encode, multiply and decode. This is essentially what happens in the SVD: we encode using the
eigenvectors of AA (which are also called input vectors) found in the rows of V, multiply
this by the singular values in , then decode using the eigenvectors of AA (also called output
vectors) found in the columns of U.

 In Chapter 6, we attempt, when possible, to diagonalize a square matrix A:

A  CDC1.
The SVD is essentially a generalization of the diagonalization process to any matrix, whether it
is diagonalizable or not, and moreover, whether it is square or not. The big difference, though,
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is that the entries in D are actual eigenvalues of A, but the entries of  are the singular values
 i   i , where the  i are the positive eigenvalues of AA.

 We can also think of the SVD as a change of basis: A is the standard matrix of some linear
transformation T : n  m. If we let B be the basis for n consisting of the vi, and B / the
basis for m consisting of the ui, then B and B /  are both orthogonal, and T B,B / is a
diagonal matrix containing the singular values along the diagonal, so:

T   B / T B,B / B1  UV1  UV.

Shear Elegance

The shear transformations represented by:

1 k
0 1

and
1 0
k 1

,

where k  0, are good examples of operators that are not diagonalizable. However, now that we have
the SVD, we can look at them in an orthogonal way. Let us finish our example from the introduction:

Example: Let us find the SVD of our shear transformation T with matrix:

T   A 
1 0. 5
0 1

.

We will approximate to four decimal places. We form the matrix product:

AA 
1 0

0. 5 1
1 0. 5
0 1


1 0. 5

0. 5 1. 25
.

This matrix has eigenvalues 1  1. 6404 and 2  0. 6096, so the singular values are
1  1  1. 2808 and 2  2  0. 7808. The corresponding unit eigenvectors for AA are:

v1   0. 6154, 0. 7882, and v2  0. 7882, 0. 6154.
The corresponding eigenvectors for AA are:

u1  1
1. 2808

1 0. 5
0 1

0. 6154
0. 7882


0. 7882
0. 6154

, and

u2  1
0. 7808

1 0. 5
0 1

0. 7882
0. 6154


0. 6154

0. 7882

The final (approximate) SVD is:

1 0. 5
0 1


0. 7882 0. 6154
0. 6154 0. 7882

1. 2808 0
0 0. 7808

0. 6154 0. 7882
0. 7882 0. 6154

The orthogonal frame v1, v2 is transformed by T onto the orthogonal frame 1u1, 2u2, as
shown below:
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 y

x

.

.

T

y

x

.

.

.

v 1
v  2

1 u 1
2 u 2

Matching Pairs of Orthogonal Frames for a Horizontal Shear Operator

The u1 axis is scaled by 1  1. 2808, and the u2 axis is scaled by 2  0. 7808. The angle made by
v1 with the x-axis is approximately tan10. 7882/0. 6154  520, so this is the angle by which we
need to rotate the basic box to obtain matching orthogonal frames. This explains why the rotation by
450 gave us image vectors that were close to orthogonal.

Examples from the Previous Section

Let us complete the examples that we saw from The Fundamental Theorem of Linear Algebra by
finding their SVDs and showing their geometric meaning:

Example: We saw the 2  3 matrix:

A 
1 1 1
1 2 1

, with AA 

2 1 0
1 5 3
0 3 2

.

The characteristic polynomial of AA is:

p  3  92  14    2  7,

so our singular values are 1  7 and 2  2 .
This time, we need a basis of unit vectors for the eigenspaces of AA :

EigAA, 7  Span 1, 5, 3/ 35

EigAA, 2  Span 3, 0, 1/ 10 , and

EigAA, 0  Span 1,2, 3/ 14 .

Next, we compute u1  1
1

Av1 and u2  1
2

Av2:
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u1  1
7

1 1 1
1 2 1

 1
35

1
5
3

 1
7 5

7
14

 1
5

1
2

, and

u2  1
2

1 1 1
1 2 1

 1
10

3
0
1

 1
2 5

4
2

 1
5

2
1

.

We can see that these two vectors indeed form an orthonormal set. Our SVD is:

A  1
5

1 2
2 1


7 0 0

0 2 0
 1

70

2 5 2 3 2
3 7 0 7

5 2 5 3 5

.

We show below the “basic cube” in 3-space formed by v1, v2, v3 and the corresponding
orthonormal frame 1u1, 2u2.

 
.

y

x2






1
2

.

T

.

v  3
v  1

2 u 2

1 u 1
v  2

Matching Sets of Orthogonal Frames for a Transformation T : 3  2

The u1 axis is scaled by 1  7 , and the u2 axis is scaled by 2  2 . 

Example: We saw the operator with 2  2 matrix:

A 
2 1
3 2

, where AA 
13 8
8 5

.

The eigenvalues of AA are   9  4 5  17. 9437 and 0. 0557, which we wrote as:

1  8  5  2  12, and 2  8  5  2  12.

where   1  5 /2  1. 618 and   1  5 /2  0. 618. Thus we get:
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1  2  1  4. 236 and 2  2  1  0. 236.
We need unit vectors as bases for the eigenspaces:

EigAA, 8  5  Span , 1/   2 , and

EigAA, 8  5  Span , 1/   2 ,

where we used the simplification 2  1    1  1    2, and likewise 2  1    1. We now
multiply the 1st vector by 1

1
A to get:

1
2  1

2 1
3 2

 1
  2



1

 1
2  1  1

  2
2  1
3  2

 1
  2

1


,

where we used the fact that 2  1  22    2  2    3  2.

Similarly, for the 2nd vector, using 1
2

A, we get:

1
2  1

2 1
3 2

 1
  2



1
 1

  2
1


.

(This explains the choice of 1, as our eigenvector in the previous Section.) Finally, we get the
SVD:

A 

1
  2

1
  2



  2

  2

2  1 0
0 2  1



  2
1
  2



  2
1
  2

.

We show the new orthonormal frames below:

 
.

y

x

.

y

x2

.

T



2

v 1v  2

2 u 2

1 u 1

2

2



Matching Pairs of Orthogonal Frames for an Operator on 2
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The u1 axis is scaled by 1  4. 236, and the u2 axis is scaled by 2  0. 236. The angle made by v1
with the x-axis is tan11/  31. 70, so this is the angle by which we need to rotate the basic box to
obtain matching orthogonal frames. 

The Complex Case

The SVD also exists for any m  n matrix A with complex entries. As in previous generalizations,
every transpose is changed to the Hermitian adjoint, and orthogonal matrices are replaced by
unitary matrices. The SVD for A becomes:

A  UV, where:

 U is an m  m unitary matrix whose columns are eigenvectors of AA;
  is an m  n (real) diagonal matrix whose diagonal entries consist of

the singular values of A :
 i   i , i  1 r,

where r  rankA, and 1 through r are the positive eigenvalues of AA;
 V is an n  n unitary matrix whose columns are eigenvectors of AA.

Example: In the previous Section, we saw:

A 

1 i
0 1
i 0

, with AA 
2 i
i 2

.

The characteristic polynomial of AA is p    1  3, so our singular values are 1  3
and 2  1.
We normalize the bases for the eigenspaces of AA that we found before, and get:

EigAA, 3  Span  i, 1/ 2 , and EigAA, 1  Span i, 1/ 2 .

Now we find u1 and u2 :

u1  1
3

1 i
0 1
i 0

 1
2

i
1



2i/ 6
1/ 6
1/ 6

, and

u2  1
1

1 i
0 1
i 0

 1
2

i
1



0
1/ 2
1/ 2

.

As opposed to our previous Examples, the reverse product AA is bigger than AA, and so we need to
find a basis for the nullspace of:
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AA 
2 i i
i 1 0
i 0 1

, which has rref: R 

1 0 i
0 1 1
0 0 0

.

Thus, a basis for its nullspace is  i, 1, 1, which has length 3 . We normalize this vector and place it
in the last column of U, thus obtaining the SVD:

A  UV 
2i/ 6 0 i/ 3
1/ 6 1/ 2 1/ 3
1/ 6 1/ 2 1/ 3

3 0
0 1
0 0

i/ 2 1/ 2
i/ 2 1/ 2

. 

9.8 Exercises

For Exercises 1 to 5: For the following matrices A representing shear operators on 2: (a) Find the
SVD of A. You may approximate the entries to 5 decimal places; (b) Draw the orthogonal frames
v1, v2 and 1u1, 2u2, and show the action of A using these frames.

1.
1 0. 7
0 1

2.
1 1. 2
0 1

3.
1 0

0. 3 1

4.
1 0
0. 8 1

5.
1 2. 3
0 1

For Exercises 6 to 20: Find the SVD of the matching matrix in Exercises 1 to 15, Section 9.7.

826 Section 9.8 The Singular Value Decomposition



9.9 Applications of The SVD

The Singular Value Decomposition has numerous applications, both within Linear Algebra and in other
computational fields. We will look at a sampling of these applications, namely, how to use the SVD to
find the constant relating two proportional quantities, to compress data such as digital images, and to
solve the Least Squares Problem using a different approach.

Finding Constants of Proportionality

One of the most basic application of the SVD is to find the constant of proportionality between two
quantities, say x and y, if one is in direct proportion to the other. Given a sample of n ordered pairs
x i, y i , we can try to solve for the constant of proportionality k in the proportion y  kx by studying
the SVD of this data set, and at the same time, determine if it is indeed reasonable to assume that y is
proportional to x.

Example: An ideal spring obeys Hooke’s Law:
F  kx,

where F is the magnitude of the force that the spring exerts when it is stretched from its rest length by a
distance of x. Suppose we ran the following experiment:

 

x

 rest
length

stretched
   length

.

.

m

An Experimental Set-Up to Investigate Hooke’s Law

1. Hang a spring from a supporting stand and let it dangle freely.
2. Measure its rest length.
3. Hang a small, known mass m, with units in grams, from the bottom of the spring.
4. Measure the stretched length of the spring and subtract the resting length. This difference is x,

which we will take to be in centimeters.
5. Repeat steps 3 and 4 using several masses.

Since the weight of the hanging mass is F  mg, where g is the acceleration due to gravity, we will
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simply try to find k in the equation mg  kx (converting m to kilograms first). Now, suppose we obtain
the following data:

m 20 40 60 80 100
x 4.7 9.1 13.9 18.2 22.6

The observations seem to indicate that m and x are indeed proportional to each other, as we show on a
graph below with an approximate line that is close to the points:

 x

4020

5
10

.

15
20
25

m8060 100

.

.

. . . .

We would like to know the slope of the line that best approximates this data set. Let us create the 2  5
matrix:

A 
20 40 60 80 100
4. 7 9. 1 13. 9 18. 2 22. 6

Using technology, we find that the SVD of A is:

A  UV 
0. 97506 0. 22196
0. 22196 0. 97506

152. 12 0 0 0 0
0 0. 31908 0 0 0

V

where V is a 5  5 orthogonal matrix (fortunately we will have no need for the actual entries of V).
Thus, the singular values of A are 1  152. 12 and 2  0. 319. The first singular value is obviously
dominant, and it is reasonable to assume that the second singular value (which is practically zero) is
only due to small experimental errors (also called noise) or imperfections in the spring. Thus it is
reasonable to conclude that m is proportional to x. The dominant singular value, though, does not give
us the spring constant k. The answer lies in the eigenvectors found in the output matrix U. The first
column corresponds to the dominant singular value. This tells us that our data should be clustered close
to this eigenvector, u1  0. 975, 0. 222. This vector defines a line through the origin of slope:

0. 222
0. 975  0. 2277

Thus:

x  0. 2277  m
Solving for the spring constant, we get:

mg  kx, or

k  mg
x  9. 8

1000  0. 2277  0. 04304 N/cm. or 4.304 N/m,

where we needed the factor of 1000 because our masses were measured in grams.
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The SVD and Data Compression

One of the most important applications of the SVD is in the compression of data. A good example is a
digital photograph. Many digital cameras routinely take pictures of 3000 pixels by 4000 pixels, each
pixel being assigned a color from a template of hundreds of possible hues. As a result, a simple picture
can be several megabytes in size — large enough to try your patience when e-mailing several of them
to your family and friends.

But the same picture can often be easily compressed into a much smaller format, one that is good
enough to be seen and admired though not necessarily worth framing. Our megabyte-sized picture can
shrink to 300 kilobytes without much visible loss of quality. Many photo editing software have this
feature, which you have probably tried yourself. The key idea behind this neat trick is of course the
SVD.

To see the principle, let us look at an alternative formula for the SVD. We know that multiplying any
matrix U by a diagonal matrix  on the right will simply result in each column of U being multiplied by
the corresponding diagonal entry in , thus:

U  1u1 2u2  kuk 0m  0m ,

since every entry in  beyond k is 0. But then, we get:
A  UV 

 1u1 2u2  kuk 0m  0m

v1


v2




vn


 1u1v1
  2u2v2

   kukvk
.

This final sum is called the outer product expansion of A. Normally, we view the matrix on the left,
U, in terms of its rows, and the matrix on the right, V , in terms of its columns. We are doing the
exact opposite of this convention.

Our sum above gives another improvement in our SVD formulation: recall that the vi’s are
eigenvectors for AA. The summation says that we do not need the eigenvectors corresponding to the
nullspace   0. Thus:

A  UV 
i1

k

 iuivi
  1u1v1

  2u2v2
   kukvk

.

Let us look at this equation in terms of the amount of essential data we need to describe A completely.
We need k terms, each term involving a single number (the singular value), an m  1 vector the ui
and an n  1 vector (the vi

. Thus each term contains 1  m  n numbers. The total cost of the SVD is
thus:

1  m  nk numbers.
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But recall that k  rankA  minm, n, and in some cases, k is a lot smaller than both m and n.
Moreover, suppose that A is a large matrix and we are only interested in an approximation for A.
Since the singular values are arranged in decreasing order, it might be possible that by adding fewer
than k terms, we can get a “good” approximation for A.

This is where data compression comes in: Let us say that each pixel could take on a “color” value
between 0 and 255, and thus a single byte of memory (8 binary digits) is needed to represent one pixel.
Now, we can represent our photograph of 3000 by 4000 pixels to be a 3000  4000 matrix, with each
entry costing one byte of memory. This photograph will therefore cost around 12 megabytes of
memory. If we keep only 500 terms in the SVD summation formula, we will need only
1  3000  4000  500  3, 500, 500 bytes, for a savings of about 70%.

Example: Let us represent a “photograph” using a 4  6 matrix whose entries are from 0 through 3
(representing four “colors”). For example, suppose:

A 

3 2 3 2 1 0
2 3 2 1 0 1
1 2 2 2 1 0
1 3 3 2 2 1

.

Notice that the numbers do not change drastically as we move side to side or up and down the matrix.
In the same way, colors in pictures do not change much from pixel to pixel, except possible at the edge
of an object, such as the wall or roof of a building. Using technology, we find the singular values of A
to be approximately:

9, 1. 938, 1.67 and 0. 672
Notice that we have a dominant singular value, 9, followed by two smaller singular values, and the last
one can definitely be disregarded. Using only the first term 1u1v1

 in our outer product expansion, we
would get:

9

0. 555
0. 454
0. 405
0. 568

0. 394 0. 554 0. 565 0. 39 0. 233 0. 113



1. 968 2. 767 2. 82 1. 948 1. 164 0. 564
1. 61 2. 264 2. 31 1. 594 0. 952 0. 462

1. 436 2. 019 2. 06 1. 422 0. 85 0. 412
2. 014 2. 832 2. 89 1. 994 1. 19 0. 578



2 3 3 2 1 0
2 2 2 2 1 0
1 2 2 1 1 0
2 3 3 2 1 1

,

830 Section 9.9 Applications of The SVD



if we round off to the nearest “color.” Notice that 16 out of the 24 entries are already correct!
Furthermore, all the wrong entries are at most one “color” off. Now, if we use two terms in the outer
product expansion, we will get:

0. 555 0. 545
0. 454 0. 412
0. 405 0. 243
0. 568 0. 69

9 0
0 1. 94

0. 39 0. 55 0. 57 0. 39 0. 23 0. 11
0. 79 0. 13 0. 05 0. 19 0. 56 0. 14



2. 8 2. 64 2. 77 1. 75 0. 577 0. 416
2. 24 2. 17 2. 27 1. 44 0. 507 0. 349
1. 06 2. 07 2. 08 1. 51 1. 11 0. 481
0. 96 3 2. 95 2. 24 1. 93 0. 77



3 3 3 2 1 0
2 2 2 1 1 0
1 2 2 2 1 0
1 3 3 2 2 1

,

which only has 4 incorrect entries. By taking three terms, we get a matrix, which when rounded off to
the nearest integer entries, gives us precisely A. This should not be a surprise because the final singular
value is very close to 0. 

The savings and accuracy behind this idea are certainly more impressive when applied on a bigger and
more complex photograph using colors coded 0 through 255 instead of just 0 to 3. In this case, the
color represented by 173 would not be very different, say, from the color represented by 170 or 175.
Thus, minor errors in taking only a few terms in the outer product expansion often do not produce a
strikingly different photograph.

The Pseudoinverse and Least Squares Method

In Chapter 6, we discussed the Method of Least Squares that will find an approximate solution to any
system Ax  b, especially when this system is inconsistent. The method, however, required us to
identify a basis for the columnspace W of A first in order to perform the algorithm. By doing so, we can
find the projection projW b onto the columnspace, and thus the system:

Ax  projW b

is always consistent, and we call a solution x1 to this system a least squares solution or best
approximation to our linear system. The reason for this terminology is that the length Ax1  b is as
small as possible. The SVD gives us an alternative method to find an approximate solution x1 to
Ax  b so that Ax1  b has minimum length.
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First, we need to define the pseudoinverse of any matrix:

Definition: Let A be an m  n matrix with singular value decomposition:

A  UV .

Define by  the n  m diagonal matrix whose entries are 1/ i, where  i  0. In other
words, we can obtain  from  by taking its transpose and taking the reciprocal of its
singular values.
Now, define A, the pseudoinverse of A, by:

A  VU .

Example: We saw the SVD of A 
1 1 1
1 2 1

to be:

A  1
5

1 2
2 1


7 0 0

0 2 0
 1

70

2 5 2 3 2
3 7 0 7

5 2 5 3 5

.

Thus, its pseudoinverse is:

A  1
70

2 3 7 5
5 2 0 2 5
3 2 7 3 5



1/ 7 0

0 1/ 2
0 0

 1
5

1 2
2 1



 4
7

5
14

1
7

2
7

2
7

1
14

.

If we multiply A and A together, we get:

AA 

 4
7

5
14

1
7

2
7

2
7

1
14

1 1 1
1 2 1



13
14

1
7  3

14
1
7

5
7

3
7

 3
14

3
7

5
14

, and

AA 
1 1 1
1 2 1

 4
7

5
14

1
7

2
7

2
7

1
14


1 0
0 1

. 

The second order shows us that the term “pseudoinverse” is justified. However, this happened only
because A has rank 2, and thus  is I2. Unfortunately:
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1 0 0
0 1 0
0 0 0

.

In general, both  and  will be diagonal matrices containing k 1’s on the main diagonal starting
at the upper left corner, where k  rankA. However, if A is an n  n invertible matrix, then
rankA  n, and:

AA  UV  VU    UV VU 

 UInU   UU   U InU   In, and so:

A  A1.
For this reason, the pseudoinverse generalizes the concept of an inverse.

Let us now turn to how the pseudoinverse can be used to solve the Least Squares problem. The key
idea here is an equivalence was saw in Section 6.6: An n  n matrix Q is orthogonal if and only if
for any n  1 matrix x :

Q x  x,

that is, orthogonal transformations preserve lengths. Since U is orthogonal, we get:

Ax1  b  UV x1  b  U  UV x1  b

 U UV x1  Ub  V x1  U b

 y1  Ub ,

where y1  V x1. Once again, since V  is also orthogonal, y1  x1. Thus, the problem of
minimizing Ax1  b is equivalent to that of minimizing y1  U b . The easiest way to do this
is to zero out as many components as possible of y1  U b. Unfortunately, every entry in y1 from
the k  1 component onward is already 0, so there is not much we can do there. However, if we make
every entry of y1 from the 1st to the kth entry equal to that of U b, then we will get at least k zeroes
in y1  U b. In other words, the y1 that will minimize y1  U b is:

y1  U b, thus:

V x1  U b, and so:

x1  VU b  Ab.
We have thus proven the following:

Theorem: Consider the linear system Ax  b. The vector:

x1  Ab,

where A is the pseudoinverse of A, minimizes Ax  b and is therefore a least squares
solution to this system.
As before, all other least squares solution to this system have the form x1  x0, where
x0  nullspaceA.
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Example: Let us re-visit the inconsistent system we saw in Section 7.8:

4x1  8x2  3x3  9x4  7
3x1  6x2  4x3  13x4  15
2x1  4x2  3x3  9x4  9

The coefficient matrix is:

A 

4 8 3 9
3 6 4 13
2 4 3 9

.

Using technology, we find that the SVD of A is:

A 

0. 5514 0. 8336 0. 0324
0. 6874 0. 4319 0. 5840

0. 4728 0. 3443 0. 8111



21. 72 0 0 0
0 6. 186 0 0
0 0 0 0



0. 2400 0. 4800 0. 1157 0. 8358
0. 2183 0. 4366 0. 8506 0. 1957
0. 1412 0. 6862 0. 5046 0. 5046
0. 9353 0. 3287 0. 0927 0. 0927

.

Its pseudoinverse is thus:
A  VU



0. 2400 0. 2183 0. 1412 0. 9353
0. 4800 0. 4366 0. 6862 0. 3287
0. 1157 0. 8506 0. 5046 0. 0927
0. 8358 0. 1957 0. 5046 0. 0927



0. 04604 0 0
0 0. 16166 0
0 0 0
0 0 0



0. 5514 0. 6874 0. 4728
0. 8336 0. 4319 0. 3443
0. 0324 0. 5840 0. 8111



0. 03551 0. 00765 0. 00693
0. 07102 0. 01529 0. 01385

0. 11169 0. 06305 0. 04986
0. 00516 0. 04012 0. 02909

.

Thus, our least squares solution is:

x1  Ab



0. 03551 0. 00765 0. 00693
0. 07102 0. 01529 0. 01385

0. 11169 0. 06305 0. 04986
0. 00516 0. 04012 0. 02909

7
15
9



0. 07145
0. 14314
0. 61266

0. 82749

.
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We can check that:

Ax1 

4 8 3 9
3 6 4 13
2 4 3 9

0. 07145
0. 14314
0. 61266

0. 82749



7. 0404
14. 28
10. 001

,

which is “close” to b  7, 15,9. On the other hand, the solution that we found in Section 6.8 was:

x1  71
25 , 0, 36

25 , 0  2. 84, 0,1. 44, 0.

This means that the difference between our two answers must be a member of the nullspace of A :

0. 07145,0. 14314,0. 61266, 0. 82749  2. 84, 0,1. 44, 0
 2. 7686,0. 14314, 0. 827 34, 0. 82749, and indeed:

4 8 3 9
3 6 4 13
2 4 3 9

2. 7686
0. 1431

0. 8273
0. 8275



0. 00015
0. 00105
0. 00075

 03. 

9.9 Exercises

The use of technology is highly recommended for all of the Exercises in this Section.

For Exercises 1 to 3: Assuming that the quantity y is proportional to x, use the SVD of a 2  n
matrix to approximate the constant of proportionality k so that y  kx.

1.
x 2.1 3.5 4.2 5.5 6.8
y 9.8 16.3 19.9 26.3 32.4

2.
x 5.2 7.8 9.3 10.7 11.4 14.3
y 37.7 56.7 68.1 78.3 83.4 104.2

3.
x 3.5 8.2 11.3 17.8 22.1 25.7 31.8
y 32.7 77.3 106.7 167.8 207.3 241.3 298.7

For Exercises 4 to 6: Find the SVD of the matrix A, then use only the first two terms in the
outer product expansion to approximate A. Round off your answer to the nearest integer to
compare it with the original entries of A.

4.

3 2 1 1 0 1
2 2 2 0 1 2
3 3 2 2 2 3
2 2 1 1 1 2
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5.

2 1 1 2 2 3 2
1 0 1 1 2 2 3
2 1 2 2 3 3 2
3 2 2 3 3 2 2
3 2 1 2 2 1 1

6.

5 5 6 6 7 7 7 6 5 5
5 6 5 5 6 6 7 7 6 5
4 5 4 4 5 6 6 6 5 4
3 4 3 4 4 5 5 5 4 3
2 3 2 3 3 4 4 5 5 4
1 2 1 2 2 3 3 4 4 3

For Exercises 7 to 10: Find the pseudoinverse of the matrix A and use it to find a
least-squares solution to the (inconsistent) system Ax  b :

7. A 

2 6 3 5
1 3 0 1
3 9 2 1

; b 
1
0
4

8. A 

3 2 5
1 4 3
2 4 0
7 1 3

; b 

2
4
1
0

9. A 

2 1 1
1 3 2
3 4 9
4 2 3
6 3 4

; b 

5
2
1
3
5

10. A 

2 1 3 5
1 3 0 1
3 4 2 1
0 2 3 7
7 6 4 0

; b 

2
1
1
3
6
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Appendix A: The Real Number System

Linear Algebra is one attempt to generalize the notion of a real number. We developed the concepts of
Euclidean spaces and other vector spaces while assuming that we all know what real numbers are, how
to perform operations on them, and what their basic properties are. We took this all for granted. By the
time we become educated adults, we instinctively “know” what a real number is.
This is not surprising, considering our education, at least up to this point. We learn to count using
natural numbers at about the same time we learn the alphabet, colors, and the names of common
animals. Soon, we learn to perform simple addition and subtraction, then later basic multiplication or
our “times tables.” We talk about even numbers, odd numbers, and prime numbers. We learn how to
divide two natural numbers, but sometimes they don’t come out exactly whole, so we learn about
rational numbers or fractions, mixed numbers and decimals.
We need  to find the circumference and area of a circle, and perhaps by high school, we encounter
more unusual numbers, such as 2 and Euler’s number e. These are irrational numbers, and  and e
are special irrational numbers that are called transcendental. And finally (or is it?) we can create
imaginary and complex numbers, built from the imaginary unit i  1 . All these exotic animals
beg the question:
Just exactly what is a number?
In everyday life, numbers are concrete quantities: we need to know what our credit limit and
outstanding balances are before we can buy that HDTV. We do a headcount before setting the table,
watch our weight, glance at the speedometer when we spot a cop, frantically compute the average of
our exams, and count down the days until we turn 21.
But can a number exist without anything at all to make them concrete? If so, then what exactly is a
number? Can we make a number even if we have no fingers to count with, no rocks to chisel, no
ticking clocks to mark time, nothing at all to make a number physically represent a quantity? Thanks to
Mathematics, of course, the answer is yes.
We can, literally, make not just something, but everything out of nothing.
The following construction is essentially due to John von Neumann (who is also a major figure in early
Computer Science) and is called an Axiomatic Development of the real number system.

Part I. The Big Bang — How to Create Numbers

It all begins with the empty set. And so, we return to the fundamental Axiom that we encountered in
Chapter Zero:

Axiom — The Existence of the Empty Set: The empty set     exists.

This is a reasonable Axiom to accept because we can think of the empty set as a room with nobody in
it, and we have all seen a room like that. Once we agree that the empty set exists, we will say that it
represents the number zero. As usual, we will write this number as the symbol 0. Thus, technically,
the number 0 and the empty set are actually the same thing:

0  .
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This is the key concept: in order to create numbers without attaching any physical significance to them,
we will use sets to represent numbers. In the same way that light is both a particle (a photon) and a
wave (a probability distribution) according to quantum mechanics, sets will have a dual purpose: to
represent a collection of objects, and to represent a number.

So how about the number 1? If the empty set is a good symbol to represent 0 because it has nothing in
it, then we would probably want a set with one object in it to represent the number 1.

What object can we put inside this set? Well, we only know one object — the empty set. Thus we will
create:

1  .

Before we move on, let us make something very clear: the symbol  stands for the empty set, and the
symbol  stands for the set containing the empty set, and thus it is different from the empty set.

Thus, we now have two distinct objects:  and , representing, 0 and 1 respectively.

Great, we now have two distinct objects. This is convenient, because next we want to create the
number 2. And so we create:

2  ,  .

Hopefully, you can see the pattern emerging:

3  , , ,  

4  , , , , , , ,  

5  , , , , , , , ,
, , , , , , , 

6  . . .

and so on. More formally, we can recursively or inductively create every natural number: if we have
created the set representing n, then we can create the set representing n  1 by listing all the sets that
we used to create n, followed by the entire set that we used to represent n.

We can see above, for instance, that the set representing 5 contains the four sets that we used in the set
representing 4 (written on the first line), as well as the entire set that we used to represent 4 (written on
the second line, since they won’t all fit on one line). You are not seeing double!

Here’s a little notational shorthand notation. Notice that we can write our list above as:
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0  ,
1    0,
2  ,   0, 1,
3  , , ,   0, 1, 2,
4  , , , , , , ,   0, 1, 2, 3,

and thus by induction, we can write:

n  1  0, 1, 2, 3,  , n ,

Of course, this process is a bit cumbersome, but what is important is the idea behind this construction,
and the realization that we can create every natural number that we want. Thus, from out of the empty
set, we have created the infinite set of natural numbers:

  0, 1, 2, 3, . . . 

Thanks to the evolution of human culture, we have at our disposal a sophisticated method to write or
notate these natural numbers: the decimal (or base 10) system, which uses the digits 0, 1, . . . 9. By
assigning a weight to a place value, the number 5,127 will never be confused with 2,715, and our
system allows us to count up to any natural number. There are other useful numerical systems, such as
the binary (or base 2) system, that uses only 0 and 1, and its cousin the hexadecimal (or base 16)
system, that uses the symbols 0 through 9 but also A through F to represent 10 through 15. Both
systems are important in Computer Science.

Operations on 

Now that we have the natural numbers, how will we define arithmetic operations? How will we add,
subtract, multiply and divide two natural numbers?
Let’s see how we would define addition. This is a binary operation, which means we will take two
numbers x and y and produce a single number as the result or sum. We will now need a new symbol
for addition, which as usual will be “”. First of all, we want 0 to be our additive identity, so we will
agree to the following:

Axiom — The Additive Identity:
For all x   (and all other numbers that we will create in the future):

x  0  0  x  x.

How about adding two non-zero numbers? The idea is to reverse the process of creating the natural
numbers. We created 5 from the number 4. We will call 5 the successor of 4, and we will call 4 the
predecessor of 5. Notice that every natural number has a successor, but every natural number except 0
has a predecessor:
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Definition — Successors and Predecessors in :
For all x  , we will write the functions:

Sx for x  1, the successor of x, and
Px for x  1, the predecessor of x, if x  0.

The number 0 has no predecessor (at least for now).

To define the sum x  y, we will count down predecessors on the second term y as we count up
successors on the first term x, until y has been reduced to 0. Our Additive Identity Axiom gives us the
final answer. For example:

5  3  6  2  7  1  8  0  8.
In general, we can thus define addition inductively:

Axiom — Addition in : For all x, y  :

x  0  x, and
x  y  Sx  Py

 x  1  y  1, where y  0.

Under this definition of addition, we can prove the following well-known properties:

Theorem — The Commutative and Associative Properties of Addition in :
For all x, y, z  :

x  y  y  x, and
x  y  z  x  y  z.

Now that we know how to add two natural numbers, we can define how to multiply them. We will use
the symbol “" to represent this operation. Remember that multiplication is nothing more than repeated
addition. Thus, for example:

5  3  5  5  5  10  5  15.
Thus, to define the product x  y, we repeatedly add x to itself y times. Just like addition, though, we
can also define this inductively. However, under this logic, a product involving 0 will have no terms in
the sum (this is called an “empty sum”), which means the product is also 0. Thus we will define:

Axiom — Multiplication in : For all x, y  :
x  0  0,
x  1  x, and

x  Sy  x  y  1
 x  y  x.

Incidentally, we will adopt the usual convention in basic algebra that the operation of multiplication
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takes priority over addition, when both operations appear in an expression. Thus, in the right side of the
final line, we multiply x and y first before adding x to this product.
Notice that we built into this definition the property that 1 is the multiplicative identity. Under this
definition, we can prove:

Theorem — The Commutative, Associative and Distributive Properties of Multiplication
in :
For all x, y, z  :

x  y  y  x,
x  y  z  x  y  z, and
x  y  z  x  y  x  z.

The Rational Numbers 

We will next construct the positive rational numbers using the new symbol “ /”.

Axiom — Definition of Positive Rational Numbers:
We will say that a positive rational number is a symbol:

a/b,
where a, b   and a, b  0.
The set of all positive rational numbers is denoted .
In particular, if b  1, we will agree that the symbol a/1 represents the natural number a.
Thus, as usual, every non-zero natural number is also a positive rational number.
We will also agree that 0/b  0, as long as b  0.

However, we know that a fraction can sometimes be reduced, and so we need to know when two
symbols represent the same rational number:

Axiom — Equality in : Suppose that a/b, c/d  . We will say that:

a/b  c/d if and only if a  d  c  b.

As a nice by-product, we can say in particular that a/b  c/1  c if and only if a  c  b. This allows
us to decide when the natural number a is exactly divisible by the natural number b. Thus, as usual,
12/4  3 because 12  3  4, and we say that “12 is divisible by 4. " More generally, we will be able
to divide two natural numbers a and b, where b  0 :

Axiom — Quotients of Natural Numbers:
Suppose that a, b   and b  0. We will say that the quotient of a and b is the rational
number a/b. We call this process the division of two natural numbers.

Unfortunately, one side effect now is that we need to know how to add and multiply two members of
. Again, we are thankful for what we learned in grade school. Although we were encouraged to use
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the least common denominator when adding fractions, we are not required to do so because all we
need is a single rational number — any rational number — that will represent the sum. Thus, we will
simply define our two operations as follows:

Axiom — Addition and Multiplication in :
Suppose that a/b, c/d  . We will define:

a/b  c/d  a  d  b  c/b  d, and
a/b  c/d  a  c/b  d.

For example, 3/4  5/6  3  6  4  5/4  6  18  20/24  38/24  19/12.
The only operation missing now is subtraction. Up to this point, though, we have ordered only the
natural numbers, using the notion of successors and predecessors. We accept in everyday life that 8 is
bigger than 5, and 3/4 is smaller than 9/10. To avoid any problems with subtracting a bigger number
from a smaller number, we will first construct the set of negative rational numbers using, what else, but
an Axiom:

Axiom — The Existence of Negative Rational Numbers:
For every a/b  , we will create its negative or additive inverse, denoted by the symbol
a/b, with the property that:

a/b  a/b  0.
We will also agree that a/b  a/b.

At this point, we now have the set of all rational numbers, and in so doing, we have also created the set
of negative integers, or those rational numbers of the form a/1 (where a   and a is not 0), which
we will again simply denote as a. As mentioned in Chapter Zero, the set of all integers is denoted as:

   . . . ,3,2,1, 0, 1, 2, 3, . . . .

The symbol  comes from the word Zahlen, which is German for “number.” The set of all rational
numbers is denoted by:

  p/q |p, q  , and q  0 ,

where  comes from the word quotient. Notice that we have a “nesting” of the sets of numbers we
have created so far:

    .

All of these numbers came about from the humble empty set (and a few Axioms thrown in here and
there). Once again, though, creating new numbers require us to expand our definition of arithmetic to
include them. Let us do so by first defining successors and predecessor on the members of :
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Axiom — Successors and Predecessors in :
The predecessor of 0 is 1. For all a  , a  0, we have a  , and we define:

Sa  Pa  a  1 for the successor of  a, and
Pa  Sa  a  1 for the predecessor of  a.

Note that in the definitions above, a  1 and a  1 are the predecessor and successor of a in
, respectively.

Thus, all members of , whether natural numbers or not, now have a predecessor and a successor. For
example, the successor of 3 is 3  1  2, and the predecessor of 7 is 7  1  8. Since we
know arithmetic, we can more naturally say these as 3  1  2 and 7  1  8.
We are now in a position to add any two integers:

Axiom — Addition in :
Let a, b  , a, b  0. We have a, b  , and we define:

a  b  a  b,
a  b  Sa  Pb, and
a  b  Pa  Sb,

where we define the sums inductively in the 2nd and 3rd lines above.

For example, we have as usual:

 5  3  4  2  3  1  2  0  2.

Now that we know how to add two integers, subtraction comes for free:

Axiom — Subtraction in :
Let x, y  . We define:

x  y  x  y.

Lastly, for integers, we can define how to find any product. Since we have already done so for the
members of  that are in , we only have to worry about products involving negative integers. Aside
from some special cases, we must also account for signs as we normally do:

Axiom — Multiplication in :
Let a, b  , and thus a, b  . We define:

a  0  0,
a  1  a,
a  b  a  b,
a  b  a  b, and

a  b  a  b.
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So, as usual, 4  3  12 and 5  7  35.
And now, for our grand finale, we can define arithmetic in :

Axiom — Equality, Addition, Subtraction, Multiplication and Division in :
Suppose that p/q, r/s   (thus q, s  0. We will define:

p/q  r/s if and only if p  s  q  r,
p/q  r/s  p  s  q  r/q  s,
p/q  r/s  p  s  q  r/q  s,

p/q  r/s  p  r/q  s, and
p/q/r/s  p  s/q  r,

where r  0 in the final rule.

It certainly took a lot of work just to create all the rational numbers and the rules on how to perform
basic arithmetic on them. Let us review the big steps:

1. Believe in the existence of the empty set    .
2. Create the natural numbers  from the empty set:

1  , 2  , , 3  , , , . . .

and define addition and multiplication on this set.
3. Create the positive rational numbers , and addition and multiplication on this set. This set also

allowed us to define division of numbers in .
4. Create the negative rational numbers, and in so doing, create the full set of rational numbers 

and the set of integers .
5. Define arithmetic in , and then in .

Of course, this is only one possible way to create the rational numbers. After creating , we could also
have created the negative integers 1,2,3, . . . , thus creating . We must then define arithmetic in
, and from here, create the set  using quotients from . We would finally define arithmetic in .
This recipe omits the steps where we created  and  separately, so if we are interested in these
subsets, we will need to define them.

At this point, the story becomes a lot more complicated. The construction of the irrational numbers
such as 2 ,  and e opens up an enormous can of worms. Several great Mathematicians were
instrumental in formalizing this development, among them Karl Weierstrass, Georg Cantor, Richard
Dedekind and Giuseppe Peano. One or more of the various constructions are normally discussed in a
course in Real Analysis or Logic and Set Theory, which are usually upper-division level Math
subjects.

These complications will require a lot of time and effort, and so we end our discussion of the creation
of real numbers on this note. We will continue our study of the real numbers from an axiomatic
viewpoint.
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Part II. The Axioms for the Real Number System

Since we reached a dead-end in Part I, we will now start fresh and assume that the set of real numbers
 has been created for us, somehow, along with the binary operations of addition and multiplication
of real numbers, represented by the symbols  and . Furthermore, we want  to enjoy certain nice
properties. We will classify these properties into three groups.

The Field Axioms

The first set of Axioms describe 11 properties that the set of real numbers possesses with respect to the
operations of addition and multiplication:

Axioms — The Field Axioms for the Set of Real Numbers:
The set of real numbers  exists, together with an addition operation  and a multiplication
operation . Let x, y, z  . Then the following properties are accepted to be true:

1. The Closure Property of Addition x  y  .
2. The Closure Property of Multiplication x  y  .
3. The Commutative Property of Addition x  y  y  x.
4. The Commutative Property of Multiplication x  y  y  x.
5. The Associative Property of Addition x  y  z  x  y  z.
6. The Associative Property of Multiplication x  y  z  x  y  z.
7. The Distributive Property of

Multiplication over Addition x  y  z  x  y  x  z.
8. The Existence of the Additive Identity:

There exists 0   such that: x  0  x  0  x.
9. The Existence of the Multiplicative Identity:

There exists 1  , 1  0, such that: x  1  x  1  x.
10. The Existence of Additive Inverses:

There exists x  , such that: x  x  0  x  x.
11. The Existence of Multiplicative Inverses:

If x  0, there exists 1/x  , such that: x  1/x  1  1/x  x.

If you look at the list carefully, you might notice something strange. In Part I, the commutative and
associative properties for both addition and multiplication were Theorems, that is, we can prove them
to be true, given how we created the natural numbers. However, we were stuck on how to create all
the real numbers, so there is certainly no guarantee that once we have the full set of real numbers, that
their addition and multiplication also enjoy these two properties. Thus we will require these properties
to be part of the Axioms that define the real numbers.
The existence of additive and multiplicative identities are what allow us to define the operations of
subtraction and division:
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x  y  x  y, and

x/y  x  1/y, where y  0.

The Field Axioms can be used to derive many other important properties of the real number system. As
such, we call these properties Theorems instead of Axioms: with a little bit of effort, we can prove
them to be true, instead of accepting them on faith as we do with Axioms. In order to do this, though,
we would need to formally know what we can do with equations. Here are the ground rules:

Axioms for Equations:
1. The Reflexive Property: If x  , then x  x.
2. The Symmetric Property: Let x, y  . If x  y, then y  x.
3. The Transitive Property: Let x, y, z  . If x  y and y  z, then x  z.
4. The Substitution Principle:

Let x, y  . If x  y, and Fx is an arithmetic expression concerning x, then:

Fx  Fy.

These properties are commonly accepted when we work to solve an equation in algebra. The last
property tells us that if x and y represent the same quantity, then performing the same arithmetic
operations on x as we do on y still result in equal quantities. For example:

If x  y, then x  5  y  5, and 3x  7  3y  7.
Let us now use our formalisms to the prove the following:

Theorem — The Uniqueness of the Additive Identity:
The number 0 is the unique member of  with the property that for all x  :

x  0  x  0  x.
In other words, if z   is any real number such that for all x  :

x  z  x  z  x
as well, then z  0.

Proof: Suppose that z   is a real number such that:
x  z  x  z  x,

for all x  . We must show that z  0.
One obvious way to do this is to solve the equation above for z. Our algebra instincts should tell us that
we should add x to all three parts of this compound equation, and get:

x  x  z  x  x  z  x  x.
This equation is true because of the Substitution Principle. We have taken the liberty to apply the
Associative and Commutative Properties of Addition in order to simplify our computation. Since
x  x  0, we get:

0  z  0  z  0.
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But The Additive Identity Property tells us that 0  z  z, and so we get z  0.
The proof is finished at this point, but we want to show a rather clever way to get to our conclusion
very quickly. We again begin with the equation:

x  z  x  z  x,
which is valid for all possible x  . But this means that this equation is also valid if we replace x
with 0! Thus we get:

0  z  0  z  0,
and once again, since 0  z  z, we get z  0 as we should.

There are many important Theorems the we can derive by just using the Field Axioms, and we mention
some of them below:

Theorems:
1. The Uniqueness of Additive Inverses:

For all x  , its additive inverse x is unique.
In other words, if w   is any real number with the property that:

x  w  0  w  x,
then w  x.
In particular, 0  0, and more generally, x  1  x.

2. The Uniqueness of Multiplicative Inverses:
If x   and x  0, then its multiplicative inverse 1/x is unique.
In other words, if y   is any real number with the property that:

x  y  1  y  x,
then y  1/x.

3. The Cancellation Law for Addition:
For all x, y, c  :

x  y if and only if x  c  y  c.

4. The Cancellation Law for Multiplication:
For all x, y, k  , if k  0, then:

x  y if and only if k  x  k  y.

5. The Multiplicative Property of 0: For all x  :
0  x  0  x  0.

Consequently, 0 cannot have a multiplicative inverse.
6. The Zero-Factors Theorem:

For all x, y  :
x  y  0 if and only if x  0 or y  0.

The Multiplicative Property of 0 was in fact proven in Chapter Zero using only the 11 Field Axioms.
Likewise, the Zero-Products Property was also proven in Chapter Zero using the Multiplicative
Property of 0 and a Case-by-Case Analysis.
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The Axioms for the Positive Real Numbers and Ordering

The second group of Axioms refer to the existence and properties of positive real numbers:

Axioms for the Positive Real Numbers:
There exists a non-empty subset   , consisting of the positive real numbers, such that
the following properties are accepted to be true:

P1. The Closure Property of Addition . . . If x, y  , then x  y  ,
P2. . . . and Multiplication for . and x  y  .
P3. Zero is NOT Positive: 0  .
P4. The Dichotomy Property for  If x  0, then either x  ,

or x  , but not both.

Axiom P4 creates another set, , consisting of the negative real numbers:

  x   |  x   .

Using only the Field Axioms, we can prove that 0  0, and thus 0   either by Axiom P3. Thus,
we can partition  into three disjoint sets, that is, sets which have no number in common: , , and
0. Thus, 0 is neither positive nor negative.
Now, here’s a legitimate question: Is 1 a positive number or a negative number? Every fiber of our
being would of course answer that 1 is positive. But notice that the four Axioms above do not mention
any specific member of . Thus, we have some proving to do:

Theorem: The set  is infinite, and in particular, 1  . As a consequence,  contains a
copy of the integers , and the rational numbers .

Proof: Since 1  0, either 1   or 1  , but not both, according to the Dichotomy Property.
Now, let us use Proof by Contradiction. Suppose 1  . Then by the Dichotomy Property, we must
have 1  . But then, by the Closure Property, 1  1  , or in other words, 1  . But
now both 1 and 1 are in , which violates the Dichotomy Property. Thus 1  .
Again, by the Closure Property, 1  1  , that is, 2  . Continuing inductively, 3  , 4  ,
and so on. Consequently, the set of positive integers (as we call them in everyday life) are in , and
so  is an infinite set. By the Dichotomy Property, we can now conclude that the negative integers are
in .
Thus the full set of integers  is a subset of . Finally, by dividing any integer by a non-zero integer,
we construct the rational numbers  as a subset of . 

The set  allow us to establish an ordering of the real numbers:

The Order Axioms:
We will say that x  y (in words: x is greater than y if x  y  . Thus, the expression
x  y is either true or false.
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In particular, x  0 if and only if x  , that is, x is positive.
Similarly, we can define the following expressions:

x  y means y  x,
x  y means x  y or x  y, and
x  y means x  y or x  y.

This leads us to the property that 2  1 because 2  1  1 is positive. Similarly, 3  2, 4  3, and so
on. Likewise, 1  2 because 1  2  1 is positive. Similarly, 2  3, 3  4, and so on.
Thus, it is perfectly natural for us to visualize the real number system using the number line, as seen in
Chapter Zero and in math classrooms near you, where x  y if and only if x appears to the right of y
on the number line:

 
.

21 3 4 0
..

e .
The Real Number Line

The Field Axioms allowed us to prove Theorems concerning basic arithmetic properties of real
numbers that we take for granted. Similarly, the Order Axiom and Axioms P1 through P4 allow us to
prove Theorems concerning , , order properties and inequalities:

Theorems:
1. The Closure Property of  Under Addition:

For all x, y  : x  y  .
2. The Reciprocal Property:

For all x  , x  0:
x   if and only if 1/x  .

Consequently, an analogous statement holds for members of .
3. The Trichotomy Property:

For all x, y  , exactly one of the following three possibilities is true:

x  y, or x  y, or y  x.

4. The Transitive Property of Inequalities:
For all x, y, z  :

if x  y and y  z, then x  z.

5. The Additive Property of Inequalities:
For all x, y, z, w  :

x  y if and only if x  z  y  z,
and more generally:

if x  y and z  w, then x  z  y  w.
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6. The Multiplicative Property of Inequalities:
For all x, y   and z  :

if x  y then x  z  y  z and x  z  y  z.

7. The Positivity Property of Products:
For all x, y  :

x  y   if and only if x, y   or x, y  .

In particular, for all x  , x  0 : x  x  .
8. The Order Property of Reciprocals:

For all x, y  :

if 0  x and x  y, then 1/y  1/x.
if 0  y and y  x, then 1/y  1/x.

9. The “Squeeze” Theorem for Real Numbers:
For all x, y, z  :

if x  y and y  z, and x  z, then x  y  z.

In particular: if x  y and y  x, then x  y.

Notice that the conclusion is the same in both cases of the Order Property of Reciprocals, although the
two hypotheses are different: 0  x  y in the first, and x  y  0 in the second. However, the
ordering of x and y is the same: x  y in both cases, but we require both numbers to be positive or both
to be negative. Thus, in the language of Calculus, this property simply says that the function f x  1/x
is monotonic decreasing on the two intervals , 0 and 0,.

Let us prove Theorem 2, The Reciprocal Property: For all x  , if x  0, then:

x   if and only if 1/x  .

Suppose x  . We know from the Field Axioms that 0 has no reciprocal, and thus either 1/x  

or 1/x  . Let us use Proof by Contradiction: Suppose 1/x  . Then:

x  1/x  ,

by The Closure of  under Multiplication. But this product is simply 1, which we know is not a
member of . We get a Contradiction, and so 1/x  . Similarly, if x  , we must show that
1/x   as well. Suppose 1/x  . Since x  , by the Closure Property once again,
x1/x  1  , getting us the same contradiction (notice that in this portion of the proof, the
“” is in a different location). This tells us that x   if and only if 1/x  . 

Axioms P1 through P4 also tell us that the set of real numbers does not contain the imaginary unit
i  1 . If i were a real number, then by the Dichotomy Property, either i or i would be positive
(since i is obviously not 0). However, if i were positive, then by the closure property for multiplication,
i  i  1 would also be positive, which is false, since 1 is positive. Similarly, if i were positive, so is
i  i  i  i  1. Again, this leads to a false statement. Thus, neither i nor i is positive, which
is forbidden by the Dichotomy property.
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Now, in Part I, we expended a lot of effort to construct , and in the process we created . We can
also easily check that the two sets of Axioms above (all 15 of them) are also satisfied by the set of
rational numbers , with  replaced by. Thus, we need another ingredient that will tell us that we
are dealing with a number system that does not simply consist of rational numbers. This final, and most
crucial ingredient now follows:

The Completeness Axiom

Before we can state The Completeness Axiom, we need to define a few more concepts:

Definitions — Upper and Lower Bounds:
We say that a non-empty subset A   is bounded above by x if for all a  A: a  x. We
call x an upper bound for A.
Similarly, we say that A is bounded below by y if for all a  A: a  y. We call y a lower
bound for A.
We say that A is bounded if it has an upper and a lower bound.

As an easy example, the set of positive numbers  is bounded below by 0, but is not bounded above.
Notice that 0 itself is not a member of , but it is a lower bound for . On the other hand, the set of
rational numbers  is neither bounded above nor below. The set of prime numbers:

P  2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, . . . 

is certainly bounded below by 2, but it is not clear that there is an upper bound. In fact, this set is
infinite, so it is not bounded above.
Now, if a set A is bounded above by x, then a  x for all a  A. However, if a  x, then a  x  1
also, so x  1 is again an upper bound for A. In fact, if z is any positive number, then x  z is also an
upper bound for A. Thus, a set will have an infinite number of upper bounds, if it has at least one upper
bound. Analogously, a set that is bounded below will have an infinite number of lower bounds. It
would be nice if one of these bounds is “special.” This is how we will define this special quality:

Definitions — The Least Upper Bound and The Greatest Lower Bound:
Suppose a non-empty subset A   is bounded above. We say that x is the least upper
bound of A if for any other upper bound x / for A, x  x /. This means that we cannot find
another upper bound for A that is smaller than x.
Similarly, if A is bounded below, we say that y is the greatest lower bound for A if for any
other lower bound y / for A, y  y /.

Think of the least upper bound as the lowest point for the bar in the “limbo dance” (if you have never
heard of this dance, you can find videos of it on the Internet). The bar will go lower and lower during
the dance, but there comes a point where the dancer can no longer go under the bar without knocking it
down if the bar is lowered any further. That point is the least upper bound.
Notice the subtle change in the articles that we used to define these terms: we say “an upper bound”
but we say “the least upper bound.” This is because the least upper bound, by its very definition, must
be unique, assuming of course that it exists. A set with an upper bound cannot have two distinct least
upper bounds. Similarly, a set with a lower bound cannot have two distinct greatest lower bounds:
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Theorem — Uniqueness of The Least Upper Bound:
Suppose a non-empty subset A   is bounded above. If A has a least upper bound x, then x
is unique.
This means that if x / is another least upper bound for A, then x  x /.

Proof: By definition, both x and x / are upper bounds for A. Since x is a least upper bound for A, this
means that x  x /. But similarly, since x / is a least upper bound for A, then x /  x. Thus x  x / by the
special case of the Squeeze Theorem for Real Numbers. 

Now we are ready to state the final Axiom for the set of real numbers:

The Completeness Axiom:
For every non-empty subset A   that has an upper bound x, we can find the least upper
bound x for A.

It turns out that this final Axiom, quite literally, completes everything that we need in order to exactly
create the set of real numbers. In other words, we are certain that we will get more than just the rational
numbers, all the radicals, all the transcendental numbers like  and e, but we will not get a number
system that is larger than the set of real numbers. Like Goldilocks, we get a system that is exactly
right. This is of course not easy to prove, but it is possible to do so.

Example: We will use the Completeness Axiom to capture 2 . First, let us construct the set:

A  x   |x2  x  x  2 ,

This set is obviously non-empty, since 0 and 1 are members of A. It is also bounded above, say, by the
number 2. We can show this by contradiction: suppose x  2. Then: x2  22  4, and so x  A. Thus
A is bounded above by 2. Now, by the Completeness Axiom, A has a least upper bound, and we can
call this s. Since 1  A, s must be positive. This s must be 2 , that is, s2  2. We will again show
that this is true by contradiction.
Case 1. Suppose s2  2. We will create a number w such that w2  2 but s  w. This will show that s
is not an upper bound for A, which would be a contradiction. For w, we can take:
w  2s  2/s  2. Since s and s  2 are both positive, so is ss  2 by the closure property of .
But then, ss  2  s2  2s  2  2s, and so by dividing by the positive number s  2, we get:
s  2  2s/s  2  w. Thus s  w. Similarly:

4s2  8s  4  2s2  8s  4  2s2  2s2  8s  4  4  2s2  4s  4,

and so 4s2  8s  4/s2  4s  4  2. The last step is valid because the denominator is clearly
positive. Basic algebra tells us that the left side is w2. Thus we have checked that s  w and w2  2,
which shows that s is not an upper bound for A. Contradiction!
Case 2. Suppose s2  2. If we let w be the same expression above, then this time, s2  2 and s  w.
This is because all the inequality manipulations are still valid since all the expressions involved are
positive. Thus, w is now an upper bound for A that is smaller than s. This contradicts the fact that s is
the least upper bound for A.
Thus, the only possibility left is that s2  2. 
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Summary: The Full System of Axioms of The Real Number System

There exists a non-empty set of real numbers  as well as two binary operations:  and . Let x, y,
z  . Then the following properties, the field axioms, are accepted to be true:

1. The Closure Property of Addition x  y  .

2. The Closure Property of Multiplication x  y  .

3. The Commutative Property of Addition x  y  y  x.

4. The Commutative Property of Multiplication x  y  y  x.

5. The Associative Property of Addition x  y  z  x  y  z.

6. The Associative Property of Multiplication x  y  z  x  y  z.

7. The Distributive Property of
Multiplication over Addition x  y  z  x  y  x  z.

8. The Existence of the Additive Identity:
There exists 0   such that: x  0  x  0  x.

9. The Existence of the Multiplicative Identity:
There exists 1  , 1  0, such that: x  1  x  1  x.

10. The Existence of Additive Inverses:
There exists x  , such that: x  x  0  x  x.

11. The Existence of Multiplicative Inverses:
If x  0, there exists 1/x  , such that: x  1/x  1  1/x  x.

Furthermore, there exists a non-empty subset   , consisting of the positive real numbers, such
that the following properties are also accepted to be true:

12. The Closure Property of Addition . . . If x, y  , then x  y  ,

13. . . . and Multiplication for . and x  y  .

14. Zero is NOT Positive: 0  .
15. The Dichotomy Property for  If x  0, then either x  ,

or x  , but not both.

Finally, we will accept to be true:

16. The Completeness Axiom: For every subset A   that has an
upper bound x, we can find the least upper bound x for A.
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Appendix A Exercises

All of the following Theorems can be proven using only the 16 Axioms of the real number system.
Justify each step of the proof (some of them are outlined for you) by stating which Axiom was used to
perform each step. Write complete sentences and not just equations.

1. Prove The Uniqueness of Additive Inverses: Suppose x  . If w   is any real number with
the property that:

x  w  0  w  x,
then w  x. Hint: solve for w.

2. Use the previous Exercise to show that 0  0. Hint: which of the Field Axioms tells us the
value of 0  0?

3. Use the Uniqueness of Additive Inverses to prove that x  1  x. Hint: find the value of:

x  1  x.

4. Use the previous Exercises to prove that x  x.

5. Prove The Uniqueness of Multiplicative Inverses: Suppose x   and x  0. If y   is any
real number with the property that:

x  y  1  y  x,
then y  1/x. Hint: solve for y.

6. Prove The Cancellation Law for Addition: For all x, y, c  :

x  y if and only if x  c  y  c.

a. Suppose x  y. What Principle tells us that x  c  y  c?
b. Now, suppose x  c  y  c. Prove that x  y. Hint: what can we do to both sides of the

equation?

7. Use the ideas behind the previous exercise to prove The Cancellation Law for Multiplication:
For all x, y, k  , if k  0, then:

x  y if and only if k  x  k  y.

8. Use The Multiplicative Property of 0 (which was proven in the text) to prove that 0 cannot have
a multiplicative inverse. Hint: Use Proof by Contradiction: Suppose 0 has a multiplicative inverse
1/0. What happens when we multiply it with 0?

9. Prove The Zero-Factors Theorem: For all x, y  :

x  y  0 if and only if x  0 or y  0.

a. Let us start with the converse, which is easier. Suppose x  0 or y  0. Use one of the
previous exercises to explain why x  0 and 0  y are both 0.

b. Now, suppose x  y  0. Perform a Case-by-Case Analysis to show that either x  0 or
y  0. Case 1. could be x  0. What should Case 2 be so that all possibilities are covered?

10. The objective of this Exercise is to study the set .
a. Prove The Closure Property of  Under Addition: For all x, y  : x  y  . Hint:

what can you say about x and y?
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b. On the other hand, prove that for all x, y  : x  y  , and thus  is not closed under
multiplication. The hint for the previous exercise is still applicable.

For Exercises 11 to 20: Use the definition that x  y if and only if x  y   to prove the
following properties.

11. Prove The Trichotomy Property of Inequalities: For all x, y  , exactly one of the following
three possibilities is true:

x  y, or x  y, or y  x.

Hint: Consider the expression x  y and do a Case-by-Case Analysis.

12. Prove The Transitive Property of Inequalities: For all x, y, z  :

if x  y and y  z, then x  z.

13. Prove The Additive Property of Inequalities: For all x, y, z  :

x  y if and only if x  z  y  z.

Note that this is an if-and-only-if statement.

14. Prove more generally that: For all x, y, z, w  :

if x  y and z  w, then x  z  y  w.

15. Prove The Multiplicative Property of Inequalities: For all x, y   and z  :

if x  y then x  z  y  z and x  z  y  z.

16. Prove The Positivity of Products: For all x, y  :

x  y   if and only if x, y   or x, y  .

17. Use the previous Exercise to prove that for all x  , x  0: x  x  . Hint: do a
Case-by-Case analysis.

18. Prove The Order Property of Reciprocals: Suppose that: x, y  :

a. If 0  x and x  y, show that 1/y  1/x.
b. If 0  y and y  x, show that 1/y  1/x.

19. Prove The “Squeeze” Theorem for Real Numbers: For all x, y, z  :

if x  y and y  z, and x  z, then x  y  z.

Recall that x  y if and only if either x  y or x  y.

20. Use the previous Exercise to prove: For all x, y  : if x  y and y  x, then x  y.
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Appendix B: Logical Symbols and Truth Tables

The purpose of this brief Appendix is to introduce and discuss symbols that are often used in basic
logic, and how to create and understand truth tables.

Logical Quantifiers and their Symbols

Recall that there are two logical quantifiers:
 The existential quantifier there exists, which is written symbolically as , and
 The universal quantifier for all, which is written symbolically as .

Examples: We can write the Commutative Property of Addition as:

x  ,y  : x  y  y  x.
This is read as “For all x, a member of , (and) for all y a member of : x  y  y  x. ”
We can write the Axiom for the Additive Identity 0 as:

0  : x  : x  0  x  0  x.
This is read as “There exists 0, a member of , such that for all x that is a member of :
x  0  x  0  x. ”

On the other hand, we can write the Axiom for the Existence of Negatives as:

x  ,   x  : x  x  0  x  x.
This is read as “For all x, a member of , there exists x, also a member of , such that
x  x  0  x  x. 

The Negation, Conjunction and Disjunction

The basic truth tables involve the negation, conjunction and disjunction operations:
 not, which is written symbolically as  ,
 and, which is written symbolically as  , and
 or, which is written symbolically as  .

Naturally, we abbreviate true as T and false as F in a truth table. Our first example will be the truth
table for the not operation:

p p
T F
F T

The Truth Table For the not Operator
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The table says that if p is true, then p is false, and if p is false, then p is true.
The truth tables for the conjunction p  q and the disjunction p  q are as follows:

p q p  q
T T T
T F F
F T F
F F F

p q p  q
T T T
T F T
F T T
F F F

The Truth Table For and The Truth Table For or

Notice that there are exactly 4 possible combinations for the values of p and q. As we have seen
before, p  q is true only when both p and q are true, but p  q is true when either p or q is true.

Implications

The truth table for an implication is usually the most baffling to comprehend. Recall that an implication
has the form:

If p then q, written symbolically as: p  q.
An implication is true if the conclusion q is true whenever the hypothesis p is true. Therefore, if p is
false, then the implication is automatically true (this is the part that is toughest to swallow). We also
say that the implication is vacuously satisfied.

The key to understanding its truth table is therefore the following:

The only possible way for p  q to be false is the case when p is true but q is false.
Thus we have:

p q p  q
T T T

T F F

F T T
F F T

The Truth Table For An Implication

We boxed the lone F entry for emphasis. We will use the same technique in the truth tables below
that involve other implications.
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Contrapositives

We can now tie up a lose end from Chapter Zero. We claimed there that an implication is always
logically equivalent to its contrapositive. We said this so that we can prove an implication p  q by
proving its contrapositive q p, using the technique appropriately called Proof by Contrapositive.
As we can see below, the truth table for the contrapositive is exactly the same for our original
implication above, and thus we are justified in saying that they are logically equivalent:

p q q p q p
T T F F T

T F T F F

F T F T T
F F T T T

The Truth Table For The Contrapositive

Notice that the lone F appears when q is true but p is false. This is exactly the same line where p
is true but q is false, and so the table for p  q is the same as the table for q p.

Converses and Inverses

We can see below why the converse q  p and the inverse p q are not logically equivalent to the
original implication p  q, but they are logically equivalent to each other:

p q q p q  p
T T T T T
T F F T T

F T T F F

F F F F T

p q p q p q
T T F F T
T F F T T

F T T F F

F F T T T

The Truth Table For The Converse The Truth Table For The Inverse

Notice that the lone F appears on the same line for both tables, showing they are logically equivalent,
but appears in a different line from the table for p  q and its contrapositive. This shows why, in
general, the converse and the inverse of a true implication are not always true.
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Equivalences

An equivalence p  q is true precisely when both p and q are true, or when both are false, and it is
false for the other two combinations. Thus, its truth table is as follows:

p q p  q
T T T
T F F
F T F
F F T

The Truth Table For An Equivalence

Example: We can write the Zero-Factors Theorem for Vectors as:

k  , v  V: kv  0V  k  0  v  0V. 

NAND and NOR

The nand and nor binary operators appear frequently in Computer Science, and so we show their truth
tables below:

p q p nand q
T T F
T F T
F T T
F F T

p q pnor q
T T F
T F F
F T F
F F T

The Truth Table For nand The Truth Table For nor

As you may have guessed from its truth table, nand is equivalent to “not and”. We obtained its truth
table from that of the and operator by taking the negation. Similarly, nor is equivalent to “not or”.
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Appendix B: Exercises

For Exercises 1 to 5: Use the symbols for the logical quantifiers to write the following Axioms of
the Real Number System symbolically (see Chapter Zero or Appendix A for their full statements):

1. The Closure Property of Addition.

2. The Associative Property of Multiplication.

3. The Distributive Property of Multiplication over Addition.

4. The Existence of the Multiplicative Identity.

5. The Existence of Multiplicative Inverses.

6. Prove de Morgan’s Laws using truth tables: For all logical statements p and q:

not p and q is logically equivalent to notp or notq

and likewise:
not p or q is logically equivalent to notp and notq.

7. Notice that the truth table for the disjunction contains a lone F entry in the final column, just like
the truth table for the implication. Use this to rewrite p  q in terms of a negation and a
disjunction.

8. Divisibility: We say that a   divides b   if b  ka for another integer k  . Rewrite this
definition using the universal and existential quantifiers:

a  , b  : a divides b  ____ : _____.

9. Prime Numbers: We say that p   is a prime number if p  1 and the only positive integers n
that divide p are 1 and p itself. Use the previous Exercise to rewrite this definition using
quantifiers.

10. Parity: Use the existential quantifier to define the concept of an even integer, and likewise to
define an odd integer:

a  : a is even  n  : _____.
a  : a is odd  . . . .

11. Use the previous Exercise to rewrite symbolically the following Theorem, which we saw in
Chapter Zero, without using the word odd: For all a, b  :

If the product a  b is odd, then both a and b are odd.

12. Use quantifiers to rewrite Goldbach’s Conjecture: Every even integer bigger than 2 can be
expressed as the sum of two prime numbers.
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Chapter Zero

 or   the empty set or null set
 “an element of” or member of a set
 the set of natural numbers
 the set of integers (from “Zahlen”)
 the set of rational numbers (from “quotient”)
 the set of real numbers
not p the negation of a logical statement p
p  q the implication p implies q
p  q the equivalence p if and only if q
p and q the conjunction of p and q
p or q the disjunction of p and q
 “for all”, the universal quantifier
 “there exists,” the existential quantifier
X  Y X is a subset of Y
X  Y X union Y, or the union of X and Y
X  Y X intersection Y, or the intersection of X and Y
X  Y X minus Y, or the difference between X and Y

Chapter 1

n Euclidean n-space
v  v1, v2, . . . , vn  an arbitrary vector of n

0n  0, 0, . . . , 0 the zero vector of n

v the negative of the vector v
u  v the sum of the vectors u and v
r  v or rv the scalar product of r with v

PQ the vector from a point P to a point Q
v the length or norm of a vector v
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x1v1  x2v2   xkvk a linear combination of vectors
e1, e2, . . . , en the standard unit vectors in n

i, jand k the standard unit vectors in 3

SpanS the Span of a set of vectors S
 the capital Greek letter “pi,” representing a plane
u  v the dot product of the vectors u and v
du, v the distance between the vectors u and v

v1 v2 . . . vn | b an augmented matrix

m  n “m by n, ” the dimension of a matrix
R i  cR i multiply row i by c
R i  R j exchange row i and row j
R i  R i  cR j add c times row j to row i
rref the reduced row echelon form of a matrix
In the n  n identity matrix
Ax a matrix product with a column vector
v1 v2 . . . vn  a matrix with vectors assembled in columns
 the subspace symbol

b  W a translate (or coset) of a subspace W
W the orthogonal complement of a subspace W
dimW the dimension of a space (or subspace) W
w S the coordinate vector of w with respect to the basis S

Chapter 2

T  the standard matrix of a linear transformation
Zn,m the zero transformation from n into m

0mn the zero m  n matrix
In the identity operator on n

Sk the scaling operator Skv  kv

rot the counterclockwise rotation in 2 by 
projx the projection operator onto the x-axis (etc.)
reflx the reflection operator across the x-axis (etc.)
refl the reflection operator in 3 across 
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T2  T1 the composition of T2 with T1

kerT the kernel of a linear transformation T
rangeT the range of a linear transformation T
nullityT the dimension of kerT
rankT the dimension of rangeT
T1 the inverse of an invertible operator T
A1 the inverse of an invertible square matrix A
Diagd1, d2, . . . , dn  a diagonal matrix with diagonal entries d1, d2, . . . , dn

A the transpose of a matrix A

Chapter 3

 a generalized vector addition
 a generalized scalar multiplication

0V the zero vector of the vector space V
n the space of polynomials of degree at most n
FI the space of functions defined on an interval I
Matm, n the space of m  n matrices
 the space of positive numbers under

multiplication and exponentiation
|X | the cardinality of a set X
0 “aleph zero” or “aleph nought,” the cardinality of 
1 “aleph one,” the cardinality of 
CI the space of continuous functions on I
CnI the space of n-times differentiable functions on I

whose derivatives are all continuous
CI the space of infinitely differentiable functions on I
IV the identity operator on V
Ea the evaluation transformation: Ea f   f a
v B the coordinate matrix of vwith respect to the basis B

T B,B / the matrix of a transformation T relative to B and B /

T B the matrix of an operator T relative to the basis B
CB,B / the change of basis matrix from B to B /
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Chapter 4

V W the join of the subspaces V and W
V W the intersection of the subspaces V and W
VW the direct sum of the subspaces V and W
TV the image of a subspace V of the domain of T
T 1W the preimage of a subspace W of the codomain of T
T |U the restriction of T to a subspace U of the domain of T
V/W “V modulo W, ” the quotient space of V modulo W

Chapter 5

detA or |A| the determinant of the square matrix A
   i1, i2, . . . , in  “sigma,” a permutation of 1n
sgn the sign of the permutation 
M i,j the i, j-minor of a square matrix A
C i,j the i, j-cofactor of a square matrix A

Chapter 6

 “lambda,” an eigenvalue of a square matrix A
p or pA the characteristic polynomial of a square matrix A
EigA,  the eigenspace of a square matrix A associated to 
BS the matrix with columns vi S, where B  v1,  , vn

detT the determinant of an operator T
A  B the square matrix A is similar to B
trA the trace of a square matrix A
EigT,  the eigenspace of an operator T associated to 
cof A the cofactor matrix of a square matrix A
adj A the adjugate matrix of a square matrix A

Chapter 7

u |v  the inner product of u and v

v the length of v: v  v |v

d u, v  the distance between u and v: d u, v   u  v
W the orthogonal complement of a subspace W
projW the projection operator onto W
reflW the reflection operator across W

864 Glossary of Symbols



Chapter 8

i the imaginary unit 1
 the field of complex numbers z  a  bi
z the complex conjugate of z: z  a  bi

z the norm or length of z: z  a2  b2

0 the complex zero: 0  0  0i
1 the complex unit: 1  1  0i
F an arbitrary field, with zero and unit 0 F and 1F

argz the argument of z; the angle made by z with the positive real axis
n the complex vector space of all n tuples of complex numbers
n all polynomials of degree at most n with complex coefficients
Mat, m, n the space of m  n matrices whose entries are from 

 z|w  the complex inner product of zandw

SpecT the spectrum of an operator T; the set of its eigenvalues 1, 2, . . . , k

A the Hermitian adjoint of A: A  A

T the Hermitian adjoint of T: T   T 

Hermn the real vector space of all n  n Hermitian matrices over 
SkewHermn the real vector space of all n  n Skew-Hermitian matrices over 
A  B the relation A is unitarily equivalent to B

Chapter 9

 “Ohm,” the unit of resistance
 “gamma,” the golden ratio 1  5 /2

Q x1,  , xn  a quadratic form in n variables
Q the matrix of the quadratic form Q
 “delta,” the discriminant of a binary quadratic form Qx, y
A  0, A  0, etc. A is a positive definite (resp. semi-definite) matrix, etc.
Q  0, Q  0, etc. Q is a positive definite (resp. semi-definite) quadratic form, etc.
Ak the upper left k  k submatrix of A
 i a singular value for A:  i   i , where  i  0

UV the singular value decomposition of A
A the pseudoinverse of A: A  VU
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Important Axioms, Definitions, Theorems and Algorithms are in bold italics. 
 
ℵ (aleph) 297 
absolutely convergent series 328, 588 
Absorption Rule 423 
abstract vector space 270 
addition of vectors 27, 270 
addition of linear transformations 186, 333 
additive identity 4, 26, 839 
additive inverse 4, 26, 31, 270, 674, 687 
additive / additivity property 89, 158, 230, 
 329, 578, 702, 705 
adjoint of a complex matrix 705 
adjoint transformation 807 
adjugate matrix 488 
aleph 297 
algebraic multiplicity 530, 707 
ambient space 115 
angle between vectors 60, 592 
antecedent 5 
anti-commutativity property 706 
argument of a complex number 677 
arithmetic of matrices 187 
associative properties 4, 31, 199-202, 270, 
 674, 685, 840 
augmented matrix 68 
automorphism 376-7 
axiom 3 
 
Axiom for a General Line 46  
Axiom for a General Plane 48 
Axiom for a Plane in Cartesian Space 45  
Axiom for Parallel Vectors 30, 277 
Axiom of Choice 316  
Axioms for the Positive Real Numbers 848  
Axioms for the Real Numbers 4, 845, 853 
Axioms of a Complex Inner Product 
 Space 696 
Axioms of an Abstract Vector Space 270 
Axioms of a Vector Space over a Field 685 
Axioms of an Inner Product Space  
 

back substitution 73 
balancing chemical reactions 754 
basic box 163 
basis / bases of a subspace / vector space 
 117, 124, 314, 324, 690 
basis step in induction 16 
Basis Test for Diagonalizability 526 
Best Approximation Algorithm 657 
bijection / bijective 228, 375, 452, 696 
bilinear form 578, 802 
binary quadratic form 778 
bisymmetric matrix 326 
block diagonal form 252, 266, 484, 513,  
 645, 736 
Boolean algebra 9 
 
ℂ 672 
cancellation laws / properties 19, 39, 377, 405 
Cantor, Georg 307 
cardinality of a set 295, 298, 317 
Cartesian equation for a plane 46 
Cartesian plane 28 
Cartesian space 30 
case-by-case analysis 13 
Cauchy-Schwarz Inequality 59, 60, 591 
centralizer of a matrix 327 
change of basis matrix 544, 555 
characteristic equation / polynomial  
 505, 568, 703 
Chinese Remainder Theorem 254 
Cholesky Decomposition 800, 803 
circuit analysis 760 
closure properties 4, 14, 31, 115, 259,  
 261, 270, 674, 685 
codomain 158, 213, 329, 702 
coefficient 33, 90, 284, 300 
coefficient matrix 90 
cofactor 479 
cofactor expansion 480 
cofactor matrix 488 

Index
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column matrix 68, 159 
columnspace 125, 213 
Columnspace Test for Consistency 131 
commutative properties 4, 31, 55, 199, 
 207, 270, 674, 685, 840  
compatibility requirement  
 for compositions 189 
 for matrix products 191 
complement of two sets 9 
Completeness Axiom for Real Numbers 
 851-52 
complex conjugate of a complex number 
 673, 676 
complex conjugate of a complex vector 686  
complex Euclidean n-space 685 
complex Euclidean inner product 694 
complex linear transformation 702 
complex numbers 672 
complex scalar multiplication 685 
complex vector spaces 685 
complex zero 672 
component of a vector 26 
composition of linear transformations 
 189, 203, 225, 363, 375 
conclusion 5 
conditionally convergent series 328, 588 
conditions in an implication 5 
conditions for invertibility 248 
conic section 778, 788 
conjecture 17 
conjugate homogeneity property 706 
conjugation by a matrix 563 
conjunction 8, 857 
consequent 5 
consistent system 83, 131 
continuous functions 6, 312, 331, 582 
contraction operator 164 
contrapositive of a logical statement 7, 858 
converse of a logical statement 7, 858 
coordinate matrix 341 
coordinate vector 341 
coplanar vectors 93 
coset 422 
countable sets 297-8 
counterexample 6 
covariance matrix 803 

covering 216, 359 
Cramer's (Gabriel) Rule 491 
cross product 64, 460, 476 
cryptography 6 
 
data compression 829 
De Moivre's Theorem 678 
De Morgan's Laws 9, 398, 623, 860 
decode 345 
defective matrix 526 
degenerate conic 788 
dependence (test) equation 90, 287, 688 
dependent set of vectors 90 
Dependent Sets from Spanning Sets 
 Theorem 105, 316 
Descartes' Rule of Signs 518 
determinant of a square matrix 448, 461 
determinant of an operator 558, 560 
diagonal matrix 255, 279, 322, 325, 465 
diagonal quadratic form 778, 781 
diagonalizable / diagonalize / diagonalization 
 526, 534, 563, 570, 574, 707 
dichotomy property 23, 848 
difference of two sets 9 
differentiable functions 312 
differentiation transformation 331 
dilation operator 164 
dimension of a matrix 68  
dimension of a vector space / subspace  
 26, 120, 316, 690  
Dimension Theorem 130, 146, 153, 214, 
 248, 361, 616, 703, 810 
Direct sum of two or more matrices  
 252, 266, 484,  
direct sum of two or more vector spaces  
 283, 400 
directed bipartite graph 453 
directed line segment 29 
direction vector of a line 46 
discriminant of a binary quadratic form  
 783, 792 
disjunction 8, 857 
distance between two vectors 61, 590 
distributive properties 4, 31, 55, 199, 200 
 270, 674, 685 
divergent series 328 
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domain 158, 329, 702 
dot product 54, 144 
double adjoint property 705  
double conjugate property 610 
double implication 7 
double index notation 100, 105 
double negation property 19  
double reciprocal property 20 
 
eigenspace 507 
Eigentheory 504, 568, 703 
eigenvalues / eigenvectors 504, 568, 703 
elementary matrix 163, 182, 238, 466 
elementary column operation 247 
elementary row operation 70, 238, 466 
Elimination Theorem 102, 114, 294 
embedding 214, 358 
empty set 1, 837 
encode 345 
Equality of Polynomials 285 
Equality of Sets 9, 71 
Equality of Spans Theorem 99,100 
equality of vectors 26 
Equivalence of Cholesky Decomposition 801 
equivalence 7, 858 
equivalence classes 565 
equivalence relation 564, 726 
equivalent statements 7, 859 
Euclidean Algorithm 254 
Euclidean n-space 26 
evaluation transformation 330  
even permutation 452 
Existence of a Basis Theorem 119, 316 
Existence of the Empty Set Axiom 3, 837 
existential quantifier 3, 856 
exponential of a square matrix 540 
Extension Theorem 98, 106, 118, 294, 
 315, 622 
 
Fibonacci Number 20, 770, 813  
Fibonacci Prime Conjecture 20 
Field Axioms 4, 674-5, 845 
fields 674 
finite dimensional vector spaces 316, 690 
finite field 683 
Fourier series 612 

free variable 69, 87, 90 
full rank 126, 133-4, 218 
function space 271, 332, 347 
Fundamental Matrix Spaces 125 
Fundamental Theorem of Algebra 285, 679 
Fundamental Theorem of Arithmetic 22  
Fundamental Theorem of Linear Algebra  
 808-9 
 
Galois Theory 679 
Gauss, Carl Friedrich 679 
Gauss-Jordan Algorithm / 
 Gaussian Elimination 73, 689 
geometric multiplicity 530, 707 
Geometric vs. Algebraic Multiplicity 
 Theorem 531, 707 
given condition 5 
Goldbach's conjecture 17 
Golden Ratio / Rectangle 771 
Gram-Schmidt Algorithm 602, 697 
greatest lower bound 851 
Group Theory 428 
 
Hermite, Charles 696 
Hermitian adjoint 705 
Hermitian matrix 712 
Hermitian symmetry 696 
Hermitian transpose 705 
homogeneity property 55, 62, 89, 158, 
 230, 329, 578, 702 
homogeneous system 87, 143 
Hooke's Law 827 
Hypothesis 5 
 
i imaginary unit 672 
idempotent matrix 632 
identity matrix 76, 162 
identity operator 162, 330, 377 
identity property 26 
image 158 
image of a subspace 412 
imaginary axis 677 
imaginary part of a complex number 672 
imaginary unit i 672 
implication 5, 858 
improper orthogonal matrix 635 
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inconsistent system 83 
indefinite matrix 796 
Independence of Distinct Eigenspaces 529 
independent set of vectors 90, 260, 685  
Independent Sets from Spanning Sets 
 Theorem 106, 316 
inductive hypothesis / step  
infinite dimensional vector space 316, 690  
infinitude of primes 22 
injection / injective linear transformation 
 216, 358 
inner product 578 
integer 2 
Integer Roots Theorem 518 
integer solutions to linear systems 82 
integrals as linear transformations 331 
integrals as inner products 582 
intercepts form of the equation of a plane 53 
intersection of two sets 9, 398 
intersection of two subspaces 397 
Invariance of the Discriminant 783 
Invariance of Solution Sets 71 
Invariant Properties under Similarity 454 
inverse of a composition 250 
inverse of a logical statement 7, 858 
inverse of a matrix 231, 240 
inverse of a matrix product 250 
inverse of a reflection operator 234 
inverse of an operator 228, 233 
inverse property 26 
inversion in a permuation 448, 452 
invertible linear transformation 228, 375 
invertible matrix 231, 448, 477, 490, 560 
irrational number 2 
isometry 627 
isomorphism 228, 375 
Isomorphism Theorems 431-441 
 
join of two subspaces 395 
 
kernel of a linear transformation  
 215, 334, 375, 708 
Kernel Test for Injectivity 215, 358 
Kirchoff's Current / Voltage Laws 761-2 
 
 

Law of Cosines 56 
leading column / leading one /  
 leading variable 69 
Least Squares Method /  
 solution / system 653 
least upper bound 851 
left handed coordinate system 642 
left homogeneity property 696 
left inverse of a matrix 249 
length of a vector 32, 54, 588, 695 
Linear Algebra 25 
linear combination of linear transformations 
 193, 333 
linear combination of matrices 193 
linear combination of vectors 33, 284, 300, 
 688 
linear dependence / independence  
 90, 260, 685 
linear functional 158 
linear operator 158, 329 
linear transformation 158, 283, 329 
line 3, 46 
logical operators 8  
logical statement / system 2 
lower bound 849 
lower triangular matrix 260, 322, 325 
 
main diagonal 257 
map 158 
mathematical research 17 
matrices / matrix 68 
matrix equation 89 
matrix of a basis 544 
matrix of a composition 203, 364 
matrix of a linear transformation  
 160, 344, 548, 557 
matrix over ℂ 687 
matrix product 88, 144, 191, 702 
matrix space 274 
medians of a triangle 39 
Mersenne prime 6 
mesh analysis 763 
Method of Descent 22  
Minimizing Theorem 102, 118, 122, 125, 
 356, 413, 443, 546 
minor 479 
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modus ponens 11 
multiplicative identity / inverse 4, 674 
multiplicativity property 12, 27, 39, 276 
multiplicities 530, 707 
Multiplicity Test for Diagonalizability 531 
 

ℕ natural numbers 1, 295, 829 
NAND operation 859 
necessary condition 5 
negation of a logical statement 6 
negative definite matrix or  
 quadratic form 796 
negative numbers 2 
negative semi-definite matrix or 
 quadratic form 796 
negative of a matrix 187 
negative of a vector 26 
nested subspaces 124, 311 
Noether, Amalie Emmy 431 
non-degeneracy property 55 
non-homogeneous system 87  
non-trivial solution 87 
NOR operation 859  
norm of a vector 32, 54, 589 
normal line to a plane 58 
normal matrix 717 
normal system 655, 665 
normal vector to a plane 58 
normalizing a row 73 
not logical operator 6 
null set 1 
nullity of a matrix / linear transformation 
 129, 213 
nullspace of a matrix 125, 398, 505, 614  
 
octant 30 
odd permutation 452 
Ohm's Law 760 
one sided inverse 249  
one-to-one property of linear  transformations 
 214, 358, 362 
onto property of linear transformations  
 216-7, 358, 362 
operations on linear transformations 186, 333 
Order Axioms for Real Numbers 23, 848 
order property of reciprocals 24 

ordered n-tuple 26 
ordinary differential equation 381 
orthogonal basis 601 
orthogonal complement 142, 174, 613  
orthogonal decomposition 175, 617 
orthogonal diagonalization  
 of symmetric matrices 646 
orthogonal lines 65 
orthogonal lines and planes 65  
orthogonal matrix 635 
orthogonal operator 639 
orthogonal planes 65 
orthogonal projection 618 
orthogonal set of vectors 599, 609 
orthogonal vectors 57, 60, 593 
orthonormal basis 601, 616, 625, 627, 639 
orthonormal set of vectors 599 
overdetermined system 86, 134 
 
ℙⁿ polynomials of degree at most n 271 
padding with zeroes 655 
parallel lines 48, 52, 65 
parallel planes 59, 64, 98 
parallel vectors 30, 277 
parallelogram law 66 
parallelogram principle 29 
parameter / parametric equations 42, 45, 47 
particular solution of a matrix equation 131 
partitioned matrix 88 
Pauli matrices 734 
permutation matrix 169, 247 
permutation of 1..n 451 
perpendicular vectors 57, 60, 593 
pivot 73 
plane 45, 48 
polar form of a complex number 677 
polynomial curve fitting 383 
polynomial evaluation 205, 581 
polynomial space 271 
polynomial over ℂ 686 
positive definite matrix or quadratic form 796 
positive rational number 841 
positive semi-definite matrix or 
 quadratic form 796 
positivity property 55, 578, 695-6 
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power of a square matrix or  
 linear transformation 204 
powersets 23 
predecessor 840, 843 
preimage of a subspace 412, 414 
Preservation of Subspaces Theorem 412  
prime numbers 6, 684 
projection matrix 628, 656 
projection operator 174-9, 263, 348, 356, 
 516, 550, 628 
proof 11 
proof by contradiction 15 
proof by contrapositive 14 
proof by mathematical induction 15 
proof template 35 
proper orthogonal matrix 635 
proper subspace 115 
pseudoinverse 831 
pure imaginary complex number 672 
pure real complex number 672 
Pythagorean Theorem 594 
 
ℚ   2, 295, 306, 675 
ℚ⁺ 841 
quadratic form 778 
quadric surface 778 
quantifier 3 
QR-Decomposition 663 
quotient space 424 
 
ℝ 2, 27, 296 
ℝ⁺ 274, 280, 340, 389, 587, 682 
ℝ² 28  
ℝ³ 30  
ℝⁿ 26 
range of a linear transformation 213, 334, 
 375, 702 
rank of a linear transformation 213 
rank of a matrix 129 
rational number 2, 675 
Rational Roots Theorem 518 
real axis 677 
real-conjugate pair 712 
real number 2 
real part of a complex number 672 
 

Really Big Theorem on Invertibility  
 248, 514 (addenda) 
reciprocal property 24 
recurrence relation 770 
reduced row echelon form (rref) 69 
reductio ad absurdum 15 
reflection operator 164, 172, 174-9, 234, 
 263, 348, 356, 516, 550, 636, 642 
reflexive / reflexivity property 564, 726 
relation 564 
representative of a coset 422 
restriction of a linear transformation 403 
right conjugate-homogeneity property 697  
right handed coordinate system 642 
right inverse of a matrix 249 
ring structure 207 
roster method for set notation 1 
rotation matrix / transformation 
 170, 512, 636, 644, 788  
rotation of a conic section 788 
row echelon form 68 
row matrix 68 
rowspace of a matrix 125, 405 
rref (reduced row echelon form) 69, 72, 141 
 
scalar 26 
scalar multiplication / product 27, 270, 685 
scaling operator 162, 330, 515 
Schroeder-Bernstein Theorem 296 
Schur, Issai 727 
Schur Decomposition / Schur's Lemma 727 
shear operator 165, 515, 817, 821 
sight-reading the nullspace 130-1 
sign of a permutation 452 
similarity / similar matrices  
 563, 566, 574, 725 
Simultaneous Diagonalizability Theorem 
 737, 743, 747 
Singular Value Decomposition 817, 819  
skew lines 65 
Skew-Hermitian matrix 712 
skew-symmetric matrix 633, 712 
SLn(special linear group) 486 
Span of a set of vectors 41, 284, 300, 311, 688 
sparse matrix 484 
special linear group 486 
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Spectral Theorem for Hermitian /  
 Skew Hermitian /  
 Unitary Matrices 730 
Spectral Theorem for Normal Matrices 726 
Spectral Theorem for Symmetric Matrices  
 647, 730 
spectrum of an operator 705 
square root of a matrix 804 
square systems 83, 134 
Squeeze Theorem for Real Numbers  
 24, 850  
standard basis vectors 34, 90, 116 
standard matrix of a linear transformation 
 160, 548 
standard position 28 
subspace 115, 119, 310, 613, 690 
substitution principle 12 
successor 840, 843 
sufficient condition 5 
Superposition Principle 763  
surjection / surjective 216-7, 358 
SVD see Singular Value Decomposition 
Sylvester's Criterion 798 
symmetric equations for a line 43, 47 
symmetric matrix 262, 279, 322,  
 325, 633, 797 
symmetry / symmetric property 62, 564, 
 578, 726 
system of linear equations 68 
 
test for pure real / imaginary numbers 676  
theorem 5 
trace of a matrix 340, 567, 574 
transfinite induction (Zorn’s Lemma) 316 
transitive / transitivity property 24, 564, 
 726, 849 
translate of a Span / subspace 46, 48, 131, 422 
translated vector 28 
transpose operation / transpose of a matrix 
 125, 262 
Triangle Inequalities 61, 62, 594 
triangular matrices 260, 465, 469, 497, 508 
trichotomy property 24 
trivial solution 87, 287 
trivial subspaces 115 
truth tables 856-9 

Twin Prime Conjecture 20 
Two-for-One Theorem 146, 249, 321 
 
uncountable sets 298, 307 
underdetermined system 83, 87, 134, 216 
union of two sets 9, 392 
Uniqueness of the Additive Identity 38, 275 
Uniqueness of the Additive Inverse  
 19, 38, 276 
Uniqueness of the Matrix Inverse 232 
Uniqueness of the Multiplicative Inverse 19 
Uniqueness of Representation Property 
 of a Basis 34, 124, 314, 324 
Uniqueness of the RREF 72, 141 
Uniqueness of the Zero Vector 38, 275 
unit 2 
unit circle / sphere 589 
unit vector 32, 54, 589 
unitarily diagonalizable matrix 725 
unitarily equivalent matrices 725 
Unitary Diagonalization Algorithm 731 
unitary matrix 715, 725, 730 
unitary property 31, 270, 685 
universal quantifier 3, 856 
upper bound 851 
upper triangular matrix 260, 280, 322, 325 
 
Vandermonde determinant 485  
vector 26 
vector addition / sum 27, 270, 685 
vector equation for a line 47  
vector space over a field 685 
vector subtraction 27 
Venn diagram 9 
von Neumann, John 837 
 
weight / weighted inner product 579, 587 
Wronskian of a set of functions 497 
 
ℤ  (Zahlen) 2, 295 
zero divisor 207 
Zero-Factors Theorem 13, 39, 276 
zero matrices 161  
zero transformation 161, 330 
zero vector / property 26, 55, 270, 685 
Zorn's Lemma (transfinite induction) 316 
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